Ref No.: Ex/CE/PE/B/T/421G/2023

B.E. Civil Engineering (4th Year, 2nd Semester Examination), 2023

(1st / 2nd Semester / Repeat / Supplementary / Annual / Biannual) SUBJECT: HAZARDOUS WASTE AND ITS DISPOSAL (Elective-G)

Full Marks: 100

Time: Two-hours/Three hours/Four hours/Six-hours

(50 marks for this part)

Use a separate Answer-Script for each part

No. of Question	Part-I	Marks
	Answer all questions	1
Q.1) a)	Differentiate between 'Recalcitrant' and 'Xenobiotic' compounds. (CO1)	(4)
b)	What do you mean by 'Corrosivity' of hazardous waste? (CO1)	(3)
c)	What do you mean by "Partitioning of Hazardous Contaminants"? What are the different modes of partitioning of hazardous waste to various media? (CO1)	(2+3)
d)	Determine the lower flammability limit (LFL) and upper flammability limit (UFL) of a gaseous mixture (v/v) of 0.64% Acetone, 0.21% Decane and 0.35% Hexane. Given, the LFL and UFL of individual gaseous constituents as follows: (CO1)	(5)
	Compound LFL (%) UFL (%) Acetone 2.6 12.8 Decane 0.8 9.2 Hexane 1.1 7.5	
Q.2) a)	Differentiate between LD_{50} and LC_{50} . (CO2)	(4)
b)	Determine the chronic daily intake (CDI) of a non-carcinogenic chemical in water, given that the concentration is 5.8 mg/L . Compare the CDI for an adult and child (both carcinogenic and non-carcinogenic risks involved). Given the following parameters: (CO2) $ED = 30 \text{ yrs, } BW = 70 \text{ kg, } EF = 365 \frac{days}{vr}, CR = 2 \frac{L}{day} \text{ for adult, } CR = 1 \frac{L}{D} \text{ for child}$	(8)
c)	Determine the 'Threshold Limit Value (TLV)' of a worker exposed to 43 ppm PCE, 37 ppm TCE, 81 ppm MEK and 38 ppm MIBK in the exhaust	(5)
	air of a solvent recycling operation. What is the TLV of the mixture? (CO2) Chemical TLV (ppm) PCE 50 TCE 50 MEK 200 MIBK 50	,

Ref No.: Ex/CE/PE/B/T/421G/2023

B.E. Civil Engineering (4th Year, 2nd Semester Examination), 2023

(1st / 2nd Semester / Repeat / Supplementary / Annual / Biannual) SUBJECT: HAZARDOUS WASTE AND ITS DISPOSAL (Elective-G)

Full Marks: 100

Time: Two hours/Three hours/Four hours/Six hours

(50 marks for this part)

Use a separate Answer-Script for each part

No. of Question	Part-I	Marks
Q.4) a)	What are the salient features of Hazardous and Other Wastes (Management and Transboundary Movement) Rules, 2016. (CO3)	(8)
b)	What do you mean by 'Other Wastes' in the context of Hazardous and Other Wastes (Management and Transboundary Movement) Rules, 2016. (CO3)	(3)
c)	State the essential features of any TSDF system for management of Hazardous waste. (CO3)	(5)

Ref. No.: Ex/CE/PE/B/T/421G/2023

B.E. CIVIL ENGINEERING FOURTH YEAR SECOND SEMESTER - 2023

SUBJECT: HAZARDOUS WASTE AND ITS DISPOSAL (CE/PE/B/T/421G)

Time: 3 hours Full Marks:100

Instructions: Use Separate Answer scripts for each part.

Part - II (50 Marks)

Sl. No.	Question	CO	Marks
1	Describe with the help of a neat sketch the fundamentals of air stripping process involving air stripping tower.	[CO4]	[5]
2	State the differences between different 'pressure membrane process' from the view point	[CO4]	[6]
Z	of applied pressure and size of the particles removed.		
3	A groundwater supply has been contaminated with ethyl benzene whose maximum level in the groundwater is 1 mg/ltr. This level is to be reduced to 35 µg/ltr by an air stripping column given the following data: i) $k_l a = 0.016 / sec$ ii) $Liquid flow rate = 7 ltr / sec$ iii) $temparature (t) = 20^{\circ}C$ iv) $Henry's constant = 6.5 \times 10^{-3} atm. m^3 / gm. mol$ v) $Column dia = 0.65 m$ vi) $Air to water ratio, \frac{Q_a}{Q_w} = 19$ Determine the liquid loading rate, stripping factor, HTU, NTU and height of packing in column.	[CO4]	[2+8+2+2+ 2=11]
4	A waste stream contains 120 kg of cyanide daily. Determine the stoichiometric amount of chlorine and caustic soda required to oxidize: i) Cyanide to Cyanet, ii) Complete oxidation of cyanide to nitrogen. Ignore the amount of caustic soda required for maintaining pH of 10	[CO4]	[6+6]
5	An electroplating plant generates 1600 m³/day of nickel bearing wastes having average Ni Concentration of 15000 mg/ltr as NiSO4. Assume the following characteristic of the system: i.Resistance through the unit = 10.5 Ω . ii.Current efficiency = 85 % iii.Maximum $\left(\frac{\text{C.D.}}{\text{N}}\right)$ = 5700 amp/m²/gm-eqv/ltr iv.Membrane area = 1 m² Provide a preliminary design of the system to produce 95% removal of nickel. Determine the	[CO4]	[10]
	number of membrane, power required for the system.	[CO4]	[6]
6	How ozone can be used in treatment of hazardous waste?	[004]	[6]