B.E. CIVIL ENGINEERING FOURTH YEAR SECOND SEMESTER-2023 SUBJECT: DYNAMICS IN GEOTECHNICAL ENGINEERING

Time: 3 HOURS Full Marks: 100 (PART I – 50 MARKS)

Use separate Answerscript for each part Assume reasonable values of data not supplied

C.O.1

1. The moving component of an electric motor having a mass of 2.5 kg was running at a constant speed of 30 cps with an eccentricity of 160mm. The motor was mounted on an isolator with damping factor of 0.25. Determine the stiffness of the isolator spring such that 15% of the unbalanced force is transmitted to the foundation. Further, determine the magnitude of the transmitted force.

C.O.1

2. Write a short note on block vibration test.

7

C.O.1

3. Derive the equations of motion of a block foundation subjected to simultaneous sliding and rocking vibrations (Give neat sketches). Solve these two equations to obtain expressions for natural frequencies. Also derive the expressions for amplitudes of coupled rocking and sliding if only horizontal exciting force is acting on the block foundation.

C.O.1

4. A concrete block foundation of size 8.0m x 4.0m x 2.0m is to be used as a foundation for a reciprocating engine operating at 500rpm and mounted symmetrically with respect to foundation. The weight of the engine is 10kN. The unbalanced vertical force acting on the machine is 1.6 sin ot kN. The magnitude of elastic uniform compression is, Cu = 4.5 x 10⁴ kN/m³. Take unit weight of concrete = 24kN/m³. Determine the natural frequencies and amplitude of the block by linear elastic spring-mass approach.

B.E. CIVIL ENGINEERING FOURTH YEAR SECOND SEMESTER EXAM 2023

<u>SUBJECT:</u> DYNAMICS IN GEOTECHNICAL ENGINEERING (CE/PE/B/T/422C) <u>Part - II</u>

Time: 3 hours

Full Marks: 100

[50 marks for this Part]

Use Separate Answer Scripts for Each Part

[Answer all the questions]

[Assume any data reasonably if necessary]

[Use code: IS 1893 (Part-I): 2016]

Sl. No.	Question	СО	Marks
1.	 Referring to the Fig. 1 and using the method of slices, calculate the factor of safety of the slope for the following cases. (i) Static case (ii) Seismic Case, α_h = 0.12, α_v = 0.06 		
	[$\beta=45^{\circ}, \varphi'=15^{\circ}, c'=18 kN/m2, \gamma=17.1 kN/m3, H=5m, \alpha=30^{\circ}$ and $\theta=80^{\circ}$]	[CO4]	[20]
	Fig. 1		
2.	Compute the static and dynamic active earth pressure for the wall shown below. Also calculate the location of total active thrust. [Take $k_h = 0.1 \& k_v = 50\%$ of k_h]		
	$\begin{array}{c} \text{Dry Sand} \\ \text{C} = 0 \\ \Phi = 33^{\circ} \\ \delta = 18^{\circ} \\ \gamma = 1.8 \text{t/m}^{3} \end{array}$	[CO4]	[15]
	<u>Figure 2</u>		

	<u>Given</u>				
	K = active ea				
	.nex				
	cos² β co	$\cos(\delta+\beta)$ $\left[1+\left(\frac{1}{2}\right)^{-1}\right]$	$\left\{\frac{\sin(\delta+\phi)\sin(\phi-i)}{\cos(\delta+\beta)\cos(\beta-i)}\right\}^{1/2}$		
	K _{AE} = cosθec	$\cos^2 \beta \cos(\delta + \beta +$	$\cos^{2}(\phi - \theta - \beta) = \frac{\sin(\phi + \delta)\sin(\phi - \theta - i)}{\cos(\delta + \beta + \theta)\cos(i - \beta)}$		
	where,				
	$\varphi = \text{soil friction}$				
	$\beta = \text{slope of th}$				
	$\theta = \tan^{-1} \left(\frac{k_h}{1 - k_v} \right)$				
	$\delta = \text{angle of fr}$ $i = \text{backfill inc}$		the wall and soil		
3.	The following corrected stand table below. T [Ignore the corresponding to the corresponding t				
	Depth (m)	N-value	$\frac{\text{G L}}{\mathbf{\nabla}} \underbrace{\begin{array}{c} 1.0 \text{ m} \\ \text{Loose Sand} \end{array}}^{\text{Loose Sand}}$	5000	r., 03
į	1.5	3	$\gamma = 1.6 t/m^3$	[CO3]	[10]
	3.0	5	$\frac{\sqrt{4m} \qquad \qquad \gamma' = 0.80 \ t/m^3}{\sqrt{m^3}}$		
3	4.5	7	Fine Sand		
	6.0	15	$7m \gamma' = 0.91 t/m^3$		
	7.5	21			
	9.0	25	Fine Sand		
			$\gamma' = 0.94 \ t/m^3$		
			n geotechnical design of shallow foundation under		