Ex/CE/PC/B/T/322/2023

B.E. CIVIL ENGINEERING THIRD YEAR SECOND SEMESTER EXAM 2023

Subject: THEORY OF STRUCTURES-II
Full Marks:100
Time: 3hours
(Use Separate Answer scripts for each Part)

Part-1 (Marks 60)

1. Determine the bending moment and shear force on beams and columns shown in Fig.1.

Fig. 1
2. Draw the shear flow for the channel section shown in Fig. 2. Also find the shear centre of this channel section. 150 mm J
(CO-2)

Fig. 2

B.E. Civil Engineering - Third Year - Second Semester Theory of Structures II
 PART-II

Time: Three Hours
Full Marks 100
(40 marks for $2^{\text {nd }}$ part)
Use a separate Answer-Script for each part
[No code or handbook is allowed]

No. of questio ns	(answer all questions) PART II (40 Marks)	$\begin{gathered} \text { Marks } \\ (12+14+14) \end{gathered}$
$\begin{aligned} & \text { co3 } \\ & \text { 1) } \end{aligned}$	Derive the basic equation of Column Analogy method. OR Analyze the following frame by column analogy method	12
CO4 2 (a) $2(\mathrm{~b})$	Find out the ultimate point load W , acting on a propped cantilever beam of length L , by upper bound theorem and lower bound theorem, if the plastic moment carrying capacity of the beam is Mp . Find the collapse load for the following portal frame.	7 7

B.E. Civil Engineering - Third Year - Second Semester Theory of Structures II PART-II

Time: Three Hours
Full Marks 100
(40 marks for $2^{\text {nd }}$ part)
Use a separate Answer-Script for each part
[No code or handbook is allowed]

No. of questio ns	(answer all questions) PART II (40 Marks)	$\begin{gathered} \text { Marks } \\ (12+14+14) \end{gathered}$
$\begin{aligned} & \text { CO3 } \\ & 3 \text {) } \end{aligned}$	Find the maximum value of B.M. at midpoint of BC of the beam ABC , if $10 \mathrm{kN} / \mathrm{m}$ UDL load of length 50 m load passes over ABC . The beam is made of M30 grade of concrete. $I=0.1 \mathrm{~m}^{4}$. A B C	14

