Name of the Examinations: B.E. CIVIL ENGINEERING SECOND YEAR FIRST SEMESTER SUPPLEMENTARY EXAM 2023

Subject: STRUCTURAL MECHANICS I

Time: 3 Hours Part: I (50 Marks) Full Marks:100

Inst	Instructions:			
I	Use Separate Answer scripts for each part.			
II	All notations represent their standard relevant meaning.			
III	If you feel that any data or condition is/are missing in any question, please assume relevant inputs			
	and mention the same.			

SI No	Question	Marks	. CO
1	Derive the expression of thermal stress developed in a bar which is restricted from both end and is subjected to decrease in temperature. (6 marks) Briefly discuss the nature of stress strain curve of Elasto-plastic material, Perfectly plastic material and ideal rigid material with the help of diagrams. (9 marks) Write a short note on Proof Stress and its significance in Engineering applications. (5 Marks)	20	COI
2	Consider the beam from Figure: 01 and draw Shear Force Diagram and Bending Moment Diagram for the beam. 8 kN/m 24 kN 9m	15	CO3
3	Consider the prismatic beam from Figure: 02 of uniform beam cross section (Breadth 100mm and depth 200mm). Consider Young's Modulus, E=2x10 ⁵ N/mm ² for the entire beam. Draw the bending stress distribution diagram for the section with maximum bending moment of the beam. 45 kN-m Figure: 02 (Not to Scale)	15	CO4

Ref. No.: Ex/CE/PC/B/T/214/2023(S)

B.E. Civil Engineering ,Second Year ,First Semester Exam 2023

SUBJECT - Structural Mechanics I

Part - II

(50 marks for this part) Answer any two questions

(Each question carries 25 marks)

- 1. Analyze the truss as shown in the Figure I given below and tabulate the member forces. CO6
- 2.Locate the shear center of the given channel section as shown in the Figure II below. CO4
- 3. Draw the Mohr circle and calculate the major principal stress, minor principal stress, maximum shear stress and also draw the principal planes for the Figure III as given below. CO5
- 4. A compound shaft consisting of a steel segment and an aluminum segment is acted upon by two torques as shown in Figure IV below. Determine the maximum permissible value of T subject to the following conditions: Permissible shear stresses are $\tau_{st} = 100 \text{MPa}$, $\tau_{al} = 85 \text{MPa}$, and the angle of rotation of the free end is limited to 3°. For steel, G = 83 GPa and for aluminum, G = 30 GPa. For steel shaft dia=150mm and for aluminum shaft dia=100mm.

Figure -I

Figure -II

Figure –III

Figure –IV