B.E. CHEMICAL ENGINEERING FOURTH YEAR FIRST SEMESTER SUPPLEMENTARY EXAM 2023

INTRODUCTION TO NANO-SCIENCE & ENGINEERING

Time: 3 Hours Full Marks: 100

Answer Any Five questions

Clearly mention all the assumptions

Clearly mention your name and roll number on the answer script as well on the graphs

Q. No 1		Q. No 2	Q. No 3	Q. No 4	Q. No 5	Q. No 6	Q. No 7
CO 1	10	10					
CO2				•	· ·		20
CO3		10	10				
CO4			10	10	10	10	
CO 5	10			10	10	10	

- 1. a) Mention the differences of nanomaterial and nanostructured material.
 - b) Mention characteristic features of nanomaterial and bulk material. Illustrate the classification of nanomaterials by dimensional analysis.

10+10

- 2. a) Mention the parameters to control during nanoparticle synthesis by ball milling process.
 - b) Illustrate the principle of physical vapor deposition method with specific mention of types, steps involved and application.

10+10=20

- 3. a) Mention the working principle, associated steps, imaging method of TEM analysis.
 - b) How SEM analysis associated with nanomaterial characterisation.

10+10=20

- 4. a) Present a clear schematic of quantum dot synthesis process
- b) Mention characteristic features of quantum dot and application pattern.

10+10=20

[Turn over

- 5. a) Mention the working principle of Raman spectroscopy as characterisation tool of nanomaterial.
 - b) Illustrate top down and bottom up approach of graphene synthesis.

10+10=20

- 6. a) How the growth rate differs in CVD and LPCVD?
- b) Justify application of photolithography in nanomaterial synthesis.

10+10=20

- 7. Write in brief on the significance of the following in nanomaterial synthesis
 - i. Chemical vapour Deposition
 - ii. Arc discharge method
 - iii. Template Sol gel method
 - iv. Sputtering

 $5 \times 4 = 20$