B. Chemical Engineering 3rd Year 1st Semester Supplementary Examination 2023

Chemical Reaction Engineering - I

Time: Three hours Full Marks: 100

PART - I (Marks: 50)

Use separate answer script for each part

Assume any missing data

All the symbols have their usual meaning

Answer ALL the questions

- 1. The saponification reaction between NaOH and ethyl acetate is an irreversible second order reaction. A conversion of 15% is achieved in a well stirred reactor with equal 0.1 molar initial concentrations of NaOH and ethyl acetate in 25 minutes. What time is required to achieve 30% conversion in the same reactor if the initial charge contains equal 0.2 molar initial concentrations of NaOH and ethyl acetate? [10]
- 2. At certain temperature, the half-life periods and initial concentrations for a reaction are:

$$t_{1/2} = 420 \text{ s}, C_{A0} = 0.405 \text{ mol/l}$$

 $t_{1/2} = 275 \text{ s}, C_{A0} = 0.64 \text{ mol/l}$

Find the order and rate constant of the reaction.

[10]

- 3. In an isothermal batch reactor, 70% of a liquid reactant A is converted in 13 minutes. Find the space time and space velocity needed to carry out the same conversion in a plug flow reactor and in a mixed flow reactor. Consider the reaction follows first order kinetics. [10]
- 4. An elementary liquid phase second order reaction $(2A \rightarrow R)$ carried out in a single CSTR results in 60% of the reactant. It is proposed to put another similar CSTR in series with the existing one. For all other parameters remain unchanged, how much improvements in conversion will occur? [10]
- 5. The desired liquid phase reaction $A + B \rightarrow R$, $r_R = k_1 C_A C_B^{1.7}$ is accompanied by the undesired side reaction $A + B \rightarrow S$, $r_S = k_2 C_A^{1.4} C_B^{0.5}$. Discuss about what contacting schemes (reactor types) would you use to carry above reactions to minimize the production of S? [10]

[Turn over

Ref. No.: Ex/Che/PC/B/T/312/2023(S)

B.E. CHEMICAL ENGINEERING THIRD YEAR FIRST SEMESTER SUPPLEMENTARY EXAM – 2023

3rd Year, 1st Semester Chemical Reaction Engineering –I

Part – II Full Marks: 50

Assume any missing data

1.

a. Briefly describe Tanks-in-Series Model and its significance

5 [CO 5]

- b. Briefly describe dispersed Plug flow model and write down the correlations for axial dispersion
- c. Derive the expression of general mass and energy balance equation of fractional conversion for CSTR adiabatic reactor (1st order reaction). 5 [CO 4]

2.

i. Acetic anhydride is hydrolysed in 4 stirred tank reactor operated in series. The feed flows to the 1st reactor (Volume – 1 lt) at a rate of 500 cc/min. The 2nd, 3rd and 4th reactor has volume of 2, 1.5 and 1.5 lt respectively. The temperature is 25C and 1st order rate constant is 0.16 min⁻¹. Calculate the fraction hydrolysed in the effluent from the 4th reactor, rate equation is r=0.16C_i.

15 [CO1 & CO2]

Or

ii.

Under appropriate condition, A decomposes as follows:

 $A \xrightarrow{K_1} R \xrightarrow{K_2} S$ R is to be produced from 150 lt/hr of feed in which $C_{A0} = 1$ mol/lt, $C_{R0} = C_{S0} = 0$, $K_1 = K_2 = 0.2$ /min.

- a) What size of plug flow reactor will maximize the yield of R and what is the concentration of R in effluent stream from this reactor?
- b) What size mixed reactor will maximize the yield of R & what is the $C_{R\,\text{max}}$ in the effluent stream from this reactor.

Use the following expression $\tau_{Optimum, plug} = \frac{\ln{(\frac{k_2}{k_1})}}{(k_2 - k_1)}$ for $k_2 \neq k_1$

15 [CO1 & CO3]

3. Calculate the mean conversion in the reactor characterized by RTD measurements for a first-order, liquid-phase, irreversible reaction in a completely segregated fluid:

Ref. No.: Ex/Che/PC/B/T/312/2023(S)

 $A \xrightarrow{\hspace*{1cm}} \hspace*{1cm} products$

The specific reaction rate is 0.1 min⁻¹ at 320 K.

t (min)	0	1	2	3	4	5	6	7	8	9	10	12	14
C (g/m ³)	0	1	5	8	10	8	6	4	3.0	2.2	1.5	0.6	0
$\int_0^\infty C(t)dt = 50$),0 g·:	min/	m³									20 [CO5]