Ref. No.: Ex/Che/PC/B/T/223/2023

B.E. CHEMICAL ENGINEERING 2nd YEAR 2nd SEMESTER EXAM 2023

CHEMICAL ENGINEERING THERMODYNAMICS

Time: Three hours Full Marks: 100

(50 Marks for each Part)

Use separate Answer script for each Part

PART I (50 Marks)

Answer any two questions The symbols have their usual meaning Assume any missing data

- 1. (a) Determine the state (liquid/vapour) of benzene at P = 5 bar and T = 120 °C and P = 0.5 bar and T=120 °C.
 - (b) Estimate the difference in enthalpy between state A (P = 5 bar, T = 120 °C) and state B (P = 5 bar, T = 120 °C) and state B= 0.5 bar, T = 120 °C) of benzene from the following data:

Latent heat of vaporization at normal boiling point (353.2 K) = 30.75 kJ/mol;

 $T_c = 562.10 \text{ K}$; $P_c = 49.24 \text{ bar}$

Specific volume of liquid benzene may be assumed to be 9.0x10⁻⁵ m³/mol

$$log_{10}P \text{ (mm Hg)} = 6.88 - \frac{1196.7}{t(oC) + 219.16}$$

 $log_{10}P \text{ (mm Hg)} = 6.88 - \frac{1196.7}{t(oC) + 219.16}$ Equation of state of the gas is given by $Z = \frac{PV}{RT} = 1 + \frac{BP}{RT}$ where B = 0.05 L/gmol.

[1 bar = 750.24 mm Hg]

Sketch the path followed for solving the problem on a P-v diagram.

[20+5]

- 2. (a) The volume for liquid mixtures of benzene (1) and cyclohexane (2) at 25 °C is given by $V = 109.4 - 16.8x_1 - 2.64x_1^2$. Calculate the volume change of mixing (ΔV) and excess volume (V^E) at $x_1 = 0.4$.
 - (b) The solution behaviour of a certain class of substance is described by the following expression $G = \sum x_i \phi_i + RT \sum x_i \ln(x_i P)$, $(\phi_i \text{ is a function of T only})$. Obtain the expression of volume of pure liquid (V_i) , partial molar Gibbs free energy (\bar{G}) and partial molar volume of component $i(\overline{V})$.
 - (c) For a binary system, the Gibbs free energy of a binary liquid mixture can be represented by $\frac{G^E}{RT} = 0.5x_1x_2$. Derive the expression of activity coefficient of [10+10+5] component 1.
- 3. (a) Estimate the standard heat of reaction (ΔH_{298}^0), and the equilibrium constant K_a at 750 K for the reaction $CO(g) + 2H_2(g) \leftrightarrow CH_3OH(g)$. Assume standard heat of reaction to be independent of temperature to be constant. Latent heat of vaporization and saturation pressure of CH₃OH at 298.15 K is 38.83 kJ/mol and 16.8 kPa respectively.
 - (b) Estimate the mole fraction of carbon monoxide in the gas phase at equilibrium (T = 750 K, P = 2 bar) if an equimolar mixture of CO and H_2 was fed to the reactor. [15+10]

	ΔH_f^o (kJ/mol)	ΔG_f^o (kJ/mol)
	T = 298.15 K	T = 298.15 K
CO(g)	-110.5	-137.3
$CH_3OH(l)$	-238.6	-166.2

Ref. No.- Ex/CHE/PC/B/T/223 B.E Chemical Engineering Second Year 2nd Semester Exam-2023

Subject: Chemical Engineering Thermodynamics (CHE/PC/B/T/223)

Time: 3 hr

Full Marks: 100

Part -II(For 50 Marks) (Attempt all questions)

		Marks		
	CO1 (Answer any one)			
Q1	Refrigerant-134a is to be cooled by water in a condenser. The refrigerant enters the condenser with a mass flow rate of 17.64 lb/min at 12 bar and 70°C and leaves at 35°C. The cooling water enters at 3.7 atm and 15°C and leaves at 25°C. Neglecting any pressure drops, determine (a) the mass flow rate of the cooling water required (in kg/min) and (b) the heat transfer rate from the refrigerant to water (in kJ/min). Or	10		
	Steam at 1972 kpa and 700° F steadily enters a nozzle whose inlet area is 0.18 ft2. The mass flow rate of the steam through the nozzle is 10 lbm/s. Steam leaves the nozzle at 198 psia with a velocity of 900 ft/s. The heat losses from the nozzle per unit mass of the steam are estimated to be 1.2 Btu/lbm. Determine (a) the inlet velocity (in ft/s) and (b) the exit temperature of the steam (in ${}^{\circ}F$)			
	CO ₂			
Q2	(a) What does Vander Waals constant a and b represent? How do you find the a and b from Van der Waals equation?	2+6		
	(b) Distinguish the two common term - acentric factor and Generalized compressibility factor.	2		
	CO3 (Answer any one)			
Q3	(a) Illustrate the coefficient of volume expansion and isothermal compressibility with certain examples.			
	(b) Prove that $dS = C_v \frac{dT}{T} + \frac{\beta}{\kappa} dV$ using Jaccobian method			
	(C) Prove that $\mu_{jT} = \frac{V}{C_P} + (T\beta - 1)$ using Partial derivative method	2		
	Or	4 4		
	(d) Define the partial derivative and Jaccobian method with example.			
	(e) Prove that $C_P - C_v = \frac{TV\beta^2}{\kappa}$ using Jaccobian method			
	(f) Prove that $dS = C_v \frac{dT}{T} + \frac{\beta}{\kappa} dV$ using Partial derivative method			
	[C_P & C_V : The molar heat capacity at constant pressure & constant volume, β & κ: The coefficient of volume expansion and isothermal compressibility, μ_{jT} : Joule thomson coefficient			
	CO4			
Q4	(a) The Gibb's-Duhem equation demonstrates how the composition of components in a thermodynamic system is related to the change in their chemical potential at equilibrium-Prove it.	5		

	(b) The fuga	acity of eac	h species in	an ideal solu	ition is propo	ortional to its mole fraction-Prove	5
				(CO ₅		
Q5	A bed of coal (assumed to be pure carbon) in a coal gasifier is fed with steam and air and produces a gas stream containing H2, CO, O ₂ , H ₂ O, CO ₂ , and N ₂ . If the feed to the gasifier consists of 1 mol of steam and 2.28 mol of air, calculate the equilibrium composition of the gas stream at P = 21 bar for temperatures of 1000, 1100, 1200, 1300, 1400, and 1500 K. Available data are listed in the following table.					10	
		1/10	H ₂ O	CO	CO ₂		
		1000	-192,420	-200,240	-395,790		
		1100	-187,000	-209,110	-395,960	·	
		1200	-181,380	-217,830	-396,020		
		1300	-175,720	-226,530	-396,080		
		1400	-170,020	-235,130	-396,130	,	
		1500	-164,310	-243,740	-396,160		