b) Evaluate $\int_{C} \frac{\sin \pi z^{2}+\cos \pi z^{2}}{(z-1)^{2}(z-2)} d z$, where C is the circle $|z|=3$. $4+6$
6. a) Find a Fourier series to represent $x-x^{2}$ from $x=-\pi$ to $x=\pi$.

Hence show that $\frac{1}{1^{2}}-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\frac{1}{4^{2}}+\cdots=\frac{\pi^{2}}{12}$
b) Find the Laplace transform of $\left(1-e^{t}\right) / t$. $6+4$

Bachelor of Engineering In Chemical Engineering

Examination, 2022

(1st Year, 2nd Semester, Supplementary)

Mathematics - II

Time : Three hours
Full Marks : 100
(50 Marks for each Part)
(Use separate answer script for each Part)
(Unexplained Symbols / Notations have their usual meanings)
Special credit will be given for precise answer.

PART - I (50 Marks)

Answer any Five questions. $\quad 10 \times 5=50$

1. a) Give an example (with proper explanation) of a bounded sequence which is not convergent.
b) Check if the sequence $x_{n}=1-\frac{1}{n}$ is monotone increasing or decreasing or oscillatory and hence discuss its convergence.
c) Apply sandwich theorem to show that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{1}{n^{2}+k}=0 \tag{3}
\end{equation*}
$$

d) Using Cauchy's General Principles of Convergence show that the sequence $\left(x_{n}\right)_{n \geq 1}$ can not converge, where $x_{n}=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}$.
2. a) Determine the limits of the double integral $\iint_{R} f(x, y) d x d y$ where R is the region bounded by $y^{2}=x$ and $x^{2}=y$ considering
i) x as the first variable
ii) y as the first variable.
b) Change the order of integration of the integral $\int_{0}^{\frac{12}{7}} \int_{0}^{x} f(x, y) d x d y+\int_{\frac{12}{7}}^{4} \int_{0}^{\frac{12-3 x}{4}} f(x, y) d x d y . \quad 3$
c) Evaluate $\iint_{R} y d x d y$ where R is the region in the $x y$ plane bounded by the lines $y=x$ and the parabola $y=4 x-x^{2}$.

3
3. a) Why are the following integrals improper? When do they converge (no proof is required)? What are their names when they converge?
i) $\quad \int_{0}^{\infty} e^{-x} x^{n-1} d x, n$ is a real number
ii) $\int_{0}^{1} x^{m-1}(1-x)^{n-1} d x, m, n$ are real numbers.
b) Define geometric series and discuss its convergence.
b) If $\omega=\phi+i \psi$ represents the complex potential for an electric field and $\psi=x^{2}-y^{2}+\frac{x}{x^{2}+y^{2}}$, determine the function ϕ and the function ω in terms of z.
3. a) Evaluate $\int_{0}^{2+i}(\bar{z})^{2} d z$, along (i) the line $y=\frac{x}{2}$, (ii) the real axis to 2 and then vertically to $2+i$.
b) If $f(z)$ is a regular function of z, prove that $\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)|f(z)|^{2}=4\left|f^{\prime}(z)\right|^{2}$.
4. State Laurent's theorem.

Expand $\frac{1}{z^{2}-3 z+2}$ for the regions (i) $0<|z|<1$, (ii) $1<|z|<2$, (iii) $|z|>2$, (iv) $0<|z-1|<1$.
5. a) If $F(\zeta)=\int_{C} \frac{4 z^{2}+z+5}{z-\zeta} d z$, where C is the ellipse $\left(\frac{x}{2}\right)^{2}+\left(\frac{y}{3}\right)^{2}=1$, find the value of (i) $F(3 \cdot 5)$,
(ii) $F(i)$, (iii) $F^{\prime}(-1)$ and (iv) $F^{\prime \prime}(-i)$.
b) Find the Jacobian of the transformation from Cartesian coordinates to spherical coordinates. 3
c) Evaluate: $\iiint_{R} \sqrt{1-x^{2}-y^{2}-z^{2}} d x d y d z$, where R is the region given by $x^{2}+y^{2}+z^{2} \leq 1$.

PART - II (50 Marks)

Answer any Five questions.
All questions carry equal marks.

1. State the necessary and sufficient conditions for the derivative of the funtion $f(z)$ to exist for all values of $z(=x+i y)$ in a region R.

Prove that the function $f(z)$ defined by

$$
f(z)=\frac{x^{3}(1+i)-y^{3}(1-i)}{x^{2}+y^{2}}(z \neq 0), f(0)=0
$$

is continuous and Cauchy-Riemann equations are satisfied at the origin, yet $f^{\prime}(0)$ does not exist.
2. a) State and prove Cauchy's Theorem and extend it to a multiply connected region.
c) If the series $\sum_{n=1}^{\infty} x_{n}$ converges then prove that $\lim _{n \rightarrow \infty} x_{n}=0$. Is the converse true? Justify. $\quad 2+1$
4. a) Compute the triple integral $\iiint_{R} x y z d x d y d z$ over the domain bounded by $x=0, y=0, z=0$ and $x+y+z=1$.

$$
5
$$

b) What is p-series? When does it converge (no proof is required)?
c) Discuss absolute convergence and conditional convergence of a series of real numbers. Give an example (with proper explanation) of a series which is convergent but not absolutely convergent. $2+1$
5. a) State Leibniz's rule and Generalized Leibniz's rule (no proof is required) related with differentiation under the sign of integration.
b) Test the convergence of
(i) $\int_{0}^{1} \frac{d x}{\sqrt{1-x}}$
and
(ii) $\int_{0}^{\frac{\pi}{2}} \frac{\sin x}{x^{3}} d x$.

4
c) Write the relation between Beta function and Gamma function and use it to evaluate $\Gamma\left(\frac{1}{2}\right)$. 4
6. a) Find the radius of convergence (R) of the following power series and check the behaviour at R.

$$
\sum_{n=1}^{\infty} \frac{x^{n}}{n^{2}}
$$

