BACHELOR OF ARCHITECTURE SECOND YEAR SECOND SEMESTER EXAM – 2023

THEORY OF STRUCTURES – II

Time: Three Hours Full Marks 100

Ques No			Marks
		Answer ANY FIVE questions. Assume reasonable values of data, if not supplied.	
1.	a.	Discuss Castigliano's theorem with respect to beams and frames.	10
	b.	Determine the displacement of point B of the beam shown in the figure below using Castigliano's theorem. Take $E = 200 \text{ GPa}$, $I = 71.1 \times 10^6 \text{ mm}^4$.	10
		12 kN/m A 3 m	
2.	a.	Discuss the principle of virtual work with the help of a neat sketch.	5
	b.	Determine the vertical displacement of joint C of the steel truss shown in the figure below. The cross-sectional area of each member, $A = 300 \text{ mm}^2$ and $E = 200 \text{ GPa}$. Use the principle of virtual work.	15
		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
3.		Determine the internal moments at each support of the beam shown in the figure below using the moment distribution method. EI is constant.	20
		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	

Ref. No. Ex/Arch/CE/T/225/2023

BACHELOR OF ARCHITECTURE SECOND YEAR SECOND SEMESTER EXAM - 2023

THEORY OF STRUCTURES - II

Time: Three Hours Full Marks 100

Ref. No. Ex/Arch/CE/T/225/2023

BACHELOR OF ARCHITECTURE SECOND YEAR SECOND SEMESTER EXAM - 2023

THEORY OF STRUCTURES – II

Time: Three Hours Full Marks 100

Question No.			Marks
6.	a.	What do you understand by statically indeterminate structures? Outline the force and displacement methods of analysis for statically indeterminate structures.	2+3
	b.	Describe the general procedure for determining the reactions of statically indeterminate structures using the force or flexibility method of analysis.	5
	c.	Determine the reaction at the roller support B of the beam shown in the figure below. Assume EI is constant. Use the principle of superposition. 50 kN A C B	10