Ex/ARCH/MTH/T/124/2023

[4]

- 5. a) If the matrix A satisfies $A^2 A + I = 0$, where I is the unit matrix, then prove that A^{-1} exists and is equal to (I - A).
 - b) Solve the equations by matrix method :

$$x + 2y + 3z = 14$$

$$2x - y + 5z = 15$$

$$-3x + 2y + 4z = 13.$$

4+6

- 6. a) What is the length of the subtangent and subnormal of a curve y = f(x) at any point?
 - b) Show the subnormal for the parabola $y^2 = 4ax$ is constant.
 - c) If the two curves $ax^2 + by^2 = 1$ and $a'x^2 + b'y^2 = 1$ cuts orthogonally, then show that $\frac{1}{b} - \frac{1}{b'} = \frac{1}{a} - \frac{1}{a'}$. 2+3+5
- 7. a) What is the radius of curvature of a curve y = f(x)?
 - b) Find the radius of curvature at any point of the curve $x = a(\Theta + \sin \Theta), y = a(1 \cos \Theta).$
 - c) If the normal to the curve $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$ makes an angle ϕ with the x-axis, then show that its equation is $y \cos \phi x \sin \phi = a \cos 2\phi$. 2+4+4

BACHELOR OF ARCHITECTURE EXAMINATION, 2023

(1st Year, 2nd Semester)

MATHEMATICS-II

Time : Three hours

Full Marks: 100

Use separate Answer script for each Part.

Symbols / Notations have their usual meanings.

Part – I (50 Marks)

Answer any five questions.

- 1. a) If the points A and B are (2, 3, -6) and (3, -4, 5), find the direction cosine of the line AB. 5
 - b) Find the direction cosine of the line which is equally inclined to the axes. 5
- 2. a) Find the equation of the plane passing through the line of intersection of the planes x + y + z = 1 and 2x + 3y z + 4 = 0 and perpendicular to the plane 2y 3z = 4.
 - b) A plane meets the coordinate axes at A, B, C such that the centroid of the triangle ABC is the point (a,b,c). Show that the equation of the plane is

$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 3.$$

[Turn over

- 3. a) Find the equation of the line through the point (1, 2, -1) and perpendicular to each of the lines
 - $\frac{x}{1} = \frac{y}{0} = \frac{z}{-1}$ and $\frac{x}{3} = \frac{y}{4} = \frac{z}{5}$. 5
 - b) Find the equation of the line x + y + z 1 = 0, 2x - y - 3z + 1 = 0 in symmetrical form. 5
- 4. Prove that the lines $\frac{x-4}{1} = \frac{y+3}{-4} = \frac{z+1}{7}$ and $\frac{x-1}{2} = \frac{y+1}{-3} = \frac{z+10}{8}$ intersect and find the coordinates
- of their point of intersection. 10 5. Find the equation of the sphere for which the circle
- $x^{2} + y^{2} + z^{2} + 2x 4y + 5 = 0$, x 2y + 3z + 1 = 0 is a great circle. 10
- 6. Find the magnitude and the equation of the line of shortest distance between the lines

$$\frac{x-3}{1} = \frac{y-5}{-2} = \frac{z-7}{1} \text{ and } \frac{x+1}{7} = \frac{y+1}{-6} = \frac{z-1}{1}.$$
 10

- 7. a) Find the equation of the sphere passing through the points (0, 0, 0), (-1, 2, 0), (0, 1, -1) and (1, 2, 5). 4
 - b) Show that the general equation of a cone of 2nd degree which passes through the coordinate axes is of the form fyz + gzx + hxy = 0. 6

Part – II (50 Marks)

Answer any five questions.

- 1. a) Define adjoint (Δ') of a determinant (Δ) and hence show that $\Delta' = \Delta^2$.
 - b) Show that the adjoint of a symmetric determinant is symmetric. 5+5
- 2. Solve by Cramer's rule : x+2y+3z = 6 2x+4y+z = 7 3x+2y+9z = 1410
- 3. a) Define inverse of a square matrix of order *n* and hence show that the inverse of the matrix, if exists, is unique.
 - b) If A and B be two non-singular square matrices of the same order, then show that the inverse of product of A and B is the product of their inverses in the reverse order.
- 4. a) Define an orthogonal matrix.
 - b) Show that the value of the determinant of an orthogonal matrix is ± 1 .
 - c) Prove that every square matrix can be expressed as a sum of a symmetric matrix and a skew-symmetric matrix uniquely.
 2+4+4
 Turn over