5. a) If the matrix A satisfies $A^{2}-A+I=0$, where I is the unit matrix, then prove that A^{-1} exists and is equal to $(I-A)$.
b) Solve the equations by matrix method :

$$
\begin{align*}
x+2 y+3 z & =14 \\
2 x-y+5 z & =15 \\
-3 x+2 y+4 z & =13
\end{align*}
$$

6. a) What is the length of the subtangent and subnormal of a curve $y=f(x)$ at any point?
b) Show the the subnormal for the parabola $y^{2}=4 a x$ is constant.
c) If the two curves $a x^{2}+b y^{2}=1$ and $a^{\prime} x^{2}+b^{\prime} y^{2}=1$ cuts orthogonally, then show that $\frac{1}{b}-\frac{1}{b^{\prime}}=\frac{1}{a}-\frac{1}{a^{\prime}}$.

$$
2+3+5
$$

7. a) What is the radius of curvature of a curve $y=f(x)$?
b) Find the radius of curvature at any point of the curve $x=a(\Theta+\sin \Theta), y=a(1-\cos \Theta)$.
c) If the normal to the curve $x^{\frac{2}{3}}+y^{\frac{2}{3}}=a^{\frac{2}{3}}$ makes an angle ϕ with the x-axis, then show that its equation is $y \cos \phi-x \sin \phi=a \cos 2 \phi$.
$2+4+4$

Bachelor of Architecture Examination, 2023

(1st Year, 2nd Semester)

Mathematics-II

Time : Three hours
Full Marks : 100
Use separate Answer script for each Part.
Symbols / Notations have their usual meanings.

Part - I (50 Marks)

Answer any five questions.

1. a) If the points A and B are $(2,3,-6)$ and $(3,-4,5)$, find the direction cosine of the line AB .
b) Find the direction cosine of the line which is equally inclined to the axes.
2. a) Find the equation of the plane passing through the line of intersection of the planes $x+y+z=1$ and $2 x+3 y-z+4=0$ and perpendicular to the plane $2 y-3 z=4$.

6
b) A plane meets the coordinate axes at $\mathrm{A}, \mathrm{B}, \mathrm{C}$ such that the centroid of the triangle ABC is the point (a, b, c). Show that the equation of the plane is $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=3$.
3. a) Find the equation of the line through the point (1,2 , -1) and perpendicular to each of the lines

$$
\begin{equation*}
\frac{x}{1}=\frac{y}{0}=\frac{z}{-1} \text { and } \frac{x}{3}=\frac{y}{4}=\frac{z}{5} \tag{5}
\end{equation*}
$$

b) Find the equation of the line $x+y+z-1=0$, $2 x-y-3 z+1=0$ in symmetrical form.
4. Prove that the lines $\frac{x-4}{1}=\frac{y+3}{-4}=\frac{z+1}{7}$ and $\frac{x-1}{2}=\frac{y+1}{-3}=\frac{z+10}{8}$ intersect and find the coordinates of their point of intersection.
5. Find the equation of the sphere for which the circle $x^{2}+y^{2}+z^{2}+2 x-4 y+5=0, x-2 y+3 z+1=0$ is a great circle.
6. Find the magnitude and the equation of the line of shortest distance between the lines
$\frac{x-3}{1}=\frac{y-5}{-2}=\frac{z-7}{1}$ and $\frac{x+1}{7}=\frac{y+1}{-6}=\frac{z-1}{1}$.
7. a) Find the equation of the sphere passing through the points $(0,0,0),(-1,2,0),(0,1,-1)$ and $(1,2,5) .4$
b) Show that the general equation of a cone of 2 nd degree which passes through the coordinate axes is of the form $f y z+g z x+h x y=0$. 6

Part - II (50 Marks)

Answer any five questions.

1. a) Define adjoint $\left(\Delta^{\prime}\right)$ of a determinant (Δ) and hence show that $\Delta^{\prime}=\Delta^{2}$.
b) Show that the adjoint of a symmetric determinant is symmetric.
$5+5$
2. Solve by Cramer's rule :

$$
\begin{gather*}
x+2 y+3 z=6 \\
2 x+4 y+z=7 \\
3 x+2 y+9 z=14 \tag{10}
\end{gather*}
$$

3. a) Define inverse of a square matrix of order n and hence show that the inverse of the matrix, if exists, is unique.
b) If A and B be two non-singular square matrices of the same order, then show that the inverse of product of A and B is the product of their inverses in the reverse order. $\quad 4+6$
4. a) Define an orthogonal matrix.
b) Show that the value of the determinant of an orthogonal matrix is ± 1.
c) Prove that every square matrix can be expressed as a sum of a symmetric matrix and a skew-symmetric matrix uniquely.
$2+4+4$
[Turn over
