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Preface 

The presented work in this dissertation took nearly a span of four years. The dissertation is based on 

several in silico techniques were employed to study potential PET and SPECT imaging agents 

targeted against various neurodegenerative diseases and cancer. The main purpose of the dissertation 

was to utilize various in silico tools for identifying and optimizing the potential PET or SPECT 

candidates against several receptors involved in neurodegenerative diseases or cancer pathogenesis. 

The main advantage of these in vivo molecular imaging is its ability to characterize diseased tissues 

without invasive biopsies or surgical procedures, and with this information in hand, a more 

personalized treatment planning regimen can be applied. These imaging has also been used in various 

aspects of drug development such as understanding drug action and establishing dosage regimens and 

treatment strategies. In basic terms, PET and SPECT imaging effectively allows the non-invasive 

visualisation, characterisation and measurement of biological processes at the molecular, cellular, 

whole organ or body level using specific radionuclide probes. 

Observing the scarcity of imaging data, scientific researchers have come up with alternative methods 

like Computer-aided drug design (CADD). CADD has been extensively explored for facilitating lead 

discovery and optimization with advantages in terms of both high speed and low cost that finally 

increases the probability of success in the drug development process. A variety of in silico methods 

have evolved in CADD that have two major application areas, i.e., ligand-based drug design (LBDD) 

and structure-based drug design (SBDD). In the present study, we have employed both ligand-based 

(i.e., QSAR and read-across) and structure-based (i.e., molecular docking) drug design techniques as 

together they become a powerful tool to study potential imaging agents. Further, although several in 

silico techniques were employed, but the major part of the work deals with the development of 

predictive and statistically robust QSAR models. The QSAR technique plays a vital role in lead 

optimization step in any drug discovery program, which is significantly utilized to save time, money, 

and more importantly animal sacrifice. The basic steps involved in developing predictive QSAR 

models comprise dataset collection, data curation, descriptor calculation, data pre-treatment of 

calculated descriptors, model development employing various chemometric techniques, model 

validation, and applicability domain determination. In the present work, QSAR technique was 

proficiently utilized in understanding the structural features that are favorable for the activity as well 

as to attain desirable selectivity. Further, the developed QSAR model provided valuable information 

to design new molecules with improved activity and it is also utilized for predicting the activity of a 

query or newly designed molecule. Many of the software tools used for model generation and 

validation are freely available to download from http://teqip.jdvu.ac.in/QSAR_Tools/ and 

http://dtclab.webs.com/software-tools. 

 

The following studies have been performed in this dissertation: 

 

Study 1: Application of multilayered strategy for variable selection in QSAR modeling of PET and 

SPECT imaging agents as diagnostic agents for Alzheimer’s disease 

 

Study 2: Chemometric modeling of PET imaging agents for diagnosis of Parkinson’s disease: A 

QSAR approach 

 

Study 3: QSAR modeling of PET imaging agents for the diagnosis of Parkinson’s disease targeting 

Dopamine receptor 

http://teqip.jdvu.ac.in/QSAR_Tools/
http://dtclab.webs.com/software-tools
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Study 4: Computational modeling of PET imaging agents against vesicular acetylcholine transporter 

(VAChT) protein binding affinity: Application of 2D-QSAR modeling and molecular docking 

techniques 

 

Study 5: Exploration of nitroimidazoles as radiosensitizers: Application of multilayered feature 

selection approach in QSAR modeling 

 

Study 6: QSAR and QSAAR modeling of nitroimidazole sulfonamide radiosensitizers: Application of 

Small Dataset Modelling 

 

Study 7: Nitroaromatics as hypoxic cell radiosensitizers: A 2D-QSAR approach to explore structural 

features contributing to radiosensitization effectiveness 

 

The work has been presented in this dissertation under the following sections: 

 

    Chapter 1 : Introduction 

Chapter 2 : Present work 

Chapter 3 : Materials and methods 

Chapter 4 : Results and discussions 

Chapter 5 : Conclusion 

                     References 

 Appendix : Reprints 

 

The ‘Introduction’ part provides the background information on molecular imaging including the 

history, principle, instrumentation and application of PET and SPECT imaging agents. It also includes 

detailed information on the computational techniques employed in this work and a brief survey on the 

in silico studies that were performed for the design of PET and SPECT imaging agents. The ‘Present 

Work’ section describes the overall envisaged work of the dissertation. The detailed information 

related to the descriptors and the methodologies has been provided in the section ‘Materials and 

Methods’, while the results have been thoroughly discussed in the ‘Results and Discussions’ section. 

Finally, ‘Conclusion’ has been incorporated followed by ‘References’. The studies thus performed 

have been published in different refereed international journals and also presented in different 

national and international conferences which have been included under the section ‘Reprints’. 

However, the work done and presented in this dissertation constitutes a small part of the broad 

spectrum of envisaged work. Considering the stipulated time limit, only some representative and 

relevant studies could be performed. Many other interesting aspects arising out of this work could 

have been investigated in a far more meaningful way, which might be planned in future. 
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Chapter 1: Introduction 

1.1. Molecular Imaging: A new age disease detection technology 

Molecular imaging (MI) is an emerging biomedical research field that integrates cell biology, 

molecular biology, and diagnostic imaging permitting the visualization, classification, and analysis of 

biological activities occurring at the cellular and subcellular levels within intact living subjects 

(Weissleder & Pittet, 2008). This technology allows early disease detection identifying the degree of 

the disease, choosing disease- and/or patient-specific therapeutic treatment also known as 

personalized medicine, applying a targeted therapy, and estimating receptor-specific effects of 

treatment. The purpose of molecular imaging is to link the imaging signal with the molecular events 

using high-resolution and high-sensitive instruments (Luo et al., 2011). Modern clinical scientists 

apply molecular imaging technology in studying the basis/cause of the disease from the molecular 

abnormalities found in the cells. This method of analysis, on the other way, accelerates other 

important clinical goals of: a) early disease detection b) therapy optimisation for important molecular 

targets c) forecasting and monitoring response to therapy, and d) disease recurrence monitoring. 

Radionuclide molecular imaging is one of the earliest and most mature methods of imaging technique 

which is efficient in detecting any harboring infection. Positron emission tomography (PET) and 

single photon emission computed tomography (SPECT) imaging were the first molecular imaging 

modalities used clinically and are used in these generations also due to their advantages of non-

invasive localisation, high sensitivity and quantifiability (Anderson & Ferdani, 2009).  

1.1.1. History of molecular imaging 

George Charles de Hevesy, a Hungarian radiochemist, 1920, coined the term radiotracer or radio 

indicator and familiarized the tracer principle in the biomedical research field. A true tracer molecule 

can facilitate the study of homeostatic system and its components without upsetting its function. Later 

in the late 1920s, two physicians, Blumgart and Weiss, injected solutions of radium-C (214Bi) into the 

veins of healthy persons and patients with heart disease to study the velocity of the blood. Owing to 

their revolutionary invention, Hevesy is known as the father of nuclear medicine, while Blumgart is 

regarded as the father of diagnostic nuclear medicine. Irene Curie and her husband Frederic Joliot’s 

discovery of artificial radioactivity in 1930s and cyclotron discovery by Ernest Lawrence, paved the 

way for chemists to design radiotracers for the study of specific biochemical processes.  

1.1.2. Molecular imaging technology 

Molecular imaging technology can be subcategorized into different types, viz., a) magnetic resonance 

imaging (MRI), b) X-ray computed tomography imaging, c) optical imaging (including 

bioluminescence imaging (BLI) and fluorescence imaging (FLI)), d) radionuclide imaging (involving 

PET and SPECT) e) ultrasound imaging and, f) multimodality imaging (Chen et al., 2014). The 

different technical features of MI technologies are summarized in Table 1.1. In the present research, 

we have emphasized on radionuclide imaging including both PET and SPECT imaging methods. 

Table 1.1. In vivo molecular imaging techniques (mainly non-invasive methods) 

 

Molecular 

Imaging 

modality 

Form of 

energy used 

Spatial resolution 

(nm) 

Acquisition 

time 

Mass of 

probe 

necessary 

Sensitivity 

of 

detection 

Depth of 

penetrati

on 

Clinical Animal (s) (ng) Mol/l (mm) 

PET 
Annihilating 

photons 
3-8 1-3 1-300 1-100 10-11-10-12 >300 

SPECT γ-photons 5-12 1-4 60-2000 1-1,000 10-10-10-11 >300 
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Computed 

Tomography 

(CT) 

X-rays 0.5-1 
0.03-

0.4 
1-300 - - >300 

Magnetic 

Resonance 

Imaging 

(MRI) 

Radio 

frequency 

waves 

0.2-1 
0.025-

0.1 
50-3000 103-106 10-3-10-5 >300 

Bioluminesc

ence 

imaging 

(BLI) 

Visible to 

infrared light 
- 3-10 10-300 103-106 10-13-10-16 1-10 

Fluorescence 

imaging 

Visible to 

infrared light 
- 2-10 10-200 103-106 10-9-10-11 1-20 

Ultrasound 

High-

frequency 

waves 

0.1-1.0 
0.05-

0.1 
0.1-100 103-106 - 1-200 

 

1.1.3. Radionuclide imaging technology: PET and SPECT imaging  

During the last two decades, molecular imaging technologies like positron emission tomography 

(PET) and single photon emission computed tomography (SPECT) had a significant impact on 

various disease diagnosis and prognosis. The non-invasive feature of these molecular imaging 

techniques has largely benefited drug discovery and development procedures. These methods are used 

to understand drug action and establish dosage regimens and treatment strategies. The inception time 

of SPECT and PET can be dated back in the 1950s and 1960s. PET imaging was the first of the 

mainstay modalities to be demonstrated, previously hypothesized in 1950 by Brownell and Sweet. 

Kuhl and Edwards developed SPECT brain imaging, which they formerly described in 1963 and 

optimized over multiple restatements, culminating the Mark IV system in 1976.  

In these techniques, a radionuclide is synthetically introduced into a biomolecule (a 

ligand/peptide/antibody/antibody fragment) of possible biological significance and administered to a 

subject (animal or patient). After the radiotracer is administered to a subject, the consequent uptake of 

the radiotracer is quantified over time and used to attain evidence about the physiological, cellular, 

and molecular processes of interest. 

1.1.3.1. Radioactive decay and types 

Radioactivity is the phenomenon of the spontaneous disintegration of unstable (i.e., radioactive) 

atomic nuclei due to nuclear instability. In the process of decay, more than one kind of energetic 

ionizing radiation (particles or electromagnetic radiation) can be emitted. Radiotracers are chemical 

compounds in which one or more atoms have been replaced by a radioisotope. 

Six years after the discovery of radioactivity (1896) by Henri Becquerel of France, physicist Ernest 

Rutherford and his co-workers found that three different kinds of radiation are emitted in the decay of 

radioactive substances, which he named alpha, beta, and gamma rays in the sequence of their ability 

to penetrate matter (Figure 1.1). These were recognized as helium nuclei, electrons, and high-energy 

photons, respectively. Soddy in 1913 coined the term isotopes to describe atoms of an element that 

have different atomic weights, but the same chemical properties. A nuclear disintegration theory was 

proposed which explains that radioactivity is the alteration of one chemical element into another 

through the release of α or β particles or γ radiation (Figure 1.1).   
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Figure 1.1. Radioactive decay showing α, β and γ emission 

Various types of Radioactive Decay 

Radioactive decay can be categorized into two main divisions: a) First, which includes a change in the 

mass number (A) of a radionuclide, and b) Second, where both the parent and the daughter 

radionuclides have the same mass number (isobaric decay). Four main types are discussed in Table 

1.2.  

a) Alpha Decay- A nuclear decay process where an unstable nucleus converts to another 

element by releasing out a particle composed of two protons and two neutrons. Alpha decay is 

generally observed in high atomic number elements such as 238U, 230Th, and 226Ra. These 

radionuclides, which emit α particles may also emit γ photons. Radionuclides with A>210 are large 

and require to release α particles to reduce their size and become more stable. 

 

                                                        𝑹𝒂𝟖𝟖
𝟐𝟐𝟔 → 𝑹𝒏𝟖𝟔

𝟐𝟐𝟐 + 𝜶𝟐
𝟒                                                   (1.1) 

 

Table 1.2. Types of radioactive decay. 

Mode of 

decay 

Cause of instability (of 

parent nucleus) 
Transformation Example 

Alpha decay Large nucleus 𝑋 → 𝑌𝑍−2
𝐴−4

𝑍
𝐴 + 𝛼2

4  𝑅𝑎88
226 → 𝑅𝑛86

222 + 𝛼2
4  

Beta decay Neutron rich 𝑋 → 𝑌𝑍+1
𝐴

𝑍
𝐴 + 𝑒− 𝐶6

14 → 𝑁7
14 + 𝑒− + 𝑣 

Positron 

emission 
Neutron deficient 𝑋 → 𝑌𝑍−1

𝐴
𝑍
𝐴 + 𝑒+ 𝐶6

11 → 𝐵7
11 + 𝑒+ + 𝑣 

Electron 

capture 
Neutron deficient 𝑋 + 𝑒− → 𝑌𝑍−1

𝐴
𝑍
𝐴  𝐼𝑛49

111 + 𝑒− →  𝐶𝑑49
111  
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b) Beta decay- When an atom has either too many protons or too many neutrons in its nucleus, 

beta decay takes place. Mainly two types of beta decay prevailing: a) Positive beta decay- where there 

is a release of a positively charged beta particle (positron) and a neutrino; b) Negative beta decay 

releases a negatively charged beta particle called an electron and an antineutrino. Negative beta decay 

is far more common than positive beta decay. 

 

c) Positron decay- Radionuclides which lack neutrons are generally unstable and decay to 

release positive charges either through positron emission or electron capture. These are alternative 

methods to attain ground state when an unstable nucleus is neutron-deficient and are considered as 

inverse beta decay. Lower atomic numbered elements are more susceptible to positron emission. 

Positron emission proceeds with the generation of a daughter nucleus having atomic number (Z−1), 

leaving the mass number unaffected. Positron emission is responsible for annihilation events, later 

discussed in Section 1.2. 11C, 18F, 64Cu, 68Ga, and 124I, are some important radionuclides used in 

developing molecular imaging PET that decay by positron emission. 

 

1.2. Positron Emission Tomography 

1.2.1. PET Principle 

PET imaging technology involves the administration of a radioactive, positron-emitting nuclide, 

which labels a biomolecule specific to the physiologic process under investigation by PET. PET 

allows for the three-dimensional mapping of administered positron-emitting radiopharmaceuticals and 

also enables the study of biological function in both healthy and diseased conditions. 

Radiopharmaceuticals, labeled with positron-emitting isotopes like 11C and 18F, are administered. The 

positron-emitting decay process is identified by the alteration of a proton into a neutron along with the 

emission of a positron (positively charged antiparticle of an electron) and, a neutrino (chargeless 

particle): 

                                                    𝑿𝑵𝒁
𝑨 → 𝒀𝑵+𝟏𝒁−𝟏

𝑨 + 𝒆+ + 𝒗                                               (1.2) 

After emission, the positron travels a short distance known as the positron range before it annihilates 

by combining with an electron. During an annihilation event, when a positron unites with an electron 

nearby, its mass is converted into energy producing two 511 keV γ-rays which travel simultaneously 

in equal and nearly opposite directions (Figure 1.2). This pair of photons is detected by PET scanners, 

equipped with coincidence γ detectors which hit the detectors almost at the same time. The resolving 

time between the two coincidence detectors is about 4-5 ns and this time interval is called coincidence 

time window. However, in newly developed PET scanners, the time-of-flight coincidence detectors 

have a time resolution close to 500 ps (Spanoudaki & Levin, 2010). As soon as the opposite detectors 

detect the two released photons, within the coincidence window, a coincidence event is logged, and 

the positron annihilation is expected to have commenced somewhere along the line of response (LOR) 

connecting the two detectors. In some annihilation events, a detectable coinciding event is not 

generated either because one of the two γ-rays is absorbed or because it is simply not detected. 

However, about 97% of the emitting photons are detected. Many such events are summed which help 

in quantification of line integrals through the isotope distribution. The rationality of this calculation 

depends on the number of counts collected (Ollinger & Fessler, 1997).  

 



Chapter 1 Introduction 

 

 
5 

 

 

Figure 1.2. The main principle of the PET imaging technique. 

Table 1.3. Some commonly used PET radionuclides 

Radionuclide Half-life (t1/2) Emax (Mev) β+ branching fraction 

11Carbon 20.3 min 0.96 1.00 

13Nitrogen 9.97 min 1.20 1.00 

15Oxygen 2.1 min 1.73 1.00 

18Fluorine 110 min 0.63 0.97 

22Sodium 2.60 y 0.55 0.90 

62Copper 9.74 min 2.93 0.97 

64Copper 12.7 h 0.65 0.29 

68Gallium 67.6 min 1.89 0.89 

76Bromine 16.2 h Various 0.56 

82Rubidium 1.25 min 2.60, 3.38 0.96 

124Iodine 4.17 d 1.53, 2.14 0.23 

 

A PET study commences with the injection or inhalational administration of a radiopharmaceutical. 

The scan is initiated after a time lag extending from seconds to minutes to allow for transport and 

uptake by the organ of interest. Several PET radionuclides with their respective half-life (t1/2) are 

listed in Table 1.3. 

1.2.2. PET radionuclides and their clinical applications 

Majority of the PET radiopharmaceuticals used by medical and clinical researchers are labeled with 

four common PET radionuclides 15O, 13N, 11C, and 18F. However, metal radionuclides are also used in 

PET imaging. In this section, we have discussed the clinical applications of different PET 

radionuclides and their corresponding radiopharmaceuticals.  

1.2.2.1. PET Radiopharmaceuticals in Oncology  

[18F] labeled compounds- 18F is one of the most commonly used PET radiopharmaceuticals owing to 

its stable radioisotopic nature. Fluorine is a highly electronegative atom (4.0) when compared with 
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hydrogen (2.1). Further, carbon-fluorine (C-F) bonds are more stronger and stable in vivo than the C–

H bonds. Thus, replacing hydrogen with fluorine in the biological system potentiates the half-life of 

the radiopharmaceutical within the organism. This in turn affects molecules’ metabolization, 

biodistribution, and protein-binding kinetics (Lau et al., 2020). [18F] fluorodeoxyglucose ([18F] FDG), 

the gold standard of PET radiopharmaceuticals is taken up by malignant cells with amplified 

metabolic and glycolytic rates. [18F] FDG PET has revolutionized cancer diagnosis because it 

provides remarkable contrast between the tumor and most normal tissue. Altered glucose metabolism 

is the central cause of the differential uptake between normal and cancerous cells (Sai et al., 2017). 18F 

labeled radiopharmaceuticals have found use in lung cancers, prostate cancer, breast and gynecologic 

cancers, glioblastoma, hepatocellular carcinoma (HCC), colorectal and pancreatic cancers, solid 

malignancies, head and neck cancers, and neoplasms (Lau et al., 2020). Radiolabeled amino acid PET 

radiopharmaceuticals like L-6-[18F]-fluoro-3,4-dihydroxyphenylalanine ([18F]-FDOPA), 2-[18F]-

fluoroethyl-tyrosine ([18F]-FET), 4-fluoroglutamine ([18F]-FGln), (4S)-4-(3-[18F]-fluoropropyl)-L-

glutamic acid ([18F]-FSPG), trans-1-amino-3-18F-fluorocyclobutanecarboxylic acid ([18F]-FACPC) are 

widely used in oncology imaging (Qi et al., 2017). Some other examples of F-labeled radionuclides 

are listed in Table 1.4. 

[11C] labeled compounds- The short half-life of 11C (~20.4 mins) ensures that the radiopharmaceutical 

does not involve substantial exposure and facilitates the conduct of multiple studies in a short time 

interval. [11C]-choline tracers are used in the diagnosis of prostate cancer due to their easy uptake by 

the malignant cells during cell proliferation. [11C]-acetate is widely used in urological malignancies, 

renal cell carcinoma, and bladder cancer (Grassi et al., 2012). [11C]-erlotinib, a small molecule 

radiotracer, can detect lung carcinomas and colorectal cancer in PET scans (Lau et al., 2020).  

[124I]-Labeled Compounds- These radiotracer molecules play a dual role in cancer diagnosis, i.e., they 

serve both as an imaging agent as well as provide therapeutic benefit. The therapeutic property of 124I 

radiopharmaceutical is due to the long half-life (~4.18 days) and physical properties of the positron-

emitting isotope of iodine. These radionuclides can also be used in mAb development for the potential 

cure of thyroid and parathyroid cancer (Rangger & Haubner, 2020; Samnick et al., 2018; Wright & 

Lapi, 2013). 124I-tagged small molecules are tested for various targets: 124I-dRFIB, 124I-IUdR, and 124I-

CDK4/6 inhibitors of cell proliferation; 124I-MIBG for adrenergic activity; 124I-hypericin targeting 

protein kinase C; 124I-IAZA and 124I-IAZG as hypoxia agents; and 124I-FIAU against herpes virus 

thymidine kinase (Cascini et al., 2014). A few other application includes: 124I-IPPM compounds 

targeting opioid receptors, 124I-IPQA participates in EGFR kinase activity, and 124I-labeled-6-anilino-

quinazoline derivatives irreversibly bind to EGFR. Table 1.4 lists some important radionuclides and 

their corresponding radiopharmaceuticals used in cancer diagnosis. 

Table 1.4. PET Radiopharmaceuticals used in oncology 

Radiotracer Disease 
Molecular 

target 
Function Properties 

[methyl-11C] 

methionine 

Urinary, 

gynecological, 

liver, and lung 

cancer 

L-type amino acid 

transporter system 

and Na+ 

dependent system 

imaging the rate of 

protein synthesis 

the short half-life of [11C] 

restricts the availability 

for PET scanning; 

[11C]MET has been also 

widely used in various 

brain tumors 

[11C]CO wide applications 

in clinical 

a variety of 

chemotypes 

The production of a 

wide range of drug-

it requires the presence of 

transition metals (e.g., Pd) 
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research (amides, ketones, 

acids, esters, and 

ureas) 

like molecules and 

radioligands 

as reagents; poor 

solubility of in organic 

solvents and high dilution 

in inert gas 

[11C]acetate prostate cancer, 

hepatocellular 

carcinoma, lung 

cancer, 

nasopharyngeal 

carcinoma, renal 

cell carcinoma, 

bladder 

carcinoma, and 

brain tumors 

all over the body tracer for 

cytoplasmic lipid 

synthesis 

(increased in 

tumors); 

measurements of 

myocardial oxygen 

consumption 

acetate is recruited by 

cells to convert into 

acetyl- CoA by acetyl-

CoA synthetase; rapidly 

picked up by cells; 

originally employed in 

cardiology; salt vector 

[11C]erlotinib Cell lung 

carcinoma, 

colorectal cancer 

epidermal growth 

factor receptor 

tracing specific 

binding for 

activating 

mutations of the 

EGFR kinase 

small molecule vector; 

has a structure identical to 

the clinically used drug 

 

[11C]choline prostate cancer Phospholipid 

synthesis 

tumor imaging; 

diagnostic agent 

salt vector; as the 

proliferation of cancer 

cells gets higher, tumor 

cells exhibit an increased 

rate of the radiotracer’s 

uptake 

[18F]F-choline prostate cancer Phospholipid 

synthesis 

primary staging, 

biochemical 

recurrence 

salt vector; greater 

accuracy when compared 

to [18F]FDG 

[18F]FDOPA glioma, 

neuroendocrine 

tumors, prostate 

cancer 

amino acid 

transport; a 

multiple-target 

molecule 

image a large 

variety of 

neuroendocrine 

tumors and 

pancreatic beta cell 

hyperplasia 

Amino acid vector; good 

modality for detection of 

persistent and residual 

medullary thyroid cancer 

[18F]FDG neoplasm glucose 

metabolism 

tracer used for 

detection, staging 

and management of 

many types of 

cancer 

[18F]-FDG accumulates in 

poorly proliferating and 

hypoxic cancer cells 

[18F]afatinib lung carcinoma, 

colorectal cancer 

epidermal growth 

factor receptor 

detection of EGFR-

positive tumors 

small molecule 

[124I]I-

codrituzumab 

hepatocarcinoma glypican 3 detects tumor 

localization in most 

patients with HCC 

antibody vector 

[124I]I-

girentuximab 

renal cell 

carcinoma 

Carbonic 

anhydrase 9 

Discriminates 

between clear-cell 

RCC (ccRCC) and 

non-ccRCC 

antibody vector 

[64Cu]-DOTA- breast, lung, a promising diagnostic/imaging; first in-human use in 2013 
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AE105 colorectal, 

prostate, and 

bladder cancer 

uPAR- PET ligand 

in several 

preclinical 

validation studies; 

peptide 

antagonists AE105 

prognostic in 

cancer invasion and 

metastasis 

[68Ga]citrate Prosthetic 

joint/bone 

infections 

N.A. diagnosis of bone 

infection 

 

68Ga-citrate has additional 

advantages over 67Ga for 

the analysis of bone 

infections 

[89Zr]Zr-

bevacizumab 

Solid 

malignancies; 

particularly for 

malignant breast 

lesions 

Vascular 

endothelial growth 

factor receptor 

Early detection; 

VEGF-A 

overexpression 

antibody vectors 

 

1.2.2.2. PET Radiopharmaceuticals in Neurology 

PET imaging has aided in investigations of the underlying pathophysiology of different neurological 

conditions. It has been employed to investigate metabolism, receptor binding, and alterations in 

regional blood flow. One of the major applications is in the favor of elucidating complex neurological 

disorders such as Parkinson’s disease (PD), Huntington’s disease (HD), multiple sclerosis (MS), and 

dementias or Alzheimer’s disease (AD). Some of the important PET radiopharmaceuticals used in 

neurodegenerative diseases are enlisted in Table 1.5. The molecular sensitivity in the central nervous 

system (CNS) allows the PET radiotracers for the quantification of target-ligand interactions with 

good selectivity in humans giving information about disease pathology. Widely accepted 

radiopharmaceuticals for brain imaging involve [18F]-FDOPA tracers for dopamine synthesis in PD 

and schizophrenia, [18F]-FDG analogs for imaging the glucose metabolism alterations and translocator 

proteins detection in AD and/or PD (Chételat et al., 2020; Minoshima et al., 2021). Additionally, 

[11C]-PIB compounds are used for tracking the amyloid β plaque accumulation in AD (Blazhenets et 

al., 2021).  

A PET tracer should have the potential to cross the blood-brain barrier (BBB) while the tracer’s 

selectivity ultimately impacts its usefulness and applicability. Therefore, they should follow essential 

criteria: a) molecular weight should be less than 500 kDa; b) lipophilic coefficient between 1 and 5; 

and c) topological polar surface area should be below 90 Å2 (Minoshima et al., 2016; S. Y. Yap et al., 

2021). Benzothiazole and benzoxazole derivatives like [18F]-flutemetamol, [18F]-florbetapir, and [18F]-

florbetaben are used for the detection of pathological amyloid depositions within the brain tissue. 

Tracers like [18F]-AV-1451 and [18F]-THK help in the detection of aggregation rates of tau proteins 

(Harada et al., 2018). Adenosine 2A receptors (A2A) are GPCRS targeted by CNS neurotransmitters 

and highly targeted in multiple neurological disorders. In this case, most reliable tracers developed for 

targeting A2A are [11C]-TMSX and [11C]-SCH442416.  

Table 1.5. PET Radiopharmaceuticals used in neurology 

Radiotracer 
Molecular target/ 

Disease 
Function  Properties 

[11C]MET brain gliomas and 

metastases 

differentiation of 

tumor regrowth; 

delineation of 

the tracer’s stability in its 

final formulation is not 

well documented in the 

literature 
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gliomas. 

N-[11C]-methyl- flumazenil neuronal damages, 
epilepsy, stroke-

induced penumbral, 

infarction, and AD 

binds to the 

benzodiazepine sites 

of GABAA receptors 

excellent kinetic properties 

for image quantification 

[11C]raclopride psychiatric, PD, 

addiction, attention- 

deficit hyperactivity 

disorder, 

schizophrenia 

tracer for dopamine 

function in the striatal 

cortex 

most widely used PET 

radiotracer for measuring 

DA changes in dopamine 

rates at the synaptic level 

[11C]UCB-J targeting synaptic 

vesicle 

proteins SV2A; 

primary interest in 

epilepsy, or diseases 

associated with 

synaptic loss 

imaging SV2A 

expression in 

synaptic vesicles 

leading SV2A tracer; good 

selectivity, fast kinetics 

[11C]MK-3168 pain, addiction, and 

Tourette syndrome 

fatty acid amide 

hydrolase associated 

receptors 

slow kinetics and rapid 

metabolism in humans 

[11C]Martinostat schizophrenia; 

cerebellum uptake; 

CNS quantification 

of HDACs 

high brain uptake 

[11C]PS13 dysfunctions of 

enzymes within the 

CNS 

imaging COX-1 limited data available; low 

plasma free fraction, 

suitable kinetic profile 

[18F]FT brain tumor; does not 

serve as a substrate to 

protein synthesis; 

glioma18F-FET 

uptake is not 

significantly 

influenced by 

changes in the BBB 

permeability 

good diagnostic 

performance; highly 

specific for glioma 

evaluation of its 

applicability in non-

clinical research is still 

lacking; overcomes known 

limitations of [18F] FDG: 

increased uptake in the 

inflammatory environment 

and elevated background 

signal in normal brain 

[18F]AV-1451 tau proteins 

(tauopathies), AD 

AD assessment; 

distinguishes between 

disease stages 

high selectivity over 

amyloid; fast kinetics 

[18F]MK-6240 AD imaging 

neurofibrillary 

tangles 

low bindings in healthy 

controls; strong correlation 

with cognitive AD scores 

[18F]PM-PBB3 AD, cerebral 

accumulations of tau 

deposits 

tau imaging lower binding in basal 

ganglia and thalamus when 

compared to [11C]-PBB3 

[18F]FEOBV targeting cholinergic 

system; Cerebellar 

grey matter, and 

striatum 

Acetylcholine 

transporters and 

cholinergic synapses; 

studying degenerative 

conditions 

improved signal-to-noise 

over previous VACht 

tracers; but slow kinetics 
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[18F]UCB-H targeting synaptic 

vesicle proteins 

SV2A; target has no 

reference region 

binds specifically to 

the synaptic vesicle 

glycoprotein 2A 

lower sensitivity compared 

to [11C]-UCB-J 

[18F]FIMX PD, addiction, 

epilepsy, neuropathic 

pain, and depression 

 

Targeting 

metabotropic 

glutamate receptors 

mGluR1 

very good in vivo block 

response; fast kinetics 

[18F]BCPP-EF Targeting 

mitochondrial 

complexes MC1 

Quantitative imaging 

of MC-1 activity in 

the living brain 

high brain uptake, suitable 

kinetics, large dynamic 

range in vitro 

[64Cu]Cu-SARTATE 

[68Ga]DOTA-TOC 

[68Ga]Ga-DOTA-NOC  

[68Ga]Ga NODAGA-JR11 

[68Ga]Ga-DOTA-TATE 

Neuroendocrine 

tumors 

Targeting 

somatostatin receptor 

2 

peptide vectors 

 

1.2.2.3. PET Radiopharmaceuticals for Cardiovascular Diseases 

Nuclear cardiology has extended its spectrum over the past few years and is applied in the detection of 

heart function, circulation of blood, non-invasive imaging of myocardial viability, and cardiac 

inflammation. [13N]-ammonia is a promising tracer for the myocardial uptake assessment (Li et al., 

2014) or the myocardial blood flow measurement (Nesterov et al., 2014). 13N and 15O labeled 

inorganic radiopharmaceuticals have been widely used for cardiac perfusion imaging. Small organic 

tracer molecules like 11C-epinephrine and 18F-fluorodopamine were useful to image presynaptic 

sympathetic nervous system of the heart. Cationic radiotracer like [82Rb]-chloride targets Na+/K+ 

ATPase cotransporters and helps in myocardial perfusion imaging. A wide range of PET 

radiopharmaceuticals used for cardiovascular disease imaging is given in Table 1.6.  

 

Table 1.6. PET Radiopharmaceuticals used in cardiology 

Radiotracer Disease 
Molecular 

target 
Function Properties 

[82Rb]chloride Cardiac 

conditions 

cardiac tissue diagnostic; 

monitoring the 

cardiac flow 

low delivered radiation 

exposure for a rest/stress 

test 

[15O]H2O Myocardial 

perfusion, 

cerebral and 

tumor perfusion 

N.A. tracer for 

quantitative 

measurement of 

cerebral blood 

flow 

the short half-life of 15O 

results in challenges in 
clinical use 

[13N]NH3 cardiovascular 

events, PC and 

encephalopathy 

myocardial 

tissue, liver, 

kidneys and brain 

imaging agent for 

assessing regional 

blood flow in 

tissues; for 

elucidation of 

NH3 

metabolism in 

patients with 

ammonia 13N enters the 

myocardium through the 

coronary arteries; 

well-validated radiotracer 

for clinical management; 

it is also used in PC due to 
the up-regulation of NH3 

during glutamine 
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hepatic 

encephalopathy; 

potentially a 

tumor 

imaging agent 

synthesis in tumors 

[15O]CO cardiovascular 

events 

myocardial tissue myocardial 

function 

the most common tracers 

used for non-invasively 

measuring oxygen 

consumption and blood 

volume 

[18F]flurpiridaz 

Myocardial 

perfusion 

mitochondrial 

complex I 

diagnostic/ 

imaging 

novel PET tracer 

 

[18F]FBnTP 
mitochondrial 

membrane 

Rapid myocardial uptake 

and retention and high 
myocardium/liver, 

myocardium/blood and 

myocardium/lung contrast 
in animal studies; few 

human studies reported to 

date 

[18F]FTPP mitochondrial 

membrane 

[18F]FDHR mitochondrial 

complex I 

[18F]FDM atherosclerosis Mannose 

receptors 

Progressive 

inflammation in 

atherosclerotic 

plaques 

it is (mannose) an isomer 

of glucose that is taken up 

by macrophages through 

glucose transporters 

[18F]macroflor atherosclerosis macrophage- 

targeted 

polyglucose 

nanoparticle 

immunoimaging; 

nanoparticle 

uptake 

noninvasive assessment of 

the immune system in 

atherosclerosis 

[64Cu]DOTA-

ECL1i 

Lung 

inflammation 

Chemokine 

receptor type 2 

(CCR2) 

detection of 

CCR2- directed 

inflammation 

sensitive and specific 

detection of CCR2+ cells 

[64Cu]DOTA- 
DAPTA-comb 

initiation and 

progression of 

atherosclerosis 

Chemokine 

receptor CCR5 

specific imaging 

of CCR5 

nanomedicinal approach 

toward cardiovascular 

diseases 

[68Ga]DOTATAT

E/DOTANOC 

Inflammatory 

conditions 

related to 

plaques 

N.A. Functional 

imaging of 

plaques 

increased uptakes in 

coronary arteries and large 

arteries; comparable 

diagnostic accuracy 

 

1.2.2.4. PET Radiopharmaceuticals for Bacteria Imaging 

Based on different bacterial strains (Gram-positive, Gram-negative, Gram-positive and negative, and 

others), Auletta et al. classified the research studies focusing on bacterial PET imaging. Gram-

positive bacteria imaging produced better imaging results compared to other strains used during the 

studies (Auletta et al., 2019). 124I-labeled FIAU revealed better results in animal models than in 

humans (Zhang et al., 2016). [18F]-FDG-6-P agents can distinguish between infection and sterile 

inflammation and are highly expressed in several bacteria (Mills et al., 2015). Table 1.7 enumerates 

some PET radiopharmaceuticals used in bacterial imaging. 
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Table 1.7. PET Radiopharmaceuticals used in bacteria imaging 

Radiotracer Type of bacteria Properties 

*[18F]FHM (maltohexose) S. aureus 
better than FDG in differentiating non-infection 

inflammation from infection 

*[18F]FDS (sorbitol) K. pneumoniae 
better than FDG to detect lung infection from 

inflammation 

*[18F]maltotriose N.A. 
imaging bacterial infections in animals; future 

applications in clinics 

*[18F]FDS 
E. coli, 

Enterobacteriaceae 

diagnosis and monitoring therapy; diagnostic for 

infections 

*[18F]FDG-6-P S.aureus potential to differentiate infection from inflammation 

*[18F]isonicotinic acid M.tuberculosis 
non-invasive approach to localize infectious foci; tested 

only on mice 

*[18F]FIAU 
E. coli,   

P.aeruginosa  

engineered pathogens for evaluating experimental 

therapeutics 

*[18F]PABA S.aureus 
non-invasive tool for detecting/localizing/monitoring 

infections 

*[68Ga]TAFC  

*[68Ga]FOXE 
A.fumigatus 

very promising for the detection of infections with 

high sensitivity 

[64Cu]ProT(prothrombin) S.aureus non-invasive detection with an analog of ProT 

[64Cu]JF5 mAb A.fumigatus localized aspergillus infection 

[18F]maltose E. coli 
identifying drug resistance; promising for bacterial 

infection imaging 

[18F]trimethoprim  

 

E. coli, P.aeruginosa 

S.aureus 
infection imaging 

[68Ga]UBI-29-41 S.aureus 

non-toxic, identify infectious foci in humans; 

correlated with the degree of infection needs further 

studies; 

[68Ga]UBI-31-38 S.aureus 
good localization of infection site; promising results in 

humans 

[68Ga]TBIA101 

(depsidomycin derivative) 

M. tuberculosis 

S.aureus 

imaging inflammation but not necessarily infection; 

non-specific 

[124I]FIAU (fialuridine) S.aureus 
well tolerated but of limited value for the detection of 

prosthetic joint infection; low image quality/specificity 

[11C]PABA 

(para-aminobenzoic acid) 
E.coli imaging living bacteria in humans 

 

1.2.2.5. PET Radiopharmaceuticals for Inflammation/Infection 

Inflammation or infection is linked with a variety of diseases directly or indirectly. Therefore, 

molecular imaging of inflammation in various conditions (like stroke, Alzheimer’s disease, 

atherosclerosis, autoimmune diseases, and even malignant conditions) provides ample information 

relating to disease diagnosis or prognosis. B cells are one of the main therapeutic targets essential for 
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controlling immunological responses. BTK is a cytoplasmic tyrosine kinase expressed by B cells and 

are are being studied for the treatment of B-cell malignancies. Radiolabelled BTK inhibitors are 

important in the monitoring and treatment of B-cell-mediated diseases. [11C]- ibrutinib a potential 

PET imager used for inflammation imaging presented >98% radiochemical purity and 19.89 to 20.15 

min half-life (Donnelly et al., 2022). 

11C or 18F-labeled isoquinoline carboxamide derivatives are used in PET imaging of peripheral tissue 

translocator proteins which are expressed during inflammation (Hatori et al., 2012). PET imaging has 

shown promising results in atherosclerosis detection, lung lesion absorption, neuroendocrine tumor 

imaging, etc. [18F]-FDG is a good agent for biopsy, as it can detect the most active infection sites. 

Also, it helps in treatment monitoring and regulation and has a great impact on large vessel vasculitis 

imaging (Ankrah et al., 2019; Douglas et al., 2019).  

1.3. Single Photon Emission Computed Tomography 

Single-photon emission computed tomography (SPECT) is a nuclear imaging modality used 

frequently in diagnostic medicine. It gives a three-dimensional nuclear image with combined 

knowledge obtained from scintigraphy with that of computed tomography. This allows a three-

dimensional display offering better detail, contrast, and spatial information. SPECT imaging uses 

radionuclides that directly emit gamma (γ) rays such as technetium-99m (99mTc) and iodine-123 

(123I). Generally, the half-lives of SPECT radiotracers are longer than those used in PET imaging 

(Table 1.8). This makes them more accessible for imaging and longer radiosynthesis times make 

them more viable. 

1.3.1. SPECT Principle 

SPECT machines combine an array of gamma cameras (ranging from one to four cameras) that rotate 

around the patient (Lee et al., 2000). Radionuclide distribution within tissues can be determined 

spatially using specially designed gamma cameras rotating around the patient. The use of multiple 

gamma cameras increases detector efficiency and spatial resolution. Three-dimensional images are 

then constructed from the projection data obtained from the cameras (Lee et al., 2000; Van Paesschen 

et al., 2003). Figure 1.3 shows the basic principle of how SPECT imaging works. 

Table 1.8: Commonly used radionuclides for SPECT imaging 

Nuclide Half-life/h Principal photon emission energies/MeV Type of emission 

123I 13.2 0.16 Electron capture 

99mTc 6 0.14 Isomeric transition 

111In 67.9 0.17/0.25 Electron capture 

67Ga 78.3 0.09/0.19/0.30 Electron capture 

201Tl 73.1 0.17 Electron capture 
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Figure 1.3. Principles of SPECT imaging 

1.3.2. SPECT radiopharmaceuticals 

SPECT radiopharmaceuticals are used to diagnose neurodegenerative diseases, cancer, and infections 

by emitting gamma (γ) radiation. The longer half-life of these chemicals has the advantage of 

enabling SPECT imaging studies to be conducted over longer periods. Figure 1.4 shows some 

commonly used technetium (99mTc) labeled SPECT radiopharmaceuticals. The important features 

required for a good SPECT radiotracer are: 

 Easy availability 

 Carrier free 

 Non-toxic 

 Free from α and β particles emission (with little emission) 

 Biological half-life not greater than the time of study 

 Suitable energy range 

 Chemically reactive to form coordinate covalent bonds with the compound which is to be 

labeled.  

 

Figure 1.4. Examples of 99mTc radiopharmaceuticals. 

1.3.3. Application of SPECT imaging 

During SPECT imaging, the clinician must have prior knowledge about: a) the goal of the scan b) the 

associated risk to the patient, and c) the expense of the isotope. SPECT imaging not only depends on 

the selection of the correct radioisotope but the main achievement lies beneath the fact that the isotope 
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has to be successfully bound to a biologically active ligand, which will interact with the body tissues 

to deliver the isotope to the desired location SPECT imaging depends on more than just the selection 

of the correct radioisotope. SPECT scan has found immense applicability in the medical fields mainly 

in cardiovascular diseases, brain disorders, and cancer. SPECT scans are also indicated for non-

cardiac and non-neurological conditions such as osteomyelitis, spondylolysis, parathyroid disease, 

pulmonary embolism, and abscess localization. 

1.3.3.1. SPECT imaging in Oncology- SPECT imaging has played a wholesome role in clinical 

oncology in identifying various tumors overexpressing particular receptors. Receptors such as 

somatostatin receptors (breast, brain, and small cell lung cancer tumors), prostate-specific membrane 

antigen (prostate cancer), gastrin-releasing peptide receptor (prostate, breast, pancreas, small cell lung 

cancer, and colorectal tumors), melanocortin receptor (melanomas), and integrin ανβ3 receptor (brain, 

lung, ovary, breast, and skin cancer) were targeted (Rezazadeh & Sadeghzadeh, 2019).  

 

1.3.3.2. SPECT Radiopharmaceuticals for Cardiovascular Events- Tc labeled 

radiopharmaceuticals have shown good results in the diagnosis risk assessment of coronary artery 

disease (CAD). Currently, in use, three SPECT imaging agents [201Tl]-Cl, [99mTc(I)]-sestamibi, and 

[99mTc(V)]-tetrofosmin have revealed promising results (Watson & Glover, 2010). The applicability 

of these diagnostic agents relies based on their good pharmacokinetic properties (half-life, high first-

pass extraction, linear relation between uptake and blood flow, and rapid clearance). 

 

1.3.3.3. SPECT Radiopharmaceuticals in Neurological Disorders- Commonly used SPECT 

imaging agents for neurological disorders (mainly for Parkinson’s disease) are: [99mTc(V)]-HMPAO, 

[123I]-ioflupane and [99mTc(I)]-TRODAT-1(Adak et al., 2012; Valotassiou et al., 2018). 123I-based 

imidazopyridine compounds are used for amyloid beta imaging (Chen et al., 2015).  

 

1.4. Difference between PET and SPECT imaging  

Both PET and SPECT imaging agents are widely used in the medical field for the diagnosis of 

different disease pathologies. However, both have unique features which make them better from each 

other. Table 1.9. enlists some advantages, disadvantages, and clinical use of both PET and SPECT 

imaging agents explaining how unique they are from each other. 

Table 1.9. Comparison between PET and SPECT imaging agents 

Method Advantages Disadvantages Clinical Use In vivo animal use 

PET -high sensitivity 

-3D acquisition 

-good resolution 

within a physical 

limit 

-isotopes are of 

short half-life 

-isotopes produced 

in cyclotrons 

-expensive process 

-higher tissue dose 

required 

-[18F]FDG is a 

routine imaging 

agent in the 

diagnosis of cancer 

-special application 

in neurology and 

cardiology 

Currently evolving 

-microPET 

-high-density 

avalanche chamber 

SPECT -resolution limited 

by technology 

(submillimeter) 

-low sensitivities 

-can differentiate 

-2D planar images 

-semiquantitative 

data only 

-readily available 

tracer 

-a wide range of 

clinically tested 

tracers available 

-pinhole collimator 

-dedicated cameras 

evolving 
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between isotopes 

with different 

radiation energies 

 

1.5. Nitroaromatics as Radiosensitizers 

Radiosensitizers are promising chemicals or pharmaceuticals that are intended to enhance injury to 

tumor tissue by accelerating DNA damage and producing free radicals. They usually tend to augment 

the lethal effects of radiation. Based on the mechanism of DNA damage and repair, G E Adams, a 

pioneer in the field of radiation therapy, categorized radiosensitizers into five classes: (1) suppressor 

of intracellular thiols or other endogenous radioprotective substances; (2) formation of cytotoxic 

substances by radiolysis of the radiosensitizer; (3) inhibitors of repair of biomolecules; (4) thymine 

analogs that can incorporate into DNA; and (5) oxygen mimics that have electrophilic activity (Gong 

et al., 2021). Oxygen is regarded as the best radiosensitizer by far; however, metabolic consumption 

of oxygen limits its diffusion into hypoxic tumor cells. Hypoxia has a principal role in cancer 

progression operating angiogenesis, vasculogenesis, activation of a glycolytic shift in metabolism, 

invasion enhancement, and metastasis (De & Roy, 2021). Nitroheterocyclic compounds like 

nitroimidazoles, nitrofurans and nitrothiophenes are recognized oxygen-mimetic agents in which 

electron-rich reactive nitro group reacts with DNA, after which the DNA and nitro group adduct 

causes DNA strand breakage and subsequent cell death. The mechanism for DNA damage by 

aromatic nitro compounds is shown in Figure 1.5. The bioreduction ability of nitroaromatics allows 

the generation of free radicals in intracellular environments with a low oxygen concentration; a 

typical circumstance occurring in solid tumors encompassing areas of hypoxia resulting from 

inadequate blood supply (Chin Chung et al., 2011; Wardman, 2007). Thus, these compounds are 

potential targets for the detection of hypoxic cells in cancer patients.  

 

Figure 1.5. Mechanism of nitroaromatic radiosensitizers in DNA damage 

1.6. Quantitative structure-activity relationship (QSAR) analysis 

1.6.1. The formalism 

Drug discovery has been recently oriented towards the modeling and design of new molecules to 

discover potent molecules having improved therapeutic activity and less toxicity. In silico approaches 

play a vital role in this practice of rational drug discovery. The ideology of QSAR analysis assumes 

that the molecules available in nature contain information for their physical, chemical, or biological 

(including toxicological) activity which can be suitably described in terms of mathematical 

correlation. Eq. 1.3 describes the response elicited by chemicals to be a mathematical function of 

chemical features. 
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          Chemical Response = 𝑓(Chemical attributes) = 𝑓(Structure, Property)           (1.3) 

Here, response refers to any type of physicochemical property, activity, or toxicity shown by the 

chemicals, while the chemical attributes correspond to the quantitative information obtainable from 

the chemicals using suitable theoretical/ experimental techniques. The nomenclature of the technique 

is usually done depending on the nature of the response. Accordingly, three broad types can be 

identified namely QSAR, QSPR, and QSTR denoting the response to be a biological activity (e.g., 

anti-cancer, anti-malarial, anti-diabetic, anti-tubercular, anti-cholinergic, anti-bacterial, etc.), 

physicochemical property (melting point, boiling point, molar refractivity, lipophilicity, viscosity, 

aqueous solubility etc.) as well as toxicity (non-systemic such as ecotoxicity/environmental toxicity as 

well as systemic such as hepatotoxicity, cardiotoxicity, pulmonary toxicity, nephrotoxicity, etc.) 

respectively. However, we shall use the term QSAR to denote QSAR/QSPR/QSTR analyses in a 

broad sense. It may be noted that various physicochemical properties of chemicals can also be used as 

a chemical feature as shown on the right side of Eq. 1.3. 

1.6.2. History of QSAR 

The history of the correlation of chemical features can be traced back to the nineteenth century with 

the theory proposed by Mendeleev who used the ‘rule of eight’ (Tute, 1990) for identifying similar 

chemicals. In 1868, the first mathematical notion in QSAR was reported by Crum-Brown and Fraser 

(Brown & Fraser, 1868) who expressed the possible mathematical correlation between the biological 

activity of various alkaloids with their molecular constitution using the following equation 1.4. 

                                                                       𝛷 = 𝑓(𝐶)                                                                    (1.4) 

Here the physiological action 𝛷 of a chemical in a biological system is shown as the function (𝑓) of 

its constitution C. Thus, an alteration in the chemical constitution, ∆C, would be reflected by an 

alteration in biological activity ∆ 𝛷. It may be noted that ‘chemical constitution’ at that time was not a 

vividly defined principle, but rather an effort to express elemental composition which provided the 

conceptual platform for the modern predictor variables/descriptors. 

Körner (Körner, 1874) theorized the change in color of (physicochemical property) of disubstituted 

benzenes be correlated with their differing chemical structure. Following that, in the year 1884, Mills 

(Mills, 2009) found the melting point and boiling point of compounds to be correlated with chemical 

composition. About ten years later, cytotoxicity and aqueous solubility of diverse organic compounds 

were reported to be inversely correlated by Richet (Richet, 1893). Meyer (Meyer, 1899) and Overton 

(Overton, 1899), independently suggested that the narcotic (depressant) action of a group of organic 

compounds is correlated with their olive oil/water partition coefficients.  

Hammett, in 1935, provided a revolutionary contribution here by establishing a relationship between 

the chemical reactivity and structural features of benzene derivatives using rate constant and 

electronic constant terminologies. The famous Hammett constant is described by the following 

equation (Eq. 1.5 and Eq. 1.6) where kX and kH are the rate constants and KX and KH are the equlibrium 

constants of substituted and unsubstituted benzenes, σX is the Hammett constant providing electronic 

information and ρ is a constant. 

                                                                   𝑙𝑜𝑔
𝐾𝐻

𝐾𝑋
= 𝜌𝜎𝑋                                                            (1.5) 

                                                                   𝑙𝑜𝑔
𝑘𝐻

𝑘𝑋
= 𝜌𝜎𝑋                                                            (1.6) 
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Hammett ‘σ’ was defined by ionization constant terms allowing its correlation with a linear free 

energy-based formalism using the Gibbs equation, i.e.,  𝛥𝐺0 = −𝑅𝑇𝑙𝑛𝐾 (where, 𝛥𝐺0 is the Gibbs 

free energy change at the standard state, R is the ideal gas constant, T is the temperature in Kelvin) 

and thus Hammett’s equation is considered the beginning of the linear free energy relationship 

(LFER) concept. By employing the LFER technique, Taft introduced steric feature Es and allowed a 

separate assessment of polar, steric, and resonance effects by performing acid- and base-catalyzed 

hydrolysis of aliphatic esters. Swain and Lupton (1968) provided further information on the resonance 

and polar effects. The notable observation of Hammett and Taft paved the next foothold observations 

by Hansch and Fujita. Corwin Hansch is considered the ‘Father of QSAR’ (Martin & Stouch, 2011) 

for his notable contribution in the QSAR paradigm. By using the Hammett constant and a 

hydrophobicity measure, Hansch and Muir (Hansch et al., 1962) performed structure-activity 

relationship analysis using plant growth regulators. Using the octanol/water system, a new 

hydrophobic measure ‘π’ was introduced to represent the partition coefficient of the substituent using 

the contribution of the whole molecule (see equation 1.7). 

                                                                 𝜋𝑋 = 𝑙𝑜𝑔𝑃𝑋 − 𝑙𝑜𝑔𝑃𝐻                                                        (1.7) 

Here, the subtraction of the logarithmic partition coefficient of the derivative (PX) and parent (PH) 

molecule gives the substituent hydrophobicity πX. This was followed by combining Hammett’s 

electronic constant (σ) and the hydrophobicity measure (π) into a single equation by Fujita and 

Hansch. Fujita identified that the free energy variables, e.g., π, logP, σ, etc. can be combined into a 

single equation to represent biological activity by implementing a logarithmic transformation of the 

concentration term to keep the LFER formalism. Because of the presence of linear free-energy related 

variables, Hansch analysis is also termed as the ‘extra thermodynamic approach’. Eq. 1.8 is an LFER 

model showing biological activity to be composed of hydrophobic and electronic factors.  

                                                             𝑙𝑜𝑔 (
1

𝐶
) = 𝑘1𝜋 + 𝑘2𝜎 + 𝑘3                                               (1.8) 

This model was later modified by Hansch who considered that drug molecules undergo a ‘random 

walk’ to reach the target receptor, and he proposed a parabolic relationship between log(1/C) and logP 

and the following equations were obtained likewise. 

                                      𝑙𝑜𝑔 (
1

𝐶
) = 𝑘1(𝑙𝑜𝑔𝑃) − 𝑘2(𝑙𝑜𝑔𝑃)2 + 𝑘3𝜎 + 𝑘4                                          (1.9) 

                                                 𝑙𝑜𝑔 (
1

𝐶
) = 𝑘1𝜋 − 𝑘2𝜋2 + 𝑘3𝜎 + 𝑘4                                                (1.10) 

Another LFER equation was also proposed by Hansch containing the hydrophobicity 

constant, Hammett’s electronic constant, and Taft steric parameter (see equation 1.11). 

                                                  𝑙𝑜𝑔 (
1

𝐶
) = 𝑘1𝜋 + 𝑘2𝜎 + 𝑘3𝐸𝑠 + 𝑘4                                                 

(1.11) 

Later in 1976, Kubinyi (Kubinyi, 1976) provided a bilinear model by modifying the parabolic 

relationship (equation 1.12) of Hansch. The parameters a, b, and c can be calculated by linear multiple 

regression analysis, while the non-linear term β must be derived by a stepwise iteration process or 

Taylor series iteration. 

                                                𝑙𝑜𝑔 (
1

𝐶
) = 𝑎𝑙𝑜𝑔𝑃 − 𝑏𝑙𝑜𝑔(𝛽𝑃 + 1) + 𝑐                                      (1.12) 
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Along with Hansch's approach, other notable methodologies also came into light in the 1960s. The 

famous Free-Wilson approach (Free & Wilson, 1964) mathematically correlates the biological activity 

of a congeneric series of chemicals with the common contribution of the parent moiety plus the 

contribution of each structural substituent. Eq. 1.13 presents the Free-Wilson model where BA is the 

biological activity assumed to comprise the average parent moiety contribution μ and the contribution 

of each substituent ai. Here, xi is a Boolean variable denoting the presence (=1) or absence (=0) of a 

specific structural fragment. 

                                                                     𝐵𝐴 = ∑𝑎𝑖𝑥1 + 𝜇                                                         (1.13) 

Fujita and Ban (1971) considered a log transformed response and provided a modified version of this 

equation to overcome its shortcomings (Eq. 1.14). 

                                                                   𝑙𝑜𝑔𝐵𝐴 = ∑𝐺𝑖𝑥1 + 𝜇                                                     (1.14) 

Here, μ is the contribution of the parent moiety, Gi denotes the contribution of chemical fragments 

and xi represents the presence/ absence of Gi. 

In 1973, C. Hansch and S. Unger defined good practice in QSAR, comprising five criteria that must 

be considered before selecting a “best equation”. The five criteria were as follows, i) selection of 

independent variables considering the widest possible number of variables; ii) justification of the 

choice of independent variables by statistical procedures; iii) the principle of parsimony, i.e., all 

things being equal, one accepts the simplest model; iv) a number of terms: one should have at least 

five to six data points per variable to avoid chance correlations; v) try to find a qualitative model of 

physicochemical or biochemical significance, etc.  

1.6.3. Objectives of QSAR analysis 

The principal objectives and significance of QSAR analysis are (Cronin et al., 2003): 

a. Prediction of new analogs of a compound with better property 

b. Exploring and a better understanding of the mode of action 

c. Lead optimization with decreased activity 

d. Reduction of wet laboratory experimentation 

e. Cost, time, and manpower reduction by evolving more effective compounds using a 

scientifically less exhaustive approach. 

f. To develop expert systems for predicting various toxicity endpoints of potential drug 

candidates.  

g. Identifying pollution prevention measures.  

h. Identifying scientific data gaps. 

 

The key objective of QSAR analysis is the development of a mathematical relationship between the 

response and chemical features of a series of compounds. Hence, mathematically for a series of 

compounds, this is about developing a correlation between a Y and several X variables where Y is the 

dependent variable remaining on the left side of the equation and the X variables are independent 

entities. The response or the Y variable is also termed as ‘endpoint’ while the X features are predictor 

variables, and a QSAR relationship can be simply stated as follows in Equation 1.15: 

 

                                               𝑌 = 𝑎0 + 𝑎1𝑥1 + 𝑎2𝑥2 + ⋯ + 𝑎𝑛𝑥𝑛                                                 (1.15) 
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In Eq. 1.15 Y is the response variable (independent) being modeled for a set of n number of 

compounds with the predictor variables x1, x2,... xn etc. possessing coefficient values a1, a2,... an 

respectively, and a0 is the constant term. With the values of Y and x variables known, the coefficients 

(a1, a2,... an) along with the constant (a0) can be easily solved by giving an explicit mathematical 

equation correlating biological activity or toxicity or physicochemical properties of compounds with 

their chemical features. 

 

1.6.4. Classification of QSAR 

 

1.6.6.1. Based on dimensionality 

QSAR models can be classified into different classes based on the descriptor complexity. They are (i) 

0D-QSAR102, (ii) 1D-QSAR, (iii) 2D-QSAR, (iv) 3D-QSAR, (v) 4D-QSAR, (vi) 5D QSAR,  and 

(vii) 6D-QSAR and (viii) 7D-QSAR. Table 1.8 and Figure 1.6 give examples of descriptors based on 

their dimensions. 

Table 1.8. Classification of QSAR technique based on its dimension 

Dimension                                     QSAR Method 

0D-QSAR Descriptors involving molecular formulas, like molecular weight etc. 

1D-QSAR Physicochemical properties of molecular structure, such as lipophilicity, solubility etc. 

2D-QSAR Structural patterns, i.e., the topology of the molecules (without 3D representation) 

3D-QSAR Activity is correlated with three-dimensional structure of the ligands. 

4D-QSAR Ligands are represented as an ensemble of configurations. 

5D-QSAR As 4D-QSAR + explicit representation of different induced-fit models. 

6D-QSAR As 5D-QSAR + simultaneous consideration of different solvation models. 

7D-QSAR Such analysis comprises of real receptor or target-based receptor model data 

 

1.6.6.2. Based on chemometric methods 

Based on the type of chemometric methods used, QSAR methods are classified as linear and non-

linear. Linear methods include stepwise multiple linear regression (S-MLR), principal component 

analysis (PCA), partial least-squares (PLS), and genetic function approximation (GFA). Although, 

both PLS and GFA techniques can also be employed in developing non-linear models. Further, 

improvements in the chemometric field have also created several methods of building predictive 

models, including non-linear regression and algorithmic techniques like support vector machine 

(SVM), artificial neural networks (ANN), k-nearest neighbors (kNN), and Bayesian neural nets 

(BNN) ( Roy & Mitra, 2011), etc. 
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Figure 1.6. Classification of descriptors based on dimensionality. 

1.6.6.3. Based on the number of the dependent variables 

Depending on the number of dependent variables, QSAR can also be classified as single-target 

QSAR, and multi-target QSAR (see Figure 1.5). Studies have indicated that multi-target QSAR 

studies are highly beneficial in the case of complex diseases like AD, PD, and cancer. 

1.6.5. QSAR and OECD Guidelines 

  

QSAR/QSTR is an interdisciplinary study of chemistry, biology, and statistics. The predictions for the 

essential structural requirements needed for obtaining a molecule with optimized activity/toxicity 

provide a good platform for the synthesis of a relatively lesser number of chemicals with improved 

activity/ toxicity/property of interest. To achieve the aforementioned objectives, it is necessary to 

follow some guidelines adopted by the Organization for Economic Co-operation and Development 

(OECD) http://www.oecd.org/dataoecd/33/37/37849783.pdf. The guidelines suggest that a valid 

QSAR/QSPR/QSTR should have (Dearden et al., 2010; Gramatica, 2007): 

 

i) Principle 1: a defined end point; 

ii) Principle 2: an unambiguous algorithm; 

iii) Principle 3: a defined domain of applicability; 

iv) Principle 4: appropriate measures of goodness of fit, robustness, and predictivity; 

v) Principle 5: a mechanistic interpretation, if possible 

A brief overview of the aforementioned OECD principles is explained below: 

i) OECD Principle 1: A defined endpoint- This principle commands transparency to be maintained 

during the selection of endpoint data for modeling. It is expected that the QSAR models are to be 

developed using homogeneous datasets comprising single protocol/assay-generated response data. A 

QSAR scientist should take utmost care while verifying the experimental protocols, quality of the 

data, concentration unit, etc. thoroughly during compiling activity/ property/ toxicity data from 

varying sources. Another critical consideration to be maintained is the mechanism/ mode of action for 

all the chemicals used should be common. This implies that the compounds used for developing a 

model must work via the same mode/ mechanism of action. A defined endpoint has a noteworthy 

impact on developing QSAR models and the principal features can be summarized as: 

http://www.oecd.org/dataoecd/33/37/37849783.pdf
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a) A well-defined endpoint must portray the variation of chemical structures within a dataset.  

b) Detailed information on the employed test protocols mentioning the factors able to cause 

variation, uncertainty, and possible deviation from standardized test guidelines. 

c) Differences in the protocols implemented must not make a marked difference in values for a 

given endpoint. 

d) Differences made within a protocol e.g., involving media, reagents, etc. must not be 

irrational. 

e) The chemical domain of the test protocol must encase the domain defined by the model. 

f) The endpoint measured using a given test protocol and the endpoint being modeled must be 

the same concerning specific assessment of chemical hazard. 

 

ii) OECD Principle 2: An unambiguous algorithm- This principle states an unambiguous 

methodology to be used while developing predictive QSAR models. This comprises the methodology 

employed during data pre-treatment, dataset division, and the selection of features. Hence, this rule 

focuses to bring transparency in model building rendering it not only reproducible to others but also 

making it explanatory in achieving the endpoint estimates. OECD recognizes the following essential 

elements for maintaining methodological transparency during (Q)SAR model development. 

a) A dataset of chemical compounds along with their endpoint and descriptor values i.e., the 

QSAR data matrix. 

b) Clear depiction of the descriptor computation steps as well as their measurement. 

c) Description of the training and test sets along with a definite justification for the removal of 

outlier observations if any. 

d) Description on the mathematical models portraying the relationship between endpoint and 

descriptor, and the extracted chemical information thereof. 

e) Statistical parameters for judging the reliability of the prediction.  

 

iii) Principle 3: A defined domain of applicability- The third principle of OECD portrays the 

importance of the chemical/ response domain of applicability. Any QSAR model developed using a 

set of chemicals possesses a distinct theoretical space providing a reliable predictive result within that 

domain. Netzeva et al. (2005) have defined the applicability domain of QSAR models as follows: 

“The applicability domain (AD) of a (Q)SAR model is the response and chemical structure space in 

which the model makes predictions with a given reliability.” The domain of applicability of a model 

using the training set molecules checks whether the prediction of test set molecules is trustworthy or 

not. The AD of a model depends on three major characteristics a) structural information, b) 

physicochemical feature, and c) response space. Because of the possible involvement of multiple 

mechanistic basis in various regulatory endpoints, (Q)SAR models can be developed on specific 

chemical classes those act via the same mechanism of action. Some of the methods for defining an 

AD include a range of individual descriptors, distance-based methods such as Euclidean distance, 

Mahalanobis distance, Manhattan distance, distance to model in the X-space approach etc. Another 

distance-based formalism involving Hotelling’s test and the associated leverage statistics can also be 

used. A warning value of the leverage (h*) can be computed using the formula 3p′/n where n 

represents number of training set chemicals and p′ is the number of descriptors plus one. The 

detection of an outlier can be performed using the confidence limits of the AD defining techniques. 
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Another approach could be the fragment-based technique where the test set/ query molecule can be 

split into structural fragments and checking can be done to verify whether the fragments are presented 

by the corresponding training set domain or not. The following points as identified by the OECD 

should be followed with respect to AD of a QSAR model. 

a) Defining confidence limits characterizing an AD. 

b) AD for structural alerts and fragment-based QSAR techniques. 

c) Assessment of the strength, limitations, and applicability of AD methods 

d) Implementation of tools that allows AD determination along with other statistical operations 

as an integrated operation. 

 

iv) OECD Principle 4: Appropriate measures of goodness-of-fit, robustness, and predictivity- 

The fourth OECD principle provides knowledge on the statistical verdict of stability and predictivity 

of a model. The internal model performance by fitness and robustness measure using a training set, 

and external predictivity using test set is measured. This provides a suitable balance between the 

extreme conditions namely overfitting and underfitting of the model-based prediction. Division of the 

dataset into training and test sets is one of the principal strategies to determine the internal stability 

and external predictivity of a developed QSAR model. In simpler terms, all such validation exercise is 

meant to verify the closeness of a prediction/ estimation by a model with respect to its experimental 

observation. 

 

v) OECD Principle 5: A mechanistic interpretation, if possible- The fifth OECD principle attempts 

in aiding a good mechanistic basis for the response being modeled. Definite information on the 

mechanism of action of chemicals towards a process can guide the design and development of only 

desired analogs. Molecular descriptors play a crucial role in proving mechanistic information towards 

a modeled endpoint. Hence, various types of experimental as well as theoretical descriptors containing 

sufficient chemical diagnostic potential should be of interest for developing predictive QSAR models. 

Various expert systems on QSAR modeling here help the user to gather chemical knowledge towards 

a given process. The expert systems are usually characterized by their induced statistical rules and 

their ability to provide expert knowledge. A quick overview at the OECD guidelines for the 

development and validation of QSAR models is shown in Figure 1.4. 

1.6.6. QSAR methodology 

Predictive QSAR model development comprises several steps namely i) data preparation, ii) data 

analysis, iii) data validation, and iv) data interpretation where the ‘data’ refers to the response and 

predictor variables. It should be noted that mathematics plays only an abstract platform here to 

provide the quantitative correlation and hence the preparation and analysis of the chemical data must 

be operated carefully to avoid the loss of any essential chemical attribute. A brief discussion on the 

steps of QSAR modeling is presented below. 

 

1.6.6.1. Data preparation: This component comprises the preparation of the QSAR data matrix 

composed of response and predictor variables. 

 The biological/ toxicological/ physicochemical response is at first subjected to conversion 

into a molar unit followed by logarithmic transformation maintaining data uniformity. 

 The next task involves drawing the chemical structures using suitable chemical drawing 

software applications such as ChemDraw, MarvinSketch, ChemSketch, etc. followed by saving them 
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in a suitable format e.g., MDL molfile (.mol). The drawn structures are usually subjected to a cleaning 

operation as implemented in the software to remove any error left due to bond length, angle, etc. The 

chemical structures can also be collected from public databases such as PubChem 

(https://pubchem.ncbi.nlm.nih.gov/search/index.html), ZINC (https://zinc.docking.org/), 

ChemSpider (http://www.chemspider.com/), etc. The desired stereochemical configuration needs to 

be checked while collecting chemical structures from public databases. 

 Depending upon the purpose of modeling, the chemical structures drawn/ collected might be 

subjected to conformational analysis and energy minimization operation. 

 The final files are submitted to descriptor computing software (Dragon, Padel or AlvaDesc) 

for the generation of theoretical predictor variables. At the initial stage, the computed descriptors can 

be subjected to a variance and correlation check to remove redundant chemical features and attributes 

with constant or near-constant values throughout the dataset. This is commonly known as data 

pretreatment. Furthermore, the user can employ different software applications for the generation of a 

separate class of descriptors all of which can be pooled together in a single data matrix along with the 

experimental variables (if any) and then subjected to data pretreatment operation.  

 At this point, the user has a descriptor matrix containing many variables and a single column 

of the response (usually) which needs to be clubbed into a spreadsheet to form the final QSAR data 

matrix containing a column denoting a serial number of the compounds, a column for the response 

(activity/ property/ toxicity), and the descriptors both obtained from experimental and theoretical 

operations. An additional column denoting the name of the chemicals can be added for quick 

identification of any compound.  

 

Figure 1.7. QSAR methodology based on OECD guidelines. 

1.6.6.2.  Data analysis: This component consists of dataset division, feature selection and model 

development.  

 The performance of a predictive model is ascertained by dividing the whole dataset into a 

training set and a test set based on chemical similarity. The training set is employed for model 

development (i.e., the equation), while the test set (not used during model development) is used to 

judge the external predictivity of the model. The internal predictivity, i.e., the predictive performance 

of the model on the training set is also judged. Usually, a higher number of compounds are allotted to 
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the training set compared to the test set. The total dataset is divided such that the test set compounds 

lie within the chemical space of the training set, i.e., the training set becomes representative of the test 

set. The methods employed for the dataset division may involve a) treatment of the predictor 

variables, b) treatment of the response variable, and c) random selection. The first approach i.e., the 

predictor variable-based division first attempts to assign the divided compounds into separate groups 

or classes based on their chemical similarity determinable from a suitable operation on the descriptor 

matrix. This is followed by the selection of a user-defined fraction of compounds into training and test 

sets from each such obtained group. Some of the techniques to divide chemicals into groups are k-

means clustering, Kennard Stone algorithm, sphere exclusion principle, principal component analysis 

(PCA) based selection, Kohonen’s self-organizing map, statistical molecular design, Extrapolation-

oriented test set selection, etc. In the response variable-based division approach, the compounds are 

assumed to be diverse based on their biological/physicochemical/ toxicological response values. Here, 

the whole data matrix is first sorted using the response column followed by the selection of a 

predefined fraction of compounds into training/ test set from different zones maintaining a pattern 

e.g., every fourth compound, etc. In the random division approach, compounds are randomly 

classified into training and test sets following a user-defined fraction. Sometimes a combination of 

response variable-based and predictor variable-based approaches may also be employed e.g., 

compounds may be assigned into different structurally similar groups using any of the above-

mentioned techniques followed by the selection of compounds into training/ test set using the sorted 

response formalism separately from each group. 

 Selection of features refers to the identification of the important predictor variables suitable 

for developing a correlation with the response variable. Many software applications are capable of 

generating hundreds or thousands of different molecular descriptors. Typically, only some of them are 

significantly correlated with the activity. Thus, appropriate feature selection tools must be used. 

Furthermore, many of the descriptors are intercorrelated. This has negative effects on several aspects 

of QSAR analysis. Some statistical methods require that the number of compounds is significantly 

greater than the number of descriptors. Various chemometric tools are employed for the selection of 

the potential variables with respect to an endpoint data from the whole descriptor matrix. The selected 

variables are then subjected to suitable statistical operations leading to the development of the final 

model. Some of the feature selection tools employed in chemometric modeling studies include 

stepwise variable selection, genetic algorithm, best subset selection, variable subset selection, factor 

analysis, etc.  

 The model development step dictates that the selected best features are to be combined in a 

single equation employing an explicit formalism. Multiple linear regression (MLR), partial least 

squares (PLS), etc. are the algorithm employed for the development of quantitative regression-based 

equations while linear discriminant analysis (LDA) produces a classification model. All these 

techniques are preceded with a feature selection step and the techniques are known as stepwise-MLR, 

GFA-MLR, G/PLS (genetic PLS), PLS-DA (PLS followed by discriminant analysis), etc. 

 

1.6.6.3. Model validation: Following the development of predictive models, the next essential task 

becomes the determination of its statistical reliability. The objective of QSAR analysis is not model 

development only but also to apply it for the prediction of response of untested/ new chemicals, it is 

necessary to ascertain its stability as well as predictivity. Various statistical metrics are computed to 

judge the model's fitness (𝑅2, 𝑅𝑎𝑑𝑗
2 ,  etc.), internal stability (𝑄𝐿𝑂𝑂

2 , 𝑟𝑚(𝐿𝑂𝑂) 
2 ) as well as external 

predictivity (𝑅𝑝𝑟𝑒𝑑
2 , 𝑟𝑚(𝑇𝑒𝑠𝑡) 

2 ) and values above the threshold limits identify model acceptability. It 

may be noted that by ‘internal stability’ we aim to portray the stability of prediction determined using 
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the training set compounds only, i.e., compounds used for developing the model, while external 

predictivity refers to the judgment on test set prediction. Some additional metrics can also be 

employed to judge the overall predictivity e.g., 𝑟𝑚(𝑜𝑣𝑒𝑟𝑎𝑙𝑙) 
2 ). For the validation of discriminant model 

parameters such as sensitivity, specificity, accuracy, precision, F-value, receiver operating 

characteristic (ROC) analysis, etc. can be employed. Table 1.9 and 1.10 enlists major regression and 

classification validation metrics respectively. 

 

1.6.6.4. Model interpretation: Once a QSAR model has been developed and has been considered 

acceptable from the values of the metrics, the final important part remains with the mechanistic 

interpretability of the modeled features. Establishing a suitable basis between the chemistry of the 

compounds and biological/ toxicological action or physicochemical property helps in understanding 

the mechanism of action involved. Accordingly, by combining the experimental results and 

observation from the model, one can explicitly explain each step of the process of behavioral 

manifestation of chemicals. Such knowledge is useful in designing and developing potent analogs. 

The methodological workflow of QSAR modeling studies with reference to the OECD-recommended 

principles has been schematically presented in Figure 1.7. 

1.6.7. Quantitative Structure Activity-Activity Relationship (QSAAR) modeling 

Quantitative structure activity-activity relationship (QSAAR) models are mathematical expressions 

correlating two biological endpoints, with the aim to extrapolate any one explicit activity endpoint 

when the experimental data is not available. This advanced technique can overcome the additional 

cost of manifold experimental procedures. One endpoint acts as a predictor variable and offers to 

predict the other endpoint (De & Roy, 2021; Gajewicz-Skretna et al., 2021). QSAAR is also 

applicable when same endpoint is present for different species leading to an interspecies model. Here, 

the QSAAR or (quantitative activity–activity relationship) QAAR models predict an endpoint (which 

is a dependent variable) for a specific species employing the same endpoint (response in the form of 

activity, property, or toxicity) for another species along with selected structural and physicochemical 

features as a predictor or explanatory or independent variables (descriptors) (Kar et al., 2016; De et 

al., 2018). Thus, extrapolating data from one endpoint to another helps filling the data gaps without 

wasting time, money, and animal study maintaining the 3R’s approach intended to a replacement, 

reduction, and refinement of animals. 
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Table 1.9. Validation metrics for regression modeling (Roy & Mitra, 2011). 

Parameters Equation Description 

Determination coefficient 

(𝑅2) 
𝑅2 = 1 −

∑(𝑌𝑜𝑏𝑠 − 𝑌𝑐𝑎𝑙𝑐)2

∑(𝑌𝑜𝑏𝑠 −  𝑌𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)

2 
Metric to check the goodness-of-fit of a regression model. It measures the variation of 

observed data with the predicted ones. The maximum possible value for 𝑅2 is 1, which 

defines a perfect correlation. 𝑌𝑜𝑏𝑠  denotes the observed response values for the training 

set, and 𝑌𝑐𝑎𝑙𝑐  denotes the calculated response values for the training set of compounds. 

𝑌𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  is the mean observed response of the training set compounds. 

Explained variance or 

adjusted 𝑅2 (𝑅𝑎𝑑𝑗
2 ) 

𝑅𝑎𝑑𝑗
2 =

{(𝑛 − 1) 𝑋 𝑅2} − 𝑝

𝑛 − 𝑝 − 1
 

Modified version of the determination coefficient. The 𝑅𝑎𝑑𝑗
2  parameter incorporates the 

information of the number of samples and the independent variables used in the model. 

𝑛 is the number of training set compounds and 𝑝 is the number of predictor variables. 

Leave-one-out cross-

validation (𝑄𝐿𝑂𝑂
2 ) 

𝑄𝐿𝑂𝑂
2

= 1 −
∑(𝑌𝑜𝑏𝑠(𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔) − 𝑌𝑝𝑟𝑒𝑑(𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔))

2

∑(𝑌𝑜𝑏𝑠(𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔) − 𝑌𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)

2  

Cross-validated 𝑅 2 (𝑄2) is checked for internal validation. 𝑌𝑜𝑏𝑠(𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔) is the 

observed response, and 𝑌𝑝𝑟𝑒𝑑(𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔) is the predicted response of the training set 

molecules based on the leave-one-out (LOO) technique 

Predictive 𝑅2 or 𝑅𝑝𝑟𝑒𝑑
2  or 

𝑄𝑒𝑥𝑡 (𝐹1)
2  

𝑄𝑒𝑥𝑡(𝐹1)
2 = 1 −

∑(𝑌𝑜𝑏𝑠(𝑡𝑒𝑠𝑡) − 𝑌𝑝𝑟𝑒𝑑(𝑡𝑒𝑠𝑡))2

∑(𝑌𝑜𝑏𝑠(𝑡𝑒𝑠𝑡) − 𝑌𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)2

 
This metric employed for judging external predictivity. It is a measure of correlation 

between the observed and predicted data of test set. 𝑌𝑜𝑏𝑠(𝑡𝑒𝑠𝑡) is the observed response, 

and 𝑌𝑝𝑟𝑒𝑑(𝑡𝑒𝑠𝑡) is the predicted response of the test set molecules.  𝑌𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ denotes the 

mean observed response of the training set. 

𝑄𝑒𝑥𝑡 (𝐹2)
2  

𝑄𝑒𝑥𝑡(𝐹2)
2 = 1 −

∑(𝑌𝑜𝑏𝑠(𝑡𝑒𝑠𝑡) − 𝑌𝑝𝑟𝑒𝑑(𝑡𝑒𝑠𝑡))2

∑(𝑌𝑜𝑏𝑠(𝑡𝑒𝑠𝑡) − 𝑌𝑡𝑒𝑠𝑡
̅̅ ̅̅ ̅̅ )2

 
It helps in the judgment of predictivity of a model using the test set (𝑌𝑡𝑒𝑠𝑡

̅̅ ̅̅ ̅). 

𝑄𝑒𝑥𝑡 (𝐹3)
2  𝑄𝑒𝑥𝑡 (𝐹3)

2

= 1 −
[∑(𝑌𝑜𝑏𝑠(𝑡𝑒𝑠𝑡) − 𝑌𝑝𝑟𝑒𝑑(𝑡𝑒𝑠𝑡))

2
] /𝑛𝑡𝑒𝑠𝑡

[∑(𝑌𝑜𝑏𝑠(𝑡𝑟𝑎𝑖𝑛) − 𝑌𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)

2
] /𝑛𝑡𝑟𝑎𝑖𝑛

 

𝑄𝑒𝑥𝑡 (𝐹3)
2  is measured to determine external predictivity employing both training and 

test set features. 𝑌𝑜𝑏𝑠(𝑡𝑒𝑠𝑡) is the observed response, and 𝑌𝑝𝑟𝑒𝑑(𝑡𝑒𝑠𝑡) is the predicted 

response of the test set molecules. 𝑌𝑜𝑏𝑠(𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔) is the observed response and 𝑌𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 

denotes the mean observed response of the training set molecules. The threshold for 

𝑄𝑒𝑥𝑡 (𝐹3)
2  is 0.5. 
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Concordance correlation 

coefficient (CCC) 

𝐶𝐶𝐶 =  𝑝𝑐

=
2 ∑ (𝑥𝑖 − �̅�)(𝑦𝑖 − �̅�)𝑛

𝑖=1

∑ (𝑥𝑖 − �̅�)2𝑛
𝑖=1 + ∑ (𝑦𝑖 − �̅�)2𝑛

𝑖=1 + 𝑛(�̅� − �̅�)
 

The concordance correlation coefficient (CCC) measures both precision and accuracy 

detecting the distance of the observations from the fitting line and the degree of 

deviation of the regression line from that passing through the origin, respectively. ‘n’ 

denotes the number of compounds, and 𝑥𝑖 and 𝑦𝑖  signify the mean of observed and 

predicted values, respectively. 

Root mean square error in 

predictions (𝑅𝑀𝑆𝐸𝑝) 𝑅𝑀𝑆𝐸𝑝 = √
∑(𝑌𝑜𝑏𝑠(𝑡𝑒𝑠𝑡) − 𝑌𝑝𝑟𝑒𝑑(𝑡𝑒𝑠𝑡))2

𝑛𝑡𝑒𝑠𝑡

 

It gives a measure of model external validation. A lower value of this parameter is 

desirable for good external predictivity. 

𝑟𝑚 
2 metrics 

𝑟𝑚
2̅̅ ̅ =

𝑟𝑚
2 + 𝑟′𝑚

2

2
   𝑎𝑛𝑑 𝛥𝑟𝑚

2 = |𝑟𝑚
2 − 𝑟′

𝑚
2

| 

where 𝑟𝑚
2 = 𝑟2𝑋(1 − √𝑟2 − 𝑟0

2) 

𝑟′𝑚
2 = 𝑟2𝑋(1 − √𝑟2 − 𝑟′

0
2) 

r2 is the squared correlation coefficient value between observed and predicted response 

values, and r0
2 and r′02 are the respective squared correlation coefficients when the 

regression line is passed through the origin by interchanging the axes. For the 

acceptable prediction, the value of all 𝛥𝑟𝑚
2  metrics should preferably be lower than 0.2 

provided that the value of 𝑟𝑚
2  ̅̅ ̅̅ is more than 0.5. 

Predicted residual sum of 

squares (𝑃𝑅𝐸𝑆𝑆) 
𝑃𝑅𝐸𝑆𝑆 =  ∑(𝑌𝑜𝑏𝑠 − 𝑌𝑝𝑟𝑒𝑑)

2
 Sum of squared differences between experimental and predicted data. 𝑌𝑜𝑏𝑠 and 

𝑌𝑝𝑟𝑒𝑑  correspond to the observed and LOO predicted values. 

Standard deviation of error of 

prediction (𝑆𝐷𝐸𝑃) 𝑆𝐷𝐸𝑃 = √
𝑃𝑅𝐸𝑆𝑆

𝑛
 

The value of standard deviation of error of prediction (𝑆𝐷𝐸𝑃) is calculated from 

𝑃𝑅𝐸𝑆𝑆. N refers to the number of observations. 

Mean absolute error (𝑀𝐴𝐸) 
𝑀𝐴𝐸 =  

1

𝑛
𝑋∑|𝑌𝑜𝑏𝑠 − 𝑌𝑝𝑟𝑒𝑑| 

This is also known as average absolute error (AAE) and is considered a better index of 

errors in the context of predictive modeling studies.  
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Table 1.10. Validation metrics for classification modeling (De et al., 2022).  

Sl 

No. 

Classification 

metric 
Equation 

1 Sensitivity 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

2 Specificity 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

3 Precision  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

4 Accuracy 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝑇𝑁 + 𝐹𝑃
 

5 F-measure  
𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒(%) =  

2

1
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

+
1

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

 

6 G-means 𝐺 − 𝑚𝑒𝑎𝑛𝑠 =  √𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 𝑋 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 

7 Cohen’s Kappa (κ) 

𝑃𝑟(𝑎) =
(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁)
 

 

𝑃𝑟(𝑒) =
{(𝑇𝑃 + 𝐹𝑃) 𝑋 (𝑇𝑃 + 𝐹𝑁)} + {(𝑇𝑁 + 𝐹𝑃) 𝑋 (𝑇𝑁 + 𝐹𝑁)}

(𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 + 𝑇𝑁)2
 

 

𝐶𝑜ℎ𝑒𝑛′𝑠 𝐾 =  
𝑃𝑟(𝑎) − 𝑃𝑟(𝑒)

1 − 𝑃𝑟(𝑒)
 

8 
Mathews correlation 

coefficient (MCC) 
𝑀𝐶𝐶 =

(𝑇𝑃 𝑋 𝑇𝑁) − (𝐹𝑃 𝑋 𝐹𝑁)

√(𝑇𝑃 + 𝐹𝑃) 𝑋 (𝑇𝑃 + 𝐹𝑁) 𝑋 (𝑇𝑁 + 𝐹𝑃) 𝑋 (𝑇𝑁 + 𝐹𝑁)
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1.7. Non-QSAR in silico techniques 

1.7.1. Molecular Docking 

Molecular docking is a “structure-based drug design” (SBDD) computational method used for the 

investigation of the behavior of small molecules at the binding site of the target protein and predict the 

ligand-receptor complex structures (Meng et al., 2011). Docking plays an important role in the 

prediction of a stable protein-ligand complex orientation and the ligand-receptor interaction details. 

This helps in the proper investigation and interpretation of the vital mechanism of the biologically 

active compounds. Molecular docking is broadly classified into three sub-categories namely, (i) 

protein-small molecule docking, (ii) protein-protein docking, and (iii) protein-nucleic acid docking. 

The docking is enacted out using two steps: 1) prediction of a stable conformation and orientation of 

ligand, 2) evaluation of binding affinity and binding orientation of the ligand at the active binding site 

(Dar & Mir, 2017). Molecular docking is carried out in basic four steps 1) Receptor/Target selection 

and its preparation, 2) Small molecule/Ligand Preparation, 3) Molecular docking and 4) Docking 

analysis. Basic tools and online servers available for molecular docking are AutoDock Vina 

(http://vina.scripps.edu/), Schrodinger software (https://www.schrodinger.com/platform), Molegro 

virtual docker software 6.0 (MVD) (https://molegrovirtualdocker.weebly.com/), Biovia Discovery 

Studio (https://www.3dsbiovia.com/), “Achilles” Blind Docking Server (https://bio-

hpc.ucam.edu/achilles/) and FlexX (https://www.biosolveit.de/FlexX/). Molecular docking finds a 

vast application in the drug discovery process such as in lead optimization, hit identification, drug-

DNA interaction studies, chemical mechanism studies, structure-activity studies, combinatorial library 

design and assistance in X-ray crystallography in substrate binding (Agarwal & Mehrotra, 2016; 

Meng et al., 2011).  

 

1.7.2. Virtual Screening (VS) 

The discovery of innovative leads with potential interaction with specific targets is of central 

importance to early-stage drug discovery, conventionally achieved by wet-lab high-throughput 

screening (HTS). However, the high cost and low hit rate associated with HTS have stimulated the 

development of computational alternatives and the broad application of cheaper and faster screening 

in silico (Clark, 2008; Ripphausen et al., 2010). To meet the demands of the economically driven 

pressure of industry computational chemistry (CADD, molecular docking, etc) combined with virtual 

screening have come up as the newest and fastest method in order to develop new chemical entities. 

Structure-based approaches (QSAR, molecular docking) have a mounting number of success rates and 

are arguably the most widely applied one in practice (Clark, 2008). 

 

1.7.3. Read-Across 

In the European Union (EU), the European Chemicals Agency (ECHA) has defined read-across (RA) 

for chemicals in general (Oomen et al., 2015) as a technique for predicting endpoint information for 

one substance (target substance) by using data for the same endpoint from another substance or other 

substances (source substances). The RA works on the principle based on structural similarity, i.e., 

following an assumption that similar structures should exhibit similar physicochemical, biological, 

and toxicological properties. RA acts like local QSAR models, wherein, chemically or biologically 

similar compounds are used for the weighted prediction of target test compounds (Chatterjee et al., 

2022a). The following four schemes have been proposed in read-across data gap filling: (i) one-to-

one, (ii) one-to-many, (iii) many-to-one, and (iv) many-to-many. 
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1.8. Application of QSARs for the design of PET and SPECT imaging agents 

Quantitative structure–activity relationships (QSAR) studies, as progressive tools in modeling and 

prediction of many physiochemical properties, allow cost savings by reducing the laboratory 

resources needed and the time required to investigate and design new compounds by desired 

properties (Roy et al., 2015b). QSAR techniques aim to develop consistent relationships between any 

property or activity and physicochemical properties for a series of compounds so that these ‘‘rules’’ 

can be used to evaluate new chemical entities (Roy et al., 2015a; Roy, 2015). Different QSAR/QSPR 

methodologies have been utilized to model the complex formation of different metal ions with organic 

ligands and to design PET and SPECT imaging agents. 

Relatively few attempts have been made to apply the QSAR/QSPR techniques in modeling and 

designing imaging agents with applications in cancer and neurodegenerative diseases. A few studies 

are briefly explained below: 

 Kovac et al. (Kovac et al., 2010) have reported 3D-QSAR studies for vesamicol and 

benzovesamicol derivatives as PET radioligands for the vesicular acetylcholine transporter which can 

be used for quantitative visualization of early degeneration of cholinergic neurons. Linear Genetic 

Function Approximation (GFA) model and a 3D QSAR model confirmed the spatial impact on 

affinity for VAChT via steric descriptors and the Van der Waals coefficient. 

 Hocke et al. (Hocke et al., 2008) have reported computer-assisted prediction of D3 

selectivities of new fluoroalkoxy-substituted receptor ligands employing 3D-QSAR analysis. 3D-

QSAR models were able to predict subtype selectivities of dopaminergic test compounds. Receptor 

binding experiments confirmed the computer-assisted molecular design revealing subnanomolar D3 

affinities and excellent selectivity profiles. 

 Long and Liu (Long & Liu, 2010) have reported QSAR models for predicting the radi-

osensitization effectiveness of nitroimidazole compounds by combining heuristic method (HM) and 

projection pursuit regression (PPR), for descriptor selection and correlation modeling. 

 Yang et al. (Yang et al., 2015) have reported 3D-QSAR studies for structurally identical 18F- 

and 125I-labeled benzyloxybenzene derivatives which could be used for PET/SPECT Imaging of β-

Amyloid Plaques. Molecular docking and 3D-QSAR models predicted excellent binding to Aβ fibers. 

 Salahinejad and Mirshojaei (Salahinejad & Mirshojaei, 2016) have established molecular 

modeling methods for predicting the liver and kidney uptakes of Tc-99m labeled quinolone 

antibiotics. Three-dimensional quantitative-activity relationships (3D-QSAR) models were developed 

using comparative molecular field analysis and grid-independent descriptors procedures. 

 Salihinejad (Salahinejad, 2015) also reported 3D and 2D QSPR to model the complexation 

formation of bifunctional coupling agents with 64Cu(II) and 67/68Ga(III) radiometal ions. The 

information obtained could be very useful to design the most efficient ligands and find new matching 

chelators to radiometals for radiopharmaceutical applications. 

 Ambure and Roy (Ambure & Roy, 2015) used a congeneric series of 44 imaging agents, 

including 17 PET and 27 SPECT imaging agents to understand the structural features required for 

having essential binding affinity against Aβ plaques. 2D-quantitative structure-activity relationship 

(2D-QSAR) and group-based QSAR (G-QSAR) models have been developed using genetic function 

approximation (GFA) and validated using various statistical metrics. 

 

The present research aims at the development of predictive chemometric model for PET and SPECT 

imaging agents with application in cancer, neurodegenerative diseases like Alzheimer’s and 

Parkinson’s disease, vesicular acetylcholine transporters, and imaging of Dopamine receptors. The 

work also aspires to find multifunctional imaging agents, i.e., agents that bind to the receptors and 
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also provide therapeutic benefit. Furthermore, it was strived to obtain predictive models for 

nitroaromatics to study their radiosensitization properties. The structure and biological activity data 

was collected from the literature as provided in the Present Work section. The collected data was 

first subjected to data curation workflow as available in https://sites.google.com/site/dtclabdc/ . 

Molecular descriptors were calculated using various descriptor tools as discussed in the Methods and 

Materials section. For QSAR model development, attempt was made to develop more straight-

forward and interpretable models like multiple linear regression, partial least squares, genetic function 

approximation derived models etc. Rigorous procedures of model validation involving cross-

validation, Y-scrambling, external validation and tests for applicability domain etc. was performed 

using strategies available in https://dtclab.webs.com/software-tools in order to select the best 

predictive models. All model development and validation were done based on the OECD 

recommended strategies. A proper mechanistic interpretation and conclusion is provided in the 

Results and Discussions section. 
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Chapter 2: Present Work 

Molecular imaging technologies involving radionuclides such as positron emission tomography (PET) 

and single photon emission computed tomography (SPECT) have a significant impact on many 

aspects of healthcare (Pimlott & Sutherland, 2010). For example, these techniques are used for 

detecting diseases in early stages (screening), identifying extent of disease, selecting disease-and 

patient-specific treatment (personalized medicine), applying a directed or targeted therapy, and 

measuring molecular-specific effects of treatment (Pysz et al., 2010). These imaging agents have been 

used for diagnostic imaging in different disease conditions including cancer and neurodegenerative 

diseases. The main advantage of in vivo molecular imaging is its ability to characterize diseased 

tissues without invasive biopsies or surgical procedures, and with this information in hand, a more 

personalized treatment planning regimen can be applied. Molecular imaging has also been used in 

various aspects of drug development such as understanding drug action and establishing dosage 

regimens and treatment strategies. Molecular imaging has the potential to improve therapeutic 

monitoring by, for example, measuring the direct effect of a drug at an earlier time point before overt 

morphological-anatomical changes become visible on imaging (Pysz et al., 2010). In basic terms, 

molecular imaging effectively allows the non-invasive visualisation, characterisation and 

measurement of biological processes at the molecular, cellular, whole organ or body level using 

specific imaging probes. These molecular imaging probes (sometimes called tracers due to the 

subpharmacological amounts administered) provide an analytical signal which is detected by a 

particular method resulting in either a two- or three-dimensional image (Pimlott & Sutherland, 2010). 

Of the non-invasive imaging technologies available, PET and SPECT are the most sensitive 

techniques for imaging function in vivo.  

Imaging agents (Ametamey et al., 2008; Meikle et al., 2005) used for PET are radiolabelled with 

radionuclides that decay by the emission of a positively charged particle called the positron. A 

significant number of PET nuclides exist for the incorporation into biomolecules. The isotopes 

generally selected for PET imaging have half-lives comparable to the half-life of the process being 

imaged. While most of these in theory can be used for PET imaging, it is mainly 11C or 18F labelled 

molecular probes which are employed. The main advantage of PET imaging over SPECT is that the 

radiolabelled imaging agent is essentially indistinguishable from its nonradioactive counterpart. 

Carbon is the main constituent of naturally occurring compounds and thus, replacement of carbon-12 

with carbon-11 produces only a negligible isotope effect. Fluorine is not normally found in 

biomolecules, but the substitution of a hydrogen atom or a hydroxyl group by a fluorine atom is a 

commonly applied bioisosteric replacement. Fluorine and hydrogen are similar in size (van der 

Waal’s radii of hydrogen and fluorine are 1.20 and 1.35 Å, respectively) and thus, this replacement 

induces only a slight steric perturbation. Fluorine is considerably more electronegative than hydrogen 

but this change in the electronic properties of the molecule can quite often be advantageous producing 

molecular probes with improved potency. SPECT imaging (Ametamey et al., 2008; Meikle et al., 

2005) uses radionuclides that directly emit γ-rays, such as iodine-123 (123I) and technetium-99m 

(99mTc), and are generally of a lower energy than those used for PET. PET systems are generally more 

sensitive than SPECT systems which in turn translates into a higher resolution for PET compared with 

SPECT. However, the use of longer-lived radionuclide and the relatively lower costs of gamma 

cameras make SPECT imaging much more widely available for clinical use than PET scanners. 

Generally, SPECT isotopes have a considerably longer half-life than PET isotopes which makes 

SPECT tracers more available for imaging and longer radiosynthesis times make them more practical. 

In contrast, the shorter half-life of the PET isotopes limits the availability of PET imaging, requiring 
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an on-site cyclotron, and makes radiolabelling protocols more challenging. The longer half-life of 

SPECT radionuclides also has the advantage of enabling SPECT imaging studies to be conducted 

over longer time periods, whereas imaging studies using the shorter half-life PET radionuclides may 

require more complicated modelling. New imaging agent development for complex diseases like 

Alzheimer’s disease (AD), Parkinson’s disease (PD), cancer etc. is becoming more and more 

painstaking, expensive time-consuming. In such cases, in silico or computational technique serves as 

an efficient tool for identifying/screening and optimizing the lead molecules to overcome the tedious 

and expensive procedure of synthesis and analysis of at least thousands of possible bioactive 

molecules. In recent years, computer-aided drug design (CADD) has been extensively explored for 

facilitating lead discovery and optimization with advantages in terms of both high speed and low cost 

that finally increases the probability of success in the drug development process. A variety of in silico 

methods have evolved in CADD that have two major application areas, i.e., ligand-based drug design 

and structure-based drug design. Structure-based drug design techniques like molecular docking rely 

on three-dimensional (3D) knowledge of the target protein (enzyme or receptor) structure and its 

active/binding site to investigate various interactions as well as binding energy. On the other hand, 

ligand-based drug design techniques like QSAR and ligand-based pharmacophore modeling rely on 

knowledge of ligands that interact with the target of interest and are usually very helpful approaches 

when the structure of the target is not known. Structure-based and ligand-based drug design 

techniques together become a powerful tool to study potential ligands for one or more targets. 

In the present thesis work, several in silico techniques were employed to study potential PET and 

SPECT imaging agents targeted against various neurodegenerative diseases and cancer. The main 

purpose of the dissertation was to utilize various in silico tools for identifying and optimizing the 

potential PET or SPECT candidates against several receptors involved in neurodegenerative diseases 

or cancer pathogenesis. We have also developed a number of predictive QSAR models studying 

radiosensitization effectiveness of various nitroaromatic compounds to understand their role in 

hypoxic cancer cells. Although we have employed several in silico techniques such as QSAR, 

molecular docking, virtual screening etc., but the major part of the work deals with the development 

of predictive and statistically robust QSAR models. Quantitative structure–property/activity 

relationships (QSPR/QSAR) studies, as progressive tools in modeling and prediction of many 

physiochemical properties, allow cost savings by reducing the laboratory resources needed and the 

time required to investigate and design new compounds by desired properties (Roy et al., 2015b). The 

aim of QSAR techniques is to develop consistent relationships between any property or activity and 

physicochemical properties for a series of compounds so that these ‘‘rules’’ can be used to evaluate 

new chemical entities (Roy et al., 2015a; K Roy, 2015). The concept of QSAR has been applied to 

modeling imaging agents and metallic radiopharmaceuticals only to a limited extent. There is enough 

scope of further application of QSAR theories in this area for refinement of the existing models 

leading to development of new models with enhanced robustness and predictivity which can be used 

to design new imaging agents and radiopharmaceuticals having potential applications in imaging 

analysis for diseases like cancer and neurodegeneration.   

The present work is further categorised into two different sections, where the first section (Section I) 

involves development of predictive chemometric models for PET and SPECT imaging agents with 

application in neurodegenerative diseases (like AD and PD), vesicular acetylcholine transporters and 

imaging of dopamine receptors. This part also includes development of predictive models for 

multifunctional imaging agents. The second section (Section II) involves development of predictive 

models for radiosensitization effectiveness of various nitroaromatic compounds to understand their 

role in hypoxia.  
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2.1. Datasets employed for the development of different QSAR models 

 

For performing the requisite in silico studies, several datasets were collected from various reliable 

sources as mentioned in Table 2.1. 

 

Table 2.1. Datasets employed in the present work. 

 

Datasets Target/Endpoint 
No. of 

compounds 

Class of 

compounds 
References 

I-A 

Binding affinity towards 

amyloid beta in 

Alzheimer’s disease 

38 
PET imaging 

agents 

(Cohen et al., 2012; Herholz & 

Ebmeier, 2011; H. F. Kung et al., 

2010; Mathis et al., 2003; Ono et al., 

2006; Schilling et al., 2016; Zhu et 

al., 2014) 

I-B 73 
SPECT 

imaging agents 

(Alagille et al., 2011; Fuchigami et 

al., 2015; M. P. Kung et al., 2002; 

Mathis et al., 2003; Maya et al., 

2009, 2016; Ono et al., 2013; Pan et 

al., 2013; Qu et al., 2007; Yang et 

al., 2013) 

I-C 

Binding affinity towards 

tau protein in Alzheimer’s 

disease 

31 

Both PET and 

SPECT 

imaging agents 

(Declercq et al., 2016; Hashimoto et 

al., 2015; Matsumura et al., 2011; 

Okamura et al., 2005, 2013; Ono et 

al., 2011; Pan et al., 2013; Tago et 

al., 2014, 2016) 

II 

Binding affinity and 

selectivity data towards 

A2A adenosine receptors 

for diagnosis of 

Parkinson’s disease 

35 

Xanthine 

ligand-based 

PET tracers 

(Tamiji et al., 2018) 

III 

Binding affinity towards 

Dopamine (D2) receptor 

for diagnosis of 

Parkinson’s disease 

34 PET tracers 

(Baldessarini et al., 1991; 

Chumpradit et al., 1993; Gao, Ram, 

et al., 1990; Murphy et al., 1990; 

Sipos et al., 2008; Søndergaard et 

al., 2005; Tóth et al., 2006; Vasdev 

et al., 2006) 

IV 

Binding affinity towards 

vesicular acetylcholine 

transporter (VAChT) 

19 
PET imaging 

agents 

(Kovac et al. 2010; Tu et al. 2015, 

2009) 

V 

Radiosensitization 

effectiveness expressed as 

C1.6 (pC1.6) 

84 Nitroimidazoles (Long & Liu, 2010) 

VI 

Sensitizer Enhancement 

Ratio (SER) and Survival 

Ratio (SR) 

21 
Nitroimidazole 

sulfonamides 
(Bonnet et al., 2018) 

VII-A 
Radiosensitization 

effectiveness (pC1.6) 

18 Nitrofurans (Naylor et al., 1990) 

VII-B 11 Nitrothiophenes (Threadgill et al., 1991) 

VII-C 84 Nitroimidazoles (Long & Liu, 2010) 
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2.1.1. Dataset I A-C (Study 1) 

The experimental binding affinity (Ki) data for 38 PET (Cohen et al., 2012; Herholz & Ebmeier, 

2011; H. F. Kung et al., 2010; Mathis et al., 2003; Ono et al., 2006; Schilling et al., 2016; Zhu et al., 

2014) and 73 SPECT imaging agents (Alagille et al., 2011; Fuchigami et al., 2015; M. P. Kung et al., 

2002; Mathis et al., 2003; Maya et al., 2009, 2016; Ono et al., 2013; Pan et al., 2013; Qu et al., 2007; 

Yang et al., 2013) against beta amyloid (Aβ) plaques and 31 (25 PET compounds and 6 SPECT 

compounds) imaging agents (Declercq et al., 2016; Hashimoto et al., 2015; Matsumura et al., 2011; 

Okamura et al., 2005, 2013; Ono et al., 2011; Pan et al., 2013; Tago et al., 2014, 2016) against tau 

protein were obtained from different literatures. Due to limited number of data available for tau 

protein, the PET and SPECT data were combined to form a single dataset. In the present study, the 

binding affinity values for both the PET and SPECT dataset compounds expressed as Ki (nM) were 

converted to negative logarithm of Ki (pKi) values. Following the strict Organization for Economic 

Co-operation and Development (OECD) guidelines, significant descriptors were selected from the 

large initial pool of descriptors using multilayered variable selection strategy using the double cross 

validation (DCV) method followed by the best subset selection (BSS) method prior to the 

development of the final PLS models. The developed models showed significant statistical 

performance and reliability. Molecular docking studies have been performed to understand the 

molecular interactions between the ligand and receptor, and the results are then correlated with the 

structural features obtained from the QSAR models. Furthermore, we have also designed some 

imaging agents based on the information provided by the models developed and some of them are 

predicted to be similar to or more active than the most active imaging agents present in the original 

dataset 

2.1.2. Dataset II (Study 2) 

The experimental binding affinity and selectivity data of 35 xanthine ligand-based PET tracers were 

taken from a previously published literature (Tamiji et al., 2018) and applied for QSAR modeling to 

determine the essential structural features needed for binding affinity and explore the structural 

requirements necessary to be present in the antagonists for selectivity towards A2A adenosine 

receptors. The experimental values of selectivity and binding affinity (Ki) ranged from 0.1–20 nM 

and 7.84–16,500 nM respectively. The experimental values were converted into negative logarithm 

scale during modeling and were used as independent values. No compounds with binding affinity data 

were removed during modeling but some compounds (mentioned in Materials and Methods Section) 

with no experimental selectivity values were eliminated during modeling. Here, the binding affinity 

and selectivity were separately used as endpoints or independent variables in modeling. The division 

of the dataset into training and test sets was done using a random method, while the feature selection 

for the binding affinity was done using Genetic Algorithm (GA). The best model with five descriptors 

was obtained using the spline option in the GA run. QSAR models with four descriptors were also 

developed for A2AR selectivity, where significant descriptors were selected from the large pool of 

descriptors using stepwise regression method followed by Best Subset Selection (BSS) method. 

Furthermore, to improve the quality of the external predictions, we used the “Intelligent Consensus 

Predictor” tool (http://teqip.jdvu.ac.in/QSAR_Tools/DTCLab/). Both the models showed robustness 

in terms of statistical parameters. Molecular docking studies have been carried out to understand the 

molecular interactions between the ligand and receptor, and the results are then correlated with the 

structural features obtained from the QSAR models. Furthermore, the information derived from the 

newly found descriptors gives an insight for the development of new candidate PET tracers for the use 

in PD. 
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2.1.3. Dataset III (Study 3) 

Dopamine (D2) receptor binding affinity (Ki) data of 34 PET imaging agents was taken from different 

literatures as mentioned in Table 2.1. The experimental binding affinity for all the compounds was 

measured using the same assay protocol, i.e., rat striatal homogenate (RSH) assay method. This data 

was applied in the development of a 2D-QSAR model to determine the essential structural features 

required for good binding to the D2 receptor. The binding affinity (Ki) values for the PET imaging 

agents were converted to their negative logarithm (pKi) form and then used for modeling. The present 

study explores quantitative structure—activity relationship analysis of 34 PET imaging agents 

targeted toward dopamine D2 receptor. The dataset division into training and test sets was done using 

Euclidean distance division method, while the feature selection was done by double cross-validation-

genetic algorithm method. Finally, a five-descriptor partial least squares regression model was derived 

after carrying out the best subset selection applied on the significant descriptors. The developed model 

showed robustness in terms of statistical parameters. Finally, the structural information derived from 

the model descriptors gives an insight for the development of new candidate D2-PET imaging for the 

use in PD. 

2.1.4. Dataset IV (Study 4) 

In this study, 2D quantitative structure-activity relationship (2D-QSAR) models for 19 positron 

emission tomography (PET) imaging agents targeted against presynaptic vesicular acetylcholine 

transporter (VAChT) were developed. VAChT assists in the transport of ACh into the presynaptic 

storage vesicles and it becomes one of main targets for the diagnosis of various neurodegenerative 

diseases. For our present work, the binding affinity (Ki) values of 19 PET imaging agents acting 

against vesicular acetyl choline transporter was procured from different previously published 

literature (Kovac et al., 2010; Tu et al., 2009, 2015). The aim was to understand the important 

structural features of the PET imaging agents required for their binding with VAChT. This was done 

by feature selection using Genetic Algorithm followed by the Best Subset Selection method and 

developing a Partial Least Squares- based 2D QSAR model using the best feature combination. The 

developed QSAR model showed significant statistical performance and reliability. Using the features 

selected in the 2D-QSAR analysis, we have also performed similarity-based chemical read-across 

predictions and obtained encouraging external validation statistics. Further, molecular docking 

analysis was also performed to understand the molecular interactions occurring between the PET 

imaging agents and the VAChT receptor. The molecular docking results were correlated with the 

QSAR features for better understanding of the molecular interactions. This research serves to fulfil the 

experimental data gap, highlighting the applicability of computational methods in the PET imaging 

agents’ binding affinity prediction. 

 

2.1.5. Dataset V (Study 5) 

Nitroimidazoles and related analogues are efficient radiation sensitivity enhancers, and they 

particularly work on hypoxic tumor cells. A data of 86 nitroimidazoles possessing radiosensitizing 

properties are used for two-dimensional QSAR (2D-QSAR) study (Long & Liu, 2010). 

Radiosensitization capacities of the compounds can be understood by radiosensitization effectiveness, 

expressed as C1.6, which can be represented as the corresponding concentration of a given compound 

when its sensitization enhancement ratio (SER) accomplishes 1.6. A higher value of C1.6 indicates 

lower bioactivity of radiosensitization effectiveness. For analysis purpose, the source literature had 

converted the endpoint C1.6 to its negative logarithmic scale (pC1.6, where pC1.6= -log(C1.6)). Two 

compounds (one radical and one salt) were removed and the final dataset of 84 compounds is used for 

model development. In the current study, we have developed two partial least squares (PLS) 

regression-based two-dimensional quantitative structure-activity relationship (2D-QSAR) models 

using the novel class of 84 nitroimidazole compounds to understand their radiosensitization 
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effectiveness (pC1.6). Feature selection was done by genetic algorithm along with stepwise 

regression, while model validation was performed using various stringent validation criteria following 

the strict rules of OECD guidelines of QSAR validation. The variables included in the models were 

obtained from Dragon (version 7.0) and simplex representation of molecular structures (SiRMS) 

(version 4.1.2.270) software. The developed models were robust, externally predictive, and useful 

tools to predict the radiosensitization effectiveness of nitroimidazole compounds. True external 

prediction was carried out using a group of six nitroimidazole derivatives and the model reliability 

was checked using the Prediction Reliability Indicator tool (http://dtclab.webs.com/software-tools). 

Furthermore, the developed models will give an insight for development of new radiosensitizers with 

enhanced radiation sensitivity. 

 

2.1.6. Dataset VI (Study 6) 

In vitro radiosensitization data of selected compounds involving sensitizer enhancement ratio (drug 

SER) and survival ratio (drug SR) was obtained from a previously published research work (Bonnet et 

al., 2018). A dataset of 21 compounds was selected for 2D-QSAR modeling. The present study 

explores the features essential to show radiosensitization properties by nitroimidazole sulphonamide 

derivatives using QSAR and quantitative structure activity-activity relationship (QSAAR) modelling 

(Lessigiarska et al., 2006). Two dimensional (2D) descriptors obtained from Dragon and SiRMS 

software were utilised during the development of well validated models. A small dataset of 

nitroimidazole sulfonamides is used for modelling in the current study where splitting of dataset into 

training and test sets would cause loss of chemical information leading to unreliable models. The 

models were developed using the small dataset modeler software 

(http://teqip.jdvu.ac.in/QSAR_Tools/DTCLab/), and model validation was performed using various 

stringent validation criteria. The developed models are robust, predictive, and should be useful tools 

to predict the radiosensitization of nitroimidazole sulfonamides. Furthermore, we have used the 

“prediction reliability indicator” tool to check the predictive ability of the developed models using 14 

external nitroimidazole sulfonamide derivatives. 

2.1.7. Dataset VII A-C (Study 7) 

The radiosensitization effectiveness (pC1.6) data for three nitroaromatics datasets (nitrofurans, 

nitrothiophenes and nitroimidazoles) were obtained from the previously published literature (Long & 

Liu, 2010; Naylor et al., 1990; Threadgill et al., 1991). The datasets comprised 18 nitrofuran 

analogues, 11 nitrothiophenes and 84 nitroimidazole derivatives in the composite set. ‘C1.6’ is a term 

used to explain the radiosensitization capacities; this is the molar concentration of the compound 

required to give a sensitizer enhancement ratio (SER) of 1.6. Thus, lower value for C1.6 will give 

greater sensitizing efficiency. For an efficient analysis, the C1.6 values were converted into their 

negative logarithmic scale (pC1.6). The work comprises two parts: (i) local modeling using individual 

datasets; and (ii) global modeling by clubbing the three datasets. The two-dimensional descriptors 

were calculated using Dragon (version 7.0) software. The developed models were obtained using 

various feature selection techniques applied in “Small Dataset Modeling” and “Double Cross 

Validation” tools available from https://dtclab.webs.com/software-tools. Finally, the models were 

validated using stringent metrics following the Organisation for Economic Co-operation and 

Development (OECD) guidelines. The developed models are robust, predictive, and are useful tools to 

predict the radiosensitization of newly developed nitroaromatics. Furthermore, the global model was 

used to predict two external sets comprising 10 and 47 compounds, and the prediction ability was 

validated using the “Prediction Reliability Indicator” tool. 

http://teqip.jdvu.ac.in/QSAR_Tools/DTCLab/
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Chapter 3: Materials and Methods 

The present dissertation aims at implementing a transparent methodological framework for the 

development of predictive QSAR models for PET and SPECT imaging agents targeted against various 

neurodegenerative and oncological diseases. We have endeavoured to maintain explicitness for 

computation of the descriptors, thinning of the variable matrix, selection of potential features as well 

as judgment of robustness and predictivity of the models. In this section, we have described here the 

details of datasets comprising the structures along with their binding affinity or radiosensitivity data 

and methodologies employed to carry out the in silico studies namely, QSAR and virtual screening. 

The section has been divided in the following parts: 

 Details of datasets consisting chemical structures along with their activity or toxicity data. 

 General description of methods implemented for developing QSAR models. 

 Study wise specific description of methodologies utilized in each study. 

 

3.1. Study 1: Application of multilayered strategy for variable selection in QSAR modeling 

of PET and SPECT imaging agents as diagnostic agents for Alzheimer’s disease 

 

3.1.1. The dataset and structure curation 

The experimental binding affinity (Ki) data for 38 PET (Cohen et al., 2012; Herholz & Ebmeier, 

2011; H. F. Kung et al., 2010; Mathis et al., 2003; Ono et al., 2006; Schilling et al., 2016; Zhu et al., 

2014) and 73 SPECT imaging agents (Alagille et al., 2011; Fuchigami et al., 2015; M. P. Kung et al., 

2002; Mathis et al., 2003; Maya et al., 2009, 2016; Ono et al., 2013; Pan et al., 2013; Qu et al., 2007; 

Yang et al., 2013) against beta amyloid (Aβ) plaques and 31 (25 PET compounds and 6 SPECT 

compounds) imaging agents (Declercq et al., 2016; Hashimoto et al., 2015; Matsumura et al., 2011; 

Okamura et al., 2005, 2013; Ono et al., 2011; Pan et al., 2013; Tago et al., 2014, 2016) against tau 

protein were obtained from different literatures. Due to limited number of data available for tau 

protein, the PET and SPECT data were combined to form a single dataset. In the present study, the 

binding affinity values for both the PET and SPECT dataset compounds expressed as Ki (nM) were 

converted to negative logarithm of Ki (pKi) values. All the structures for both the datasets were drawn 

in MarvinSketch software version 15.12.7.0 (https://www.chemaxon.com) with proper aromatization 

and hydrogen bond addition. The data set is composed of various classes of heterogeneous molecular 

structures as given in the Table 3.1 along with their pKi values. 

Table 3.1. PET and SPECT imaging datasets against amyloid beta and tau protein. 

PET imaging agents against Aβ Plaques 

Serial 

No. 

Compound 

ID 
SMILES Structure pKi 

1 A-P-1 c1cc(ccc1c1nc2c(s1)cc(cc2)O)NC 5.071 

2 A-P-2 c1(cc(c(cc1)NC)F)c1nc2c(s1)cc(cc2)O 5.155 

3 A-P-3 c1c(ccc(c1)/C=C/c1ccc(cc1)OCCOCCOCCF)NC 4.638 

4 A-P-4 c1(ccc(cc1)NC)/C=C/c1ccc(nc1)OCCOCCOCCF 4.593 

5 A-P-7 c1cccc2c1sc(n2)c1ccc(cc1)NC 3.959 

6 A-P-8 c1cc(cc2c1cc(o2)c1c(nc(cc1)NC)F)O 4.638 

7 A-P-21 c1c(ccc(c1)/C=C/c1ccc(cc1)OCCOCCF)NC 4.538 

8 A-P-22 c1c(ccc(c1)/C=C/c1ccc(cc1)OCCOCCOCCF)NC 4.174 

9 A-P-23 c1c(ccc(c1)/C=C/c1ccc(cc1)OCCOCCOCCOCCF)NC 4.357 

10 A-P-24 c1c(ccc(c1)/C=C/c1ccc(cc1)OCCOCCOCCOCCOCCF)NC 4.222 

https://www.chemaxon.com/
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11 A-P-25 c1c(ccc(c1)/C=C/c1ccc(cc1)OCCOCCOCCOCCOCCOCCF)NC 4.125 

12 A-P-26 c1c(ccc(c1)/C=C/c1ccc(cc1)OCCOCCOCCOCCOCCOCCOCCF)NC 4.086 

13 A-P-27 
c1c(ccc(c1)/C=C/c1ccc(cc1)OCCOCCOCCOCCOCCOCCOCCOCCF)

NC 
4.046 

14 A-P-28 
c1c(ccc(c1)/C=C/c1ccc(cc1)OCCOCCOCCOCCOCCOCCOCCOCCOC

CF)NC 
3.733 

15 A-P-29 
c1c(ccc(c1)/C=C/c1ccc(cc1)OCCOCCOCCOCCOCCOCCOCCOCCOC

COCCF)NC 
3.914 

16 A-P-30 
c1c(ccc(c1)/C=C/c1ccc(cc1)OCCOCCOCCOCCOCCOCCOCCOCCOC

COCCOCCOCCF)NC 
3.201 

17 A-P-31 c1c(ccc(c1)/C=C/c1ccc(cc1)O)NC 4.620 

18 A-P-43 c1c2c(ccc1)nc(s2)c1ccc(cc1)N 3.432 

19 A-P-44 c1c2c(ccc1)nc(s2)c1ccc(cc1)N(C)C 4.398 

20 A-P-45 c1c2c(ccc1C)nc(s2)c1ccc(cc1)N 4.022 

21 A-P-46 c1c2c(ccc1C)nc(s2)c1ccc(cc1)NC 4.000 

22 A-P-47 c1c2c(ccc1OC)nc(s2)c1ccc(cc1)N 4.155 

23 A-P-48 c1c2c(ccc1OC)nc(s2)c1ccc(cc1)NC 4.310 

24 A-P-49 c1c2c(ccc1OC)nc(s2)c1ccc(cc1)N(C)C 4.721 

25 A-P-50 c1c2c(ccc1O)nc(s2)c1ccc(cc1)N 3.337 

26 A-P-51 c1c2c(ccc1O)nc(s2)c1ccc(cc1)N(C)C 4.357 

27 A-P-52 c1c2c(ccc1C#N)nc(s2)c1ccc(cc1)N 3.194 

28 A-P-53 c1c2c(ccc1C#N)nc(s2)c1ccc(cc1)NC 4.066 

29 A-P-54 c1c2c(ccc1C#N)nc(s2)c1ccc(cc1)N(C)C 3.959 

30 A-P-55 c1c2c(ccc1Br)nc(s2)c1ccc(cc1)N 4.143 

31 A-P-56 c1c2c(ccc1Br)nc(s2)c1ccc(cc1)NC 4.770 

32 A-P-57 c1c2c(ccc1Br)nc(s2)c1ccc(cc1)N(C)C 4.538 

33 A-P-58 c1cc(cc2c1oc(c2)c1ccc(cc1)N)OC 4.638 

34 A-P-59 c1cc(cc2c1oc(c2)c1ccc(cc1)N)O 3.939 

35 A-P-60 c1cc(cc2c1oc(c2)c1ccc(cc1)NC)OC 4.886 

36 A-P-61 c1cc(cc2c1oc(c2)c1ccc(cc1)NC)O 5.155 

37 A-P-62 c1cc(cc2c1oc(c2)c1ccc(cc1)N(C)C)OC 3.921 

38 A-P-63 c1cc(cc2c1oc(c2)c1ccc(cc1)N(C)C)O 4.553 

SPECT imaging agents against Aβ Plaques 

Serial 

No. 

Compound 

ID 
SMILES Structure pKi 

1 A-S-2 
c1c(ccc(c1)N(C)C)/C=C/C(=O)/C=C/c1ccc(cc1)OCCC[N]12[Re]3(=O)(

SCC1)N(CC2)CCS3 
3.607 

2 A-S-3 
c1c(ccc(c1)N(C)C)/C=C/C(=O)/C=C/c1ccc(cc1)OCCCCC[N]12[Re]3(=

O)(SCC1)N(CC2)CCS3 
3.866 

3 A-S-4 
c1cc(ccc1N(C)C)/C=C/C(=O)/C=C/c1ccc(cc1)OCCC[N]12CCS[Re]31(

=O)N(C(=O)C2)CCS3 
2.918 

4 A-S-5 
c1cc(ccc1N(C)C)/C=C/C(=O)/C=C/c1ccc(cc1)OCCCCC[N]12CCS[Re]

31(=O)N(C(=O)C2)CCS3 
3.228 

5 A-S-6 c1(ccc2n(c1)cc(n2)c1ccc(nc1)N1CCN=N1)I 4.738 

6 A-S-7 c1(ccc(cc1)C#Cc1cnc(c(c1)Br)OCCOCCOCCF)N(C)C 3.951 

7 A-S-8 c1(ccc(cc1)C#Cc1cnc(c(c1)Br)OCCO)N(C)C 4.174 

8 A-S-9 c1(ccc(cc1)C#Cc1cnc(c(c1)Br)OCCOCCOCCF)NC 3.883 

9 A-S-10 c1(ccc(cc1)C#Cc1cnc(c(c1)Br)OCCO)NC 4.796 

10 A-S-11 c1c(ccc(c1)N(C)C)C#Cc1cnc(c(c1)I)OCCOCCOCCF 3.775 

11 A-S-12 c1(ccc(cc1)C#Cc1cnc(c(c1)I)OCCO)N(C)C 4.036 

12 A-S-13 c1(ccc(cc1)C#Cc1cnc(c(c1)I)OCCO)NC 3.903 
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13 A-S-14 c1c2c(ccc1I)oc(c2)c1cnc(cc1)N 3.987 

14 A-S-15 c1c2c(ccc1I)oc(c2)c1cnc(cc1)NC 4.532 

15 A-S-16 c1c2c(ccc1I)oc(c2)c1cnc(cc1)N(C)C 4.627 

16 A-S-17 c1c2c(cc(c1)I)c(=O)cc(o2)/C=C/c1ccc(cc1)OC 3.682 

17 A-S-18 c1c2c(cc(c1)I)c(=O)cc(o2)/C=C/c1cc(c(cc1)OC)OC 3.575 

18 A-S-19 c1c2c(cc(c1)I)c(=O)cc(o2)/C=C/c1ccc(cc1)O 3.456 

19 A-S-20 c1c2c(cc(c1)I)c(=O)cc(o2)/C=C/c1ccc(cc1)OCCO 2.656 

20 A-S-21 c1c2c(cc(c1)I)c(=O)cc(o2)/C=C/c1ccc(cc1)N 3.231 

21 A-S-22 c1c2c(cc(c1)I)c(=O)cc(o2)/C=C/c1ccc(cc1)NC 3.770 

22 A-S-33 c1c2c(cc(c1)I)C(=O)/C(=C/c1ccc(cc1)O)/O2 4.893 

23 A-S-34 c1c2c(cc(c1)I)C(=O)/C(=C/c1ccc(cc1)OCCO)/O2 4.979 

24 A-S-35 c1c2c(cc(c1)I)C(=O)/C(=C/c1ccc(cc1)OCCOCCO)/O2 4.474 

25 A-S-36 c1c2c(cc(c1)I)C(=O)/C(=C/c1ccc(cc1)OCCOCCOCCO)/O2 4.592 

26 A-S-37 c1c2c(cc(c1)OC)sc1n2cc(n1)c1ccc(cc1)N 3.526 

27 A-S-38 c1c2c(cc(c1)OC)sc1n2cc(n1)c1ccc(cc1)NC 4.215 

28 A-S-39 c1c2c(cc(c1)OC)sc1n2cc(n1)c1ccc(cc1)N(C)C 3.232 

29 A-S-40 c1c2c(cc(c1)F)sc1n2cc(n1)c1ccc(cc1)N 2.876 

30 A-S-41 c1c2c(cc(c1)F)sc1n2cc(n1)c1ccc(cc1)NC 3.419 

31 A-S-42 c1c2c(cc(c1)F)sc1n2cc(n1)c1ccc(cc1)N(C)C 3.368 

32 A-S-43 c1c2c(cc(c1)Br)sc1n2cc(n1)c1ccc(cc1)N 3.541 

33 A-S-44 c1c2c(cc(c1)Br)sc1n2cc(n1)c1ccc(cc1)NC 3.462 

34 A-S-45 c1c2c(cc(c1)Br)sc1n2cc(n1)c1ccc(cc1)N(C)C 3.363 

35 A-S-46 c1c2c(cc(c1)OC)sc1n2cc(n1)c1ccc(cc1)I 3.963 

36 A-S-47 c1c2c(cc(c1)F)sc1n2cc(n1)c1ccc(cc1)I 3.378 

37 A-S-48 c1c2c(cc(c1)Br)sc1n2cc(n1)c1ccc(cc1)I 3.676 

38 A-S-49 c1c2c(cc(c1)C)sc1n2cc(n1)c1ccc(cc1)I 3.752 

39 A-S-50 c1c2c(cc(c1)OC)sc1n2cc(n1)c1ccc(cc1)Br 4.027 

40 A-S-51 c1c2c(cc(c1)C)sc1n2cc(n1)c1ccc(cc1)Br 3.585 

41 A-S-52 
c1c(cc(c(c1)OC)C(=O)O)/C=C/c1ccc(c(c1)I)/C=C/c1cc(c(cc1)OC)C(=O

)O 
5.770 

42 A-S-53 c1c(cc(c(c1)O)C(=O)O)/C=C/c1ccc(c(c1)I)/C=C/c1cc(c(cc1)O)C(=O)O 6.000 

43 A-S-54 
c1c(cc(c(c1)O)C(=O)O)/C=C/c1ccc(c(c1)Br)/C=C/c1cc(c(cc1)O)C(=O)

O 
5.959 

44 A-S-55 c1c(ccc(c1)OC)/C=C/c1ccc(c(c1)Br)/C=C/c1ccc(cc1)OC 2.179 

45 A-S-56 c1c(ccc(c1)O)/C=C/c1ccc(c(c1)Br)/C=C/c1ccc(cc1)O 4.658 

46 A-S-57 c1c(ccc(c1)O)/C=C/c1ccc(c(c1)I)/C=C/c1ccc(cc1)O 4.699 

47 A-S-61 
c1c2c(ccc1OCCC[N]13CCS[Re]41(=O)N(C(=O)C3)CCS4)nc(s2)c1ccc(

cc1)N(C)C 
4.000 

48 A-S-62 c1c2c(ccc1N1CCN3[Re]41(=O)[N@](CC3)(CCS4)C)nc(s2)c1ccccc1 2.255 

49 A-S-63 c1c2c(ccc1N1CCN3[Re]1(=O)SCC[N](CC3)(C)C)nc(s2)c1ccc(cc1)F 2.210 

50 A-S-64 c1c2c(ccc1N1CCN3[Re]1(=O)(SCCN(CC3)C)C)nc(s2)c1ccc(cc1)OC 3.071 

51 A-S-65 
c1c2c(ccc1N1CCN3[Re]41(=O)[N](CC3)(CCS4)C)nc(s2)c1ccc(cc1)N(

C)C 
3.523 

52 A-S-66 c1c2c(ccc1)nc(s2)c1ccc(cc1)N1CCN2[Re]31(=O)[N](CC2)(CCS3)C 2.423 

53 A-S-67 c1c2c(ccc1F)nc(s2)c1ccc(cc1)N1CCN2[Re]31(=O)[N](CC2)(CCS3)C 2.928 

54 A-S-68 c1c2c(ccc1O)nc(s2)c1ccc(cc1)N1CCN2[Re]31(=O)[N](CC2)(CCS3)C 3.053 

55 A-S-69 c1c2c(ccc1OC)nc(s2)c1ccc(cc1)N1CCN2[Re]31(=O)[N](CC2)(CCS3)C 3.060 

56 A-S-70 c1c2c(ccc1)nc(s2)c1cc2c(cc1)N1[Re]3(=O)(N2)SCC[N]3(CC1)C 3.046 

57 A-S-71 c1c2c(ccc1F)nc(s2)c1cc2c(cc1)N1[Re]3(=O)(N2)SCC[N]3(CC1)C 2.947 

58 A-S-72 c1c2c(ccc1OC)nc(s2)c1cc2c(cc1)N1[Re]3(=O)(N2)SCC[N]3(CC1)C 3.215 

59 A-S-73 c1c2c(ccc1)nc(s2)c1cc2c(cc1)N1[Re]3(=O)(O2)SCC[NH]3CC1 2.963 
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60 A-S-74 c1c2c(ccc1F)nc(s2)c1cc2c(cc1)N1[Re]3(=O)(O2)SCC[NH]3CC1 3.194 

61 A-S-75 c1c2c(ccc1OC)nc(s2)c1cc2c(cc1)N1[Re]3(=O)(O2)SCC[NH]3CC1 3.523 

62 A-S-76 c1c2c(ccc1)nc(s2)c1cc2c(cc1)O[Re]13(=O)N2CC[NH]1CCS3 2.553 

63 A-S-77 c1c2c(ccc1F)nc(s2)c1cc2c(cc1)O[Re]13(=O)N2CC[NH]1CCS3 2.646 

64 A-S-78 c1c2c(ccc1OC)nc(s2)c1cc2c(cc1)O[Re]13(=O)N2CC[NH]1CCS3 2.854 

65 A-S-79 c1c2c(ccc1)nc(s2)c1cc2c(cc1)S[Re]13(=O)N2CC[NH]1CCS3 2.578 

66 A-S-80 c1c2c(ccc1F)nc(s2)c1cc2c(cc1)S[Re]13(=O)N2CC[NH]1CCS3 3.032 

67 A-S-81 c1c2c(ccc1OC)nc(s2)c1cc2c(cc1)S[Re]13(=O)N2CC[NH]1CCS3 2.879 

68 A-S-82 c1c2c(ccc1)nc(s2)c1ccc2c(c1)S[Re]13(=O)N2CC[NH]1CCS3 3.420 

69 A-S-83 c1c2c(ccc1F)nc(s2)c1ccc2c(c1)S[Re]13(=O)N2CC[NH]1CCS3 3.509 

70 A-S-84 c1c2c(ccc1OC)nc(s2)c1ccc2c(c1)S[Re]13(=O)N2CC[NH]1CCS3 3.367 

71 A-S-85 c1c2c(ccc1)nc(s2)c1cc2c(cc1)N1[Re]3(=O)(N2CC[S]3C)SCC1 2.699 

72 A-S-86 c1c2c(ccc1F)nc(s2)c1cc2c(cc1)N1[Re]3(=O)(N2CC[S]3C)SCC1 2.830 

73 A-S-87 1c2c(ccc1OC)nc(s2)c1cc2c(cc1)N1[Re]3(=O)(N2CC[S]3C)SCC1 2.750 

PET and SPECT Imaging Agents against Tau protein 

Serial 

No. 

Compound 

ID 
SMILES Structure pKi 

1 T-P-1 c1c2c(ccc1)nc([nH]2)/C=C/c1ccc(cc1)N(CC)CC 3.921 

2 T-P-2 c1c2c(ccc1OCCF)nc(o2)/C=C/c1ccc(cc1)NC 3.194 

3 T-P-3 c1c(cnc(c1)F)c1cc2c(cc1)c1c([nH]2)ccnc1 3.959 

4 T-P-4 C1N(CCC(C1)CCF)c1nc2n(cc1)c1c(n2)cccc1 3.027 

5 T-P-5 c12c(ccc(c1)OCC(CF)O)nc(cc2)c1ccc(cc1)N(C)C 3.108 

6 T-P-6 c1cc(cc2c1nc(cc2)c1ccc(cc1)N)OCC(CF)O 2.444 

7 T-P-7 c1(cc2c(cc1)nc(cc2)c1ccc(cc1)NC)OCC(CF)O 2.979 

8 T-P-8 c1cc(cc2c1nc(cc2)c1ccc(cc1)N)OCCF 2.227 

9 T-P-9 c1c(ccc2c1ccc(c2)C(=C(C#N)C#N)C)N(CCF)C 1.580 

10 T-P-10 c1cc(cc2c1nc(cc2)c1ccc(cc1)N(C)C)OCCF 2.290 

11 T-P-11 c1cc(cc2c1nc(cc2)c1ccc(cc1)N(C)C)OCCCF 2.059 

12 T-P-12 c1cc(cc2c1nc(cc2)c1ccc(cc1)N(C)C)OCC(CF)O 2.996 

13 T-P-13 c1cc(cc2c1nc(cc2)c1ccc(cc1)NCC)OCC(CF)O 2.553 

14 T-P-14 c1cc(cc2c1nc(cc2)c1ccc(cc1)NC)OCC(CF)O 2.536 

15 T-P-15 c1cc(cc2c1nc(cc2)c1ccc(cc1)N(C)C)OCC(CF)O 2.757 

16 T-P-16 c1cc(cc2c1nc(cc2)c1ccc(cn1)NC)OCC(CF)O 2.077 

17 T-P-17 c1cc(cc2c1nc(cc2)c1ccc(cn1)N(C)C)OCC(CF)O 2.585 

18 T-P-18 c1c(ccc2c1nc(cc2)c1ccc(cn1)N(C)C)OCC(CF)O 1.848 

19 T-P-19 c1cc(cc2c1nc(cc2)c1ccc(cn1)N(CC)CC)OC(CF)CO 2.007 

20 T-P-20 c1c(ccc2c1sc(n2)/C=C/C=C/c1cnc(cc1)NC)O 3.593 

21 T-P-21 c1c(ccc2c1nc(cc2)c1ccc(cc1)NC)O 2.684 

22 T-P-22 c1c(ccc2c1nc(cc2)c1cnc(cc1)NC)O 1.957 

23 T-P-23 c1cc(cc2c1nc(cc2)c1ccc(cc1)N)O 2.442 

24 T-P-24 c1cc(cc2c1nc(cc2)c1cnc(cc1)NC)O 2.517 

25 T-S-25 C1(=S)S/C(=C\c2oc(cc2)c2cc(ccc2)I)/C(=O)N1CCC(=O)OCC 1.311 

26 T-S-26 C1(=S)N/C(=C\c2oc(cc2)c2cc(ccc2)I)/C(=O)N1CCC(=O)OCC 1.810 

27 T-S-27 C1(=S)N/C(=C\c2oc(cc2)c2cc(ccc2)I)/C(=O)N1CCc1c[nH]cn1 2.194 

28 T-S-28 c1c(ccc2c1sc(n2)/N=N/c1ccc(cc1)N)I 3.138 

29 T-S-29 c1c(ccc2c1sc(n2)/N=N/c1ccc(cc1)NC)I 3.863 

30 T-S-30 c1c(ccc2c1sc(n2)/N=N/c1ccc(cc1)N(C)C)I 4.319 

31 T-P-31 c1(ccc(cc1)CCc1ccc(cc1)NC)O 2.085 
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3.1.2. Molecular descriptors 

The molecular descriptor is the result of a logic and mathematical procedure which transforms 

chemical information encoded within a symbolic representation of a molecule into a useful number. 

QSAR models were developed with a selected class of molecular descriptors (2-dimensional) 

comprising E-state indices, connectivity, constitutional, functional, 2D atom pairs, ring, atom centred 

fragments and molecular property descriptors, calculated using Dragon 7 software (Dragon version 7, 

Kodesrl, Milan, Italy, 2016; software available at http://www.talete.mi.it/index.htm.). Intercorrelated 

descriptors (inter-correlation values larger than 0.9) were removed from the descriptor pool to reduce 

the size of the descriptor matrix. Finally, a pool of 335 descriptors was obtained for PET imaging 

agents and a pool of 529 descriptors was obtained for SPECT imaging agents targeted against Aβ 

protein. For the tau dataset a reduced pool of 263 descriptors from 418 descriptors was employed for 

model development. A descriptor pool of 633 descriptors was obtained for the Aβ dataset. In order to 

reduce the redundant and incompetent data, inter-correlated descriptors (correlation value larger than 

0.9) were removed from the descriptor pool, and finally, 539 descriptors were taken for modeling. For 

the tau dataset a reduced pool of 263 descriptors from 418 descriptors was employed for model 

development. 

3.1.3. Dataset splitting 

The main objective in QSAR study is to obtain a well validated QSAR model which is possible with 

proper division or splitting of the dataset into training and test set. Ideally, the division must be 

executed in such a way so that points representing both training and test set are well distributed within 

the whole descriptor space occupied by the entire dataset. Rational data division helps in providing an 

unbiased external validation with uniform distribution of compounds into training and test sets 

(Golbraikh et al., 2003). One of the extensively used methods is the Euclidean Distance based 

division (Golmohammadi et al., 2012), which was used for division of the Aβ imaging dataset (for 

both PET and SPECT datasets) into training (~75%) and a test set (~25%). The combined PET and 

SPECT dataset targeted against the tau protein was divided into a training set (~70%) and a test set 

(~30%) based on k-Medoids division method (Park & Jun, 2009). The k-medoids algorithm is a local 

heuristic method that runs just like k-means clustering when updating the medoids. This method tends 

to select k most middle objects as initial medoids. The algorithm involves calculation of the distance 

matrix once and uses it for finding new medoids at every iterative step. 

3.1.4. Model development 

A critical evaluation procedure was carried out in order to have the best model with good statistical 

significance for both internal and external validation metrics. During the development of models for 

individual subsets, i.e., for PET and SPECT imaging agents targeted against Aβ, we have used 

Stepwise Multiple Linear Regression (S-MLR) (Khan & Roy, 2018; Pope & Webster, 2012) method 

implemented in Double Cross Validation (DCV) tool (version 1.2) (Roy & Ambure, 2016) and finally 

Partial Least Squares (PLS) regression (Khan & Roy, 2018; Wold et al., 2001) was used to develop 

the models. In case of tau dataset, a descriptor pool 26 descriptors were selected using Genetic 

Algorithm (GA) (     & Roy, 2018) modeling implemented in Double Cross Validation (DCV) tool 

(version 1.2). Then the final model was generated using PLS regression method using descriptors 

selected from Best Subset Selection (BSS). 

In both the cases, the Double Cross Validation (DCV) method helped in the generation of the most 

statistically significant and robust models. DCV aids in the generation and selection of models to 

produce a better predictive model. DCV is a method where the training set compounds are further 

divided into ‘n’ calibration and validation sets, can result in diverse compositions of the modeling set, 
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thus removing any bias in descriptor selection. Additionally, a model with the lowest prediction errors 

in the validation set is selected; thus, providing an optimum solution in terms of predictivity in most 

cases. The tool comprises two nested cross-validation loops: the internal and external cross-validation 

loops. In the external loop, the compounds in the dataset are divided into training set compounds and 

test set compounds. The training set compounds goes to the internal loop for the purpose of model 

development and model selection, and the test set is used exclusively for checking model predictivity. 

In the internal loop, the training set is further split into calibration and validation sets repetitively by 

employing the k-fold cross-validation technique (in this study, k = 10) (Baumann & Baumann, 2014) 

and producing k iterations to construct calibration and validation sets. At the end, the best models 

were selected based on various validation metrics. 

3.1.5. Statistical validation metrics 

The current study utilizes multiple approaches for assessment of model quality for measurement of 

the fitness, stability, robustness and predictivity of the developed models. The validation was done 

using both internal and external validation metrics (Roy et al., 2015b). The fitting potential of the 

model is established by the determination coefficient (𝑅2) whereas internal validation dealing with the 

predictive ability of the model based on training set compounds is usually established by a cross-

validated squared correlation coefficient, 𝑄𝐿𝑂𝑂
2  (leave-one-out or LOO). However, 𝑄2is not the 

ultimate quality measuring metric to determine the performance of the model for a new set of 

compounds. Thus, for new external compounds (or test compounds), various external validation 

metrics are used such as 𝑄𝐹1
2 and 𝑄𝐹2

2   (Chirico & Gramatica, 2012; Roberto Todeschini et al., 2016).  

Additionally, 𝑟𝑚
2metrics (Roy et al., 2012), root mean square error (RMSE), and mean absolute error 

(MAE) are also calculated (l Roy et al., 2016). The applicability domain (AD) (discussed later) 

(Gadaleta et al., 2016) was performed according to the DModX (distance to model in the X-space) 

approach using SIMCA-P software. 

 

3.1.6. Molecular Docking 

In the present work, we have implemented molecular docking analysis to understand the 

intermolecular interactions occurring between the PET and SPECT imaging agents and protein beta 

amyloid and tau proteins separately. The protein structures in the present case are retrieved from the 

Protein Data Bank with PDB ID: 2LMN (Paravastu et al., 2008) for Aβ protein and PDB ID: 6FAU 

(Andrei et al., 2018) for tau protein. Docking was performed in CDOCKER module of receptor-ligand 

interaction implemented in BIOVIA Discovery Studio 2018 

(http://www.3dsbiovia.com/products/collaborative-science/biovia-discovery-

studio/requirements/technical-requirements-410.html.) (Wu et al., 2003). The structure of the beta 

amyloid protein does not contain any bound ligand; therefore, the active site was defined in the 

BIOVIA Discovery Studio platform in receptor ligand interaction section using the option “define site 

from receptor cavities” before docking. A total of 11 active sites were generated by the software, 

however, we have selected site 1 (x: 51.610, y: 30.947, and z: 70.698) because in the other sites, either  

the ligands were not able to dock or were docked outside/away from the docking site.  In case of tau, 

the X-ray crystal structure of the protein consists of two chains A and C and four bound ligands (two 

peptide residues, Ace-Arg-Thr-Pro-Sep-Leu-Pro-Gly in chain A, Thr-Pro-Sep-Leu-Pro-Gly in chain C 

and two instances of D3W ((2~{R})-2-[(~{R})-(2-methoxyphenyl)-phenyl-methyl]pyrrolidine) one in 

each chain. Due to structural similarity between the chain structures, we have used only one chain 

(chain A) for our docking purpose. Before docking the target ligands, the protein was prepared by 

removing the duplicate amino acid conformers, addition of hydrogen, and generation of docking site. 

The active site (x: 17.355, y: -8.685, z: -12.366) was defined in the BIOVIA Discovery Studio 

platform from the ligand binding domain of the bound peptide residue and D3W by selecting them 

http://www.3dsbiovia.com/products/collaborative-science/biovia-discovery-studio/requirements/technical-requirements-410.html
http://www.3dsbiovia.com/products/collaborative-science/biovia-discovery-studio/requirements/technical-requirements-410.html
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and generating site “from current selection” program in receptor-ligand interaction section of the 

software. The bound ligands were then removed for new molecule docking purpose. 

The target ligands (imaging agents) were subjected to ligand preparation to obtain a series of ligand 

conformers in both cases using the small molecules module in Discovery Studio. Each of these 

conformers was used in the CDOCKER module involving CHARMm interaction energy for 

molecular docking (Wu et al., 2003). The ligand poses were ranked using the CDOCKER interaction 

energy parameters (kJ/ mol), and the top scoring (most negative, thus favorable to binding) poses are 

kept. The best pose obtained was further analyzed by considering intermolecular polar and non-polar 

interactions. 

3.2. Study 2: Chemometric modeling of PET imaging agents for diagnosis of Parkinson’s 

disease: A QSAR approach 

 

3.2.1. The dataset  

The experimental binding affinity and selectivity data of 35 xanthine ligand-based PET tracers were 

taken from a previously published literature (Tamiji et al., 2018) and applied for QSAR modeling to 

determine the essential structural features needed for binding affinity and explore the structural 

requirements necessary to be present in the antagonists for selectivity towards A2A adenosine 

receptors. The experimental values of selectivity and binding affinity (Ki) ranged from 0.1–20 nM 

and 7.84–16,500 nM respectively and the details are provided in Table 3.3. The experimental values 

were converted into negative logarithm scale during modeling and were used as independent values. 

No compounds with binding affinity data were removed during modeling but some compounds (14, 

32, 33, and 34) with no experimental selectivity values were eliminated during modeling. Here, the 

binding affinity and selectivity were separately used as endpoints or independent variables in 

modeling. The compounds for both the dataset were represented in MarvinSketch software version 

15.12.7.0 (https://www.chemaxon.com) with proper aromatization and addition of hydrogen bond as 

necessary. 

Table 3.3. Structures and experimental A2AR binding affinity [pA2AR(BA)] and A2AR selectivity [log 

A2AR(Sel)] values. 

Compound 

No. 
SMILES structures pKi(A2AR) 

log 

A2AR(Sel) 

1 o1c(ccc1)c1nn2[C@H](NC(=Cc2n1)c1cc(ccc1)CN1CCN(CC1)c1

ccc(cc1)OCCOC)N 

-0.447 2.779 

2 o1c(ccc1)c1nn2c(nc(cc2n1)c1cc(ccc1)CN1CCN(CC1)c1c(cc(cc1)

OCCOC)F)N 

-0.431 2.808 

3 o1c(ccc1)c1nc2n(n1)c(nc(c2)c1cccc(c1)N1CCN(CC1)c1ccc(cc1)

OCCOC)N 

0.000 3.025 

4 n1c(nc(n2nc(nc12)c1occc1)N)N1C[C@@H]2N(CC1)C[C@H](C

C2)COc1cc(ccc1)F 

0.699 4.217 

5 c1(nc2c(nc(nc2n1C)CCCC)N)[C@@H]1N=NC=N1 -0.820 1.076 

6 c1(nc2c(nc(nc2n1C)CCCCC)N)[C@@H]1N=NC=N1 -0.519 0.894 

7 c1(nc2c(nc(nc2n1C)CCc1ccccc1)N)[C@@H]1N=NC=N1 -0.672 1.231 

8 o1cccc1c1nn2c(nc3c(c2n1)ncn3CCN1CCN(CC1)c1ccc(cc1)OC)N 1.000 3.229 

9 o1cccc1c1nn2c(nc3c(c2n1)ncn3CCN1CCN(CC1)c1ccc(cc1)OCC

OC)N 

0.046 2.825 

10 o1cccc1c1nn2c(nc3c(c2n1)ncn3CCN1CCC(CC1)c1ccc(cc1)OCC 0.155 2.715 

https://www.chemaxon.com/
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OC)N 

11 n1c(nc(n2nc(nc12)c1occc1)N)N(C)CCN1CCN(CC1)c1c(cc(cc1)F

)F 

-0.602 2.312 

12 n1c(nc(n2nc(nc12)c1occc1)N)N1CCN(CC1)Cc1c(c(ccc1Cl)F)F -0.699 2.000 

13 n1c(nc(n2nc(nc12)c1occc1)N)N1CCN(CC1)Cc1c(cc(cc1F)F)F -0.477 2.636 

14 n1c(nc(c2c1n(nc2)Cc1cc(ccc1)OC)c1occc1)N -0.301 - 

15 n1c(nc(n2nc(nc12)c1occc1)N)NC[C@H]1N(CCC1)Cc1c(c(ccc1)

F)F 

-0.699 2.398 

16 n1c(nc(n2nc(nc12)c1occc1)N)NC[C@H]1N(CCC1)Cc1c(cc(c(c1)

F)F)F 

-0.903 2.398 

17 n1c(nc(n2nc(nc12)c1occc1)N)NC[C@H]1N(CCC1)Cc1c(cc(cc1F

)F)F 

-0.301 2.903 

18 n1c(nc(n2nc(nc12)c1occc1)N)NC[C@H]1N(CCC1)Cc1c(c(ccc1F

)F)Cl 

-0.602 2.398 

19 c1(ccc(cc1)OO)C(=O)Nc1sc2c(ncc(c2n1)OC)N1CCOCC1 -0.477 2.653 

20 n1nc(nc1c1cc(ccc1)OC)Cc1cc(c(cc1)C)C -1.301 1.839 

21 o1c(ccc1)c1nn2c(n1)c1c(nc2N)n(nc1)CCN1CCN(CC1)c1ccccc1F 0.222 2.951 

22 o1c(ccc1)c1nn2c(n1)c1c(nc2N)n(nc1)CCN1CCN(CC1)c1c(cc(cc1

)F)F 

0.222 3.204 

23 o1c(ccc1)c1nn2c(n1)c1c(nc2N)n(nc1)CCN1CCN(CC1)c1ccc(c(c1

F)F)F 

0.222 3.176 

24 o1c(ccc1)c1nn2c(n1)c1c(nc2N)n(nc1)CCN1CCN(CC1)c1cccc(c1)

OCCOC 

-0.041 3.127 

25 o1c(ccc1)c1nn2c(n1)c1c(nc2N)n(nc1)CCN1CCN(CC1)c1c(ccc(c1

)OCCOC)F 

0.398 3.240 

26 o1c(ccc1)c1nn2c(n1)c1c(nc2N)n(nc1)CCN1CCN(CC1)c1c(ccc(c1

)OCCCOC)F 

0.222 3.064 

27 o1c(ccc1)c1nn2c(n1)cc(nc2N)N(C)CCc1ccc(cc1)OC -0.255 2.675 

28 c1(nc(cc2n1nc(n2)c1occc1)OCCN1CCN(CC1)c1ccc(cc1)OCCOC

)N 

-0.447 2.607 

29 C1(=N[C@@H](Cc2n1nc(n2)c1occc1)SCCN1CCN(CC1)c1ccc(c

c1)OCCOC)N 

-0.176 2.985 

30 c1(nc(cc2n1nc(n2)c1occc1)N(CCN1CCN(CC1)c1ccc(cc1)OCCO

C)C)N 

0.000 3.199 

31 c1(nc(cc2n1nc(n2)c1ccco1)N(CCN1CCN(CC1)c1cc(cc(c1)F)F)C)

N 

-0.398 2.841 

32 c1(ccc(cc1)CO)C(=O)Nc1sc2c(n1)c(ccc2c1ccccc1)OC 0.301 - 

33 s1c(ccc1C)C(=O)Nc1sc2c(n1)c(ccc2c1cc(ccc1)N)OC 0.097 - 

34 o1c(ccc1C)C(=O)Nc1sc2c(n1)c(ccc2c1cc(ccc1)N)OC 0.000 - 

35 C(=O)(N1[C@@H](CCC1)COC)c1cc(c2n(c1)nc(n2)c1oc(cc1)Br)

N 

-1.204 1.818 

 

3.2.2. Molecular descriptors 

In the present study, QSAR models were developed using a selected class of two-dimensional 

molecular descriptors involving E-state indices, connectivity, constitutional, functional, 2D atom 
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pairs, ring, atom centered fragments, molecular property descriptors and Extended topochemical atom 

(ETA) indices. The ETA descriptors were calculated using PaDel-Descriptor software (C. W. Yap, 

2011) whereas the non-ETA descriptors were calculated using Dragon 7 software. Intercorrelated 

(|r|>.95), constant (variance < 0.0001), and other incompetent and redundant data was removed using 

an in-house software available at http://dtclab.webs.com/software-tools before model development. 

 

3.2.3. Dataset Division 

Dataset division is a crucial part of QSAR modeling in order to develop a properly validated and 

robust model. Rational data division ensures an unbiased external validation along with uniform data 

distribution (Golbraikh et al., 2003). The division of the dataset into training set (~70%) and test set 

(~30 %) was performed employing random dataset division method (Golbraikh & Tropsha, 2000)  for 

both binding affinity and selectivity end points. The training set was used for model development and 

test set was used for model validation.  

 

3.2.4. Variable selection and Model Development 

Prior to the model development, variable selection strategies such as Genetic Algorithm (GA) 

(Devillers, 1996; Khan & Roy, 2018) and stepwise regression (Khan & Roy, 2018; Pope & Webster, 

2012) were applied for the binding affinity and selectivity, respectively, to extract the important and 

influential descriptors and created a reduced pool of descriptors. After obtaining the important 

descriptors, model development was done. The best model with five descriptors was obtained using 

the spline option in the GA run on Discovery Studio version 4.1 for the binding affinity. On the other 

hand, for A2AR selectivity, four models with four descriptors were selected from the Best Subset 

Selection (BSS) method based on MAE criteria (Roy et al., 2016). Further to improve the quality of 

the external prediction via “intelligent” selection of multiple models, the “Intelligent consensus 

predictor” tool (Roy et al., 2018) was applied (DTC Lab QSAR Tools 

http://teqip.jdvu.ac.in/QSAR_Tools/DTCLab). The methodology of the present work is given in 

Figure 3.1. 

 

3.2.5. Statistical validation metrics 

The statistical quality of the models developed in the present study was rigorously examined using 

multiple approaches to check the robustness and predictivity of the developed models. All the models 

were validated both externally and internally. Various parameters like determination coefficient R2, 

explained variance R2
a, variance ratio (F), and standard error of estimate (s) were computed.  Internal 

predictivity parameters such as predicted residual sum of squares (PRESS) and leave-one-out cross-

validated correlation coefficient (Q2 LOO) were also calculated along with external predictivity 

parameters like R2 pred or 𝑄𝐹1
2 , 𝑄𝐹2

2  and concordance correlation coefficient (CCC) (Roy & Mitra, 

2011). It has been reported that consensus models are better in performance in comparison to an 

individual model (Roy & Mitra, 2011). Therefore, “Intelligent Consensus Predictions (ICP)” were 

applied using multiple models to see whether the quality of predictions can be increased through an 

intelligent selection.  

3.2.6. Applicability domain (AD) 

Applicability domain (AD) (Gadaleta et al., 2016) is a theoretical region in the chemical space 

developed based on modeled descriptors and modeled response of the training set, where the 

developed model could make predictions basing on some logical reliability. Here, we have checked 

AD using standardization approach using the tool developed in our laboratory.  

 

http://teqip.jdvu.ac.in/QSAR_Tools/DTCLab
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3.2.7. Molecular Docking 

Molecular docking analysis has been implemented in the present work that helps in understanding the 

intermolecular interactions taking place between the PET tracer antagonists and the A2A receptor. 

The protein structure for adenosine A2A receptor is retrieved from the protein data bank with PDB ID: 

3UZA (Congreve et al., 2012). The X-ray crystal structure of the protein consists of a bound ligand 

T4G commonly known as 6-(2,6-Dimethylpyridin-4-yl)-5-phenyl-1,2,4-Triazin-3-amine (Formula: 

C16H15N5). Before docking the target PET tracers, protein preparation was done by cleaning the 

protein for any missing residues, explicit hydrogen addition and generation of the docking site. The 

generation of active docking site was done in the BIOVIA Discovery Studio platform from the ligand 

binding domain of the bound ligand T4G by the selection of the ligand and generating the site “from 

current selection” program in receptor-ligand interaction module of the software. After the generation 

of the active ligand binding domain (x: 47.473, y: 25.697, and z: 28.736), the bound ligand was 

removed for new molecule docking. For ligand preparation, the PET tracers were put through small 

molecule module in Discovery Studio platform where a series of ligand conformers were generated. 

Each of these generated conformers was then used in the CDOCKER module energy for molecular 

docking involving CHARMm interaction (Wu et al., 2003). The CDOCKER interaction energy 

parameter (kcal/mol) was checked for all the receptor ligand complexes, and the top scoring (most 

negative, thus favourable to binding) poses were kept. 

 
Figure 3.1. The methodology of present QSAR modeling. 

 

3.3. Study 3: QSAR modeling of PET imaging agents for the diagnosis of Parkinson’s disease 

targeting Dopamine receptor  

In the present study, a QSAR model with two-dimensional (2D) molecular descriptors was developed 

to explore the correlations of the molecular structure of a series of PET tracers against the binding 

affinity of dopamine (D2) receptor. 

3.3.1. The dataset 

Dopamine (D2) receptor binding affinity (Ki) data of 34 PET imaging agents was taken from different 

literatures as mentioned in Table 3.3. The experimental binding affinity for all the compounds was 

measured using the same assay protocol, i.e., rat striatal homogenate (RSH) assay method. This data 

was applied in the development of a 2D-QSAR model to determine the essential structural features 
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required for good binding to the D2 receptor. The binding affinity (Ki) values for the PET imaging 

agents were converted to their negative logarithm (pKi) form and then used for modeling. The 

compounds were represented using the MarvinSketch software (available from 

https://chemaxon.com/marvin) with proper aromatization and addition of hydrogen bond as necessary. 

 

Table 3.2. Dataset compounds with their observed binding affinity (in pKi).  

Compound 

No. 
Structure pKi Reference 

1 c1c2c(c(c(c1)O)O)c1c3C(C2)N(CCc3ccc1)C 2.321 (Sipos et al., 2008) 

2 c1c2c(c(c(c1)O)O)c1c3C(C2)N(CCc3cc(c1)O)C 4.420 
(Gao, Baldessarini, 

et al., 1990) 

3* c1c2c(c(c(c1)O)O)c1c3C(C2)N(CCc3cc(c1)Cl)C 2.652 
(Gao, Baldessarini, 

et al., 1990) 

4 c1c2c(c(c(c1)O)O)c1c3C(C2)N(CCc3cc(c1)Br)C 2.752 
(Gao, Baldessarini, 

et al., 1990) 

5 c1c2c(c(c(c1)O)O)c1c3C(C2)N(CCc3cc(c1)SC)C 2.262 (Tóth et al., 2006) 

6 c1c2c(c(c(c1)O)O)c1c3C(C2)N(CCc3cc(c1)C)C 2.684 (Sipos et al., 2008) 

7* c1c2c(c(c(c1)O)O)c1c3C(C2)N(CCc3cc(c1)OC)C 3.951 
(Gao, Baldessarini, 

et al., 1990) 

8 c1c2c(c(c(c1)O)O)c1c3C(C2)N(CCc3cc(c1)c1ccccc1)C 2.932 (Sipos et al., 2008) 

9 c1c2c(c(c(c1)O)O)c1c3C(C2)N(CCc3cc(c1)c1ccc(cc1)O)C 3.401 (Sipos et al., 2008) 

10 c1c2c(c(c(c1)O)O)c1c3C(C2)N(CCc3cc(c1)c1ccc(cc1)C)C 1.460 
(Søndergaard et al., 

2005) 

11 c1c2c(c(c(c1)O)O)c1c3C(C2)N(CCc3cc(c1)c1ccc(cc1)F)C 1.839 
(Søndergaard et al., 

2005) 

12 c1c2c(c(c(c1)O)O)c1c3C(C2)N(CCc3ccc1)CC 4.658 
(Gao, Ram, et al., 

1990) 

13 c1c2c(c(c(c1)O)O)c1c3C(C2)N(CCc3ccc1)CCC 4.097 
(Gao, Ram, et al., 

1990) 

14 c1c2c(c(c(c1)O)O)c1c3C(C2)N(CCc3cc(c1)OC)CCC 4.770 
(Gao, Baldessarini, 

et al., 1990) 

15 c1c2c(c(c(c1)O)O)c1c3C(C2)N(CCc3cc(c1)Br)CCC 4.824 
(Baldessarini et al., 

1991) 

16 c1c2c(c(c(c1)O)O)c1c3C(C2)N(CCc3cc(c1)N)CCC 4.036 
(Baldessarini et al., 

1991) 

17 c1c2c(c(c(c1)O)O)c1c3C(C2)N(CCc3cc(c1)O)CCC 5.276 
(Gao, Baldessarini, 

et al., 1990) 

18 c1c2c(c(c(c1)O)O)c1c3C(C2)N(CCc3cc(c1)F)CCC 5.921 
(Baldessarini et al., 

1991) 

19* c1c2c(c(c(c1)O)O)c1c3C(C2)N(CCc3cc(c1)SC)CCC 3.428 (Tóth et al., 2006) 

20 c1c2c(c(c(c1)O)O)c1c3C(C2)N(CCc3cc(c1)SCC)CCC 3.108 (Tóth et al., 2006) 

21 c1c2c(c(c(c1)O)O)c1c3C(C2)N(CCc3cc(c1)SCCC)CCC 2.807 (Tóth et al., 2006) 

22* c1(cccc(c1)[C@H]1CN(CCC1)CCC)O 3.114 (Vasdev et al., 2006) 

23 
c1c(c(c(c(c1)OC)C(=O)NC[C@@H]1CCCN1CC)I)S(=O)(=

O)N 
3.824 

(Chumpradit et al., 

1993) 

https://chemaxon.com/marvin
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24 c1c(c(c(c(c1Cl)OC)C(=O)NC[C@@H]1CCCN1CC)O)Cl 3.959 
(Chumpradit et al., 

1993) 

25* c1c(c(c(c(c1Cl)OC)C(=O)NC[C@@H]1CCCN1CC)O)CC 5.046 
(Chumpradit et al., 

1993) 

26* c1c(c(c(c(c1)OC)C(=O)NC[C@@H]1CCCN1CC)O)I 4.367 
(Chumpradit et al., 

1993) 

27 c1c(cc(c(c1)OC)C(=O)NC[C@@H]1CCCN1CC)I 3.523 
(Chumpradit et al., 

1993) 

28* c1c(cc(c(c1OC)OC)C(=O)NC[C@@H]1CCCN1CC)I 5.602 
(Chumpradit et al., 

1993) 

29 c1c(c(c(c(c1OC)OC)C(=O)NC[C@@H]1CCCN1CC)O)I 5.721 
(Chumpradit et al., 

1993) 

30 
c1c(cc(c2c1CCO2)C(=O)NC[C@@H]1CCCN1Cc1ccc(cc1)

F)I 
4.975 

(Chumpradit et al., 

1993) 

31 
c1c(cc(c(c1OC)OC)C(=O)NC[C@@H]1CCCN1Cc1ccc(cc1

)F)Br 
4.833 

(Chumpradit et al., 

1993) 

32 c1c(cc(c(c1OC)OC)C(=O)NC[C@@H]1CCCN1CC)CCCF 5.699 
(Chumpradit et al., 

1993) 

33 
c1ccc(c(c1OC)OCCF)C(=O)NC[C@@H]1CCCN1Cc1ccc(c

c1)F 
2.886 

(Chumpradit et al., 

1993) 

34 1cc(c(c(c1)OC)C(=O)NC[C@H]1N(CCC1)CC)O 2.507 (Murphy et al., 1990) 

Note: Compounds marked with ‘*’ are test set compounds 

 

3.3.2. Molecular descriptors 

QSAR models were developed using a selected class of two-dimensional molecular descriptors. The 

descriptors were E-state indices, connectivity, constitutional, functional, 2D atom pairs, ring, atom-

centered fragments and molecular property descriptors. These descriptors were calculated using 

Dragon 7 descriptor calculator. A total of 403 Dragon descriptors were calculated. Before the 

development of the QSAR model, the data was curated (Tropsha, 2010) by removing intercorrelated 

(|r| > 0.95), constant (variance < 0.0001), and other noisy and redundant data by using data 

pretreatment software developed in our laboratory and available from 

http://dtclab.webs.com/software-tools. After data pretreatment, the number of descriptors was reduced 

to 179. 

 

3.3.3. Dataset splitting 

Splitting of the dataset into training and test sets is a vital step in QSAR modeling and enables the 

development of a robust and well validated model. Data division must be done in such a way that the 

points representing both training and test set are well scattered within the whole descriptor space 

defined by the entire dataset. The training set is used for model development and the test set for model 

validation. The division of the dataset was executed by one of the most extensively used methods, 

Euclidean Distance division method, where the Euclidean distances for all of the compounds in the 

dataset are calculated and the compounds are then sorted, based on the Euclidean distance 

(Golmohammadi et al., 2012).  

3.3.4. Variable selection and model development 

The main aim of the present study has been to develop a well validated QSAR model to understand 

the binding of PET imaging agents towards dopamine (D2) receptor for the diagnosis of Parkinson’s  
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disease. Critical selection of statistically significant descriptors ensures improvement in the quality of 

the model. Prior to development of the QSAR model, a number of significant descriptors were 

extracted using Double Cross Validation-Genetic Algorithm (DCV-GA) approach applied on the 

training set compounds (Devillers, 1996; Khan & Roy, 2018; Roy & Ambure, 2016).  Finally, a 

Partial Least Squares (PLS) regression model was generated using descriptors selected from the best 

subset selection (BSS).  

Double cross validation (DCV) is an attractive statistical design which combines both model 

generation and model assessment with the aim to produce better models (Roy & Ambure, 2016; Wold 

et al., 2001). Sometimes the fixed composition of a training set can lead to biased descriptor selection. 

DCV method helps in better descriptor selection by dividing the training set into ‘n’ calibration and 

validation sets. This results in diverse compositions of the modeling set, thus removing any bias in 

descriptor selection. DCV technique consists of two nested cross-validation loops commonly known 

as internal and external cross-validation loops. In the external loop, the data objects are split randomly 

into disjoint subsets known as training set compounds and test set compounds. The training set 

compounds are involved in the internal loop for the purpose of model development and model 

selection, and the test set is used solely for the intention of checking model predictivity. Further, in 

the internal loop, the training set compounds are repetitively split into calibration (construction) and 

validation sets by employing the k-fold cross validation technique (here, k=10) and producing k 

iterations to construct calibration and validation sets. The calibration objects are used to derive 

different models by altering the tuning parameter(s) of the model (i.e., the descriptors) whereas the 

validation objects are used to guess the models’ error. The model with the lowest cross validated error 

is selected. The test compounds in the outer loop are employed to assess the predictive performance of 

the selected model.  

In the current study, descriptor selection in DCV platform was done using Genetic Algorithm (GA) 

approach. GA is a model optimisation approach with an algorithm inspired by the theory of evolution 

(Devillers, 1996). GA has five basic steps: (i) coding of variables; (ii) initiation of population; (iii) 

evaluation of the response; (iv) reproduction; and (v) mutation. Steps (iii) to (v) alternate until a 

termination criterion is reached. The criterion can be based on a lack of improvement in the response 

or simply on a maximum number of generations or on the total time allowed for the elaboration. 

 

3.3.5. Statistical validation metrics 

Validation of the robustness and predictive ability of the developed models is a very crucial step in a 

QSAR study. A meticulous examination of the statistical quality of the developed model has been 

done to judge the robustness in terms of reliability and predictivity measures using various internal 

and external validation parameters. For determining the quality of the developed model, statistical 

parameters like determination coefficient 𝑅2 and explained variance 𝑅𝑎
2 were calculated. Other 

parameters including internal predictivity parameters such as predicted residual sum of squares 

(PRESS) and leave-one-out cross-validated correlation coefficient (Q2
LOO) were also calculated along 

with external predictivity parameters like R2
pred or 𝑄𝐹1

2 , 𝑄𝐹2
2  and concordance correlation coefficient 

(CCC) (Roy & Mitra, 2011). Further, 𝑟𝑚
2  metrics (i.e., 𝑟𝑚

2̅̅ ̅ and Δ𝑟𝑚
2 ) were also calculated for both 

training and test set compounds (Ojha et al., 2011). Validation using mean absolute error (MAE) 

based criteria for both external and internal validation was done (Roy et al., 2016). The 𝑄𝑒𝑥𝑡
2  based 

criteria do not always interpret the correct prediction quality because of the impact of the response 

range as well as the distribution of the values of the response in both the training and test set 

compounds; so, MAE was calculated to check the average error (Roy et al., 2016). Figure 3.2 shows 

the flowchart of the present work methodology. 
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Figure 3.2. Flowchart of the present work methodology. 

 

3.4. Study 4: Computational modeling of PET imaging agents against vesicular acetylcholine 

transporter (VAChT) protein binding affinity: Application of 2D-QSAR modeling and 

molecular docking techniques 

 

In the present study, 2D quantitative structure-activity relationship (2D-QSAR) models were 

developed for 19 positron emission tomography (PET) imaging agents targeted against presynaptic 

vesicular acetylcholine transporter (VAChT). VAChT assists in the transport of ACh into the 

presynaptic storage vesicles and it becomes one of main targets for the diagnosis of various 

neurodegenerative diseases. 

 

3.4.1. The dataset 

According to the OECD principle, dataset selection with a defined endpoint is first essential step 

while developing a QSAR model. For our present work, the binding affinity (Ki) values of 19 PET 

imaging agents acting against vesicular acetyl choline transporter was procured from different 

previously published literature (Kovac et al., 2010; Tu et al., 2009, 2015). The binding affinity data 

which was expressed as Ki were converted to its negative logarithmic form (pKi). The structures 

obtained from different sources were then represented in MarvinSketch version 15.12.7.0 software 

with proper explicit hydrogen addition and aromatisation. The 19 PET imaging agents used for the 

present study is given in Table 3.4. 
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Table 3.4. PET radiotracers target vesicular acetylcholine transporters (VAChT) 

Compound ID Structure pKi 

1 

 

2.239 

2 

 

3.060 

3 

 

2.921 

5 

 

2.770 
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6 

 

2.569 

7 

 

2.337 

9 

 

2.261 

10 

 

1.252 

11 

 

1.032 

12 

 

2.185 
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15 

 

1.801 

16 

 

1.476 

20 

 

3.658 

21 

 

3.602 

22 

 

3.347 
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23 

 

3.319 

25 

 

2.770 

27 

 

2.367 

29 

 

0.967 

 

3.4.2. Molecular descriptors 

The molecule descriptor is a fundamental component of QSAR and other in-silico models since it 

formally represents a molecule's structure numerically. Descriptors provide a mathematically 

meaningful relationships between the molecular structure and biological activities, physico-chemical 

and toxicological properties of chemicals (Mauri et al., 2017). Descriptors can be classified into 

different categories depending on the process of calculation or scheme of experimental determination 

or concept of the origin. For the ease of interpretation, the present work involved the use of eight main 

types of two-dimensional (2D) descriptors, viz., E-state indices, extended topochemical atom (ETA), 

connectivity, constitutional, functional, 2D atom pairs, ring, atom centered fragments and molecular 

property descriptors. The descriptors were calculated using alvaDesc descriptor calculator 
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(Alvascience, alvaDesc version 2.0.6, 2021, https://www.alvascience.com). With the intention to 

minimize the redundant and incompetent data, inter-correlated descriptors (correlation greater than 

0.95) were removed from the original descriptor pool. This resulted in a final pool of 188 descriptors 

which was used as input variables for QSAR modeling. 

3.4.3. Feature selection and model development 

In general, a QSAR model development involves a training set and a test for model development and 

validation purposes respectively. However, owing to the small number of compounds in our dataset, 

we did not perform the general method of data division. It is natural that all the descriptors calculated 

through AlvaDesc will not be able describe the binding properties of the PET imaging agents. 

Therefore, to further reduce the data pool, we have applied Genetic Algorithm (Sukumar et al., 2014) 

feature selection method to choose essential features required for binding. Further, we have executed 

the Best Subset Selection (available at http://dtclab.webs.com/software-tools) on the reduced pool of 

12 descriptors obtained from the GA. Finally, the acquired pool of descriptors was applied to develop 

the final model using the partial least squares (PLS) regression (Wold et al., 2001).  

3.4.4. Machine learning based read across prediction 

In the current work, we have employed a machine learning based Read Across prediction which relies 

on similarity approaches. The predictions were made using the tool Quantitative Read Across v4.0 

developed by Chatterjee et al. (Chatterjee et al., 2022b) available at 

https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home. The main similarity approaches 

involved in this tool are Euclidean distance-based similarity, Gaussian kernel function, and Laplacian 

kernel function-based similarity estimation. For this method we have divided the dataset into training 

and test sets. The prediction scheme starts with initial optimisation of hyperparameters (sigma and 

gamma values; distance and similarity threshold) which requires division of the training into sub-

training and sub-test sets into different combinations. This step is followed by selection of the best 

setting of hyperparameters which is then applied to the original training and test sets. 

3.4.5. Molecular Docking 

In this study, the molecular docking study was performed using the most and least active compounds 

from the initial dataset to identify the interaction pattern with the target. Owing to the unavailability of 

any protein structure for VAChT in protein data bank, we have retrieved the predicted protein 

structure from the AlphaFold Protein Structure Database (Available from 

https://alphafold.ebi.ac.uk/entry/Q16572) with the UniProt: Q16572, Source organism: Homo sapiens 

(Human), and AlphaFold id: AF-Q16572-F1-model_v2. We have then validated the reliability of the 

predicted structure using the Ramachandran plot server embedded in Biovia Discovery Studio 4.1 

which represents the good quality of the model (see Figure 3.3). In this study, multiple active sites at 

the surface of the protein were predicted using the Biovia discovery studio 4.1 client platform from 

the “define and edit binding site” using the module “generate active site from receptor cavities”, and 

the ligand was docked into each site to identify the favorable binding site (identified most favorable 

active site coordinate x: 16.478, y: 6.38307, Z: -15.9527, the radius of the sphere: 26). Initially, a total 

of sixteen binding sites were identified where the standard compound “vesamicol” was dockedLigand 

preparation was performed using selected high and low active compounds by running them through 

the Discovery Studio platform's ‘small-molecule module’, where several ligand conformers were 

formed. Each of these generated conformers was subsequently employed in the CDOCKER module 

for molecular docking using a CHARMm-based molecular dynamic scheme (Wu et al., 2003). The 

CDOCKER interaction energy parameter (kcal/mol) was examined for all receptor-ligand complexes, 

and the highest-scoring (more negative; hence favorable to binding) poses with only non-covalent 

interactions (ionic bonds, hydrophobic interactions, hydrogen bonds, etc.) were kept for future 

investigation. 

https://www.alvascience.com/
https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home
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Figure 3.3. Ramachandran plot and per-residue confidence score (pLDDT) for Vesicular 

acetylcholine transporter model (UniProt: Q16572, Source organism: Homo sapiens (Human), and 

AlphaFold id: AF-Q16572-F1-model_v2). Ramachandran plot shows 435 residues (97.098%) resides 

in most favoured region, 10 (2.232%) residues reside in the preferable region and only 3 (0.670%) 

resides in the unfavourable region. The predicted structures contain atomic coordinates and per-

residue confidence estimates on a scale from 0 to 100, with higher scores corresponding to higher 

confidence. This confidence measure is called pLDDT. 

 

3.5. Study 5: Exploration of nitroimidazoles as radiosensitizers: Application of multilayered 

feature selection approach in QSAR modeling 

 

A data of 86 nitroimidazoles (Table 3.5) possessing radiosensitizing properties are used for two-

dimensional QSAR (2D-QSAR) study (Long & Liu, 2010). Radiosensitization capacities of the 

compounds can be understood by radiosensitization effectiveness, expressed as C1.6, which can be 

represented as the corresponding concentration of a given compound when its sensitization 

enhancement ratio (SER) accomplishes 1.6. A higher value of C1.6 indicates lower bioactivity of 

radiosensitization effectiveness. For analysis purpose, the source literature had converted the endpoint 

C1.6 to its negative logarithmic scale (pC1.6, where pC1.6= -log(C1.6)). Two compounds (one radical and 

one salt) were removed and the final dataset of 84 compounds is used for model development. The 

structures of the compounds were drawn in MarvinSketch software (version 14.10.27) [with proper 

aromatization and hydrogen bond addition and saved as MDL .mol, a recommended format for further 

descriptor calculation. 

 

Table 3.5. Nitroimidazole dataset and their respective observed radiosensitization effectiveness 

values (pC1.6). 

 

Compound 

Number 
Structure  R1 R2 pC1.6 

1# 

 

 

-OCH3 - 3.52 

2 -OH - 3.00 

3# -OCH(CH3)2 - 3.00 

4 -OCH2CH=CH2 - 3.59 
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5# 

 

 

 

 

 

 

 

-F - 3.54 

6 -NHC(CH3)3 - 3.60 

7 -NHC6H4OCH3(p) - 2.89 

8# -NHCH2C6H5 - 4.22 

9 -NHCH2C6H4OCH3(p) - 3.89 

10 -NHCH2C6H4OCH3(o) - 4.10 

11 -NHCH2C6H4OCH3(m) - 4.22 

12# -NHCH(Cyclo-C6H11) - 4.00 

13*(P-1) -NH-2,2,6,6-

tetramethylpiperidine-O· 
- 4.05 

14 -N(CH3)2 - 3.82 

15 -N(CH2CH3)2 - 3.89 

16 -N(cyclo-C6H11)2 - 3.92 

17# -aziridine - 3.12 

18 -pyrrolidine - 3.11 

19 -pyrrolidin-3-ol - 2.96 

20 -pyrrolidin-2-ylmethanol - 3.89 

21# -piperidine - 4.00 

22 -piperidin-3-ol - 4.10 

23 -piperidin-4-ol - 3.80 

24 -piperidin-3-ylmethanol - 3.74 

25# -piperidin-2-ylmethanol - 3.48 

26 -morpholine - 3.40 

27 -piperazine-CH3 - 3.70 

28 
-piperazine-CH2-CH2-

OH 
- 3.40 

29# -azepane - 4.00 

30 

 

 

-CH2OH - 3.52 

31 -CH2CH2OCH3 - 3.30 

32 -CH2CH2OCH2CH3 - 3.30 

33 -CH2CH2OC6H5 - 3.60 

34 -CH2COCH3 - 3.40 

35# -CH2COOCH3 - 3.77 

36 -CH2CONHCH2CH2OH - 3.52 

37# -CH2CH2SO2CH3 - 3.70 

38 -CH2CH2SO2CH2CH3 - 3.52 

39 -CH2CH2SO2C6H5 - 3.85 

40# -(CH2)2-N(CH(CH3)2)2 - 4.15 

41 -(CH2)2-2-pyridyl - 3.30 

42 -(CH2)2-pyrrolidino - 3.52 

43 -(CH2)4-pyrrolidino - 4.12 

44# -(CH2)8-pyrrolidino - 4.22 

45 -(CH2)2-piperidino - 4.12 

46 -(CH2)3-piperidino - 4.19 

47 -(CH2)4-piperidino - 4.28 

48# -(CH2)6-piperidino - 4.40 

49 -(CH2)8-piperidino - 3.92 

50 -(CH2)3-morpholino - 3.40 

51 -(CH2)4-morpholino - 4.15 

52# -(CH2)5-morpholino - 4.30 

53 -(CH2)6-morpholino - 4.22 

54 -(CH2)8-morpholino - 4.10 

55 -(CH2)11-morpholino - 3.92 

56*(P-2) -(CH2)4-4-

methylmorpholine-I- 
- 3.00 

57  

 

-CH3 -CH3 3.74 

58 -CH3 -CH3=CH2 2.77 
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59  

 

 

-CH3 -CH(CH3)2 3.26 

60# -CH3 -CH2OH 3.00 

61 -CH3 -C(CH3)2OH 3.22 

62 -CH3 -CH(OH)CH2OH 4.70 

63 -CH3 -CHO 4.00 

64# -CH3 -COOCH3 3.82 

65 -CH3 -CH=N(O)CH3 3.92 

66 -CH3 -CH=N-NH2 3.60 

67# -CH3 -CH=N-piperidino 3.70 

68 -CH3 -CH=N-piperizino 3.00 

69 -CH2CH2OH -CH3 3.46 

70 -CH2COOCH2CH3 -CH2CH3 1.85 

71 

 

-CH2CH2-morpholino H 1.80 

72 -CH2CH(OH)CH2OCH3 -CH3 2.17 

73# H -S-CH2-COO-C2H5 2.77 

74 H 
-S-1’-(3-

aminopurine) 
2.43 

75 H -SO2-NH2 2.77 

76# H -SO2-N(CH3)2 2.74 

77 H -SO2-NH-phenyl 2.40 

78 H 
-SO2-NH- CH2-

morpholine 
2.59 

79# H -SO2-O-phenyl 2.59 

80 H 
-SO2-O-4-

chlorophenyl 
2.60 

81 

 

-CH3 -CH3 2.40 

82 -CH2CH2OH -CH3 2.85 

83 -CH2CH(OH)CH2OH -CH3 2.70 

84 -CH2CH(OH)CH2Cl -CH3 2.62 

85 -CH2CH2-morpholino H 2.57 

86 -CH2CH2SO2CH2CH3 -CH3 3.52 
# Test set compounds. 

* Two compounds are present in the prediction set. 

 

3.5.1. Descriptor calculation 

For developing the first 2D-QSAR model, a pool of 270 descriptors was calculated using Dragon 

version 7 (available at http://www.talete.mi.it/index.htm.) software. This model was developed using 

specific classes of descriptors including E-state indices, connectivity, constitutional, functional, 2D 

atom pairs, ring, atom centered fragments and molecular property descriptors. Additionally, SiRMS 

descriptors were calculated using SiRMS (Version 4.1.2.270) (Kuz’min et al., 2005) tool. Simplex 

representations of molecular structure (SiRMS) descriptors symbolize a class of diverse molecular 

features developed from 1D to 4D molecular structures. These are tetratomic fragments of different 

simplex descriptors having predefined chirality, composition and symmetry (Kuz’min et al., 2005). 

SiRMS descriptors consider both connected and unconnected fragments and also take into account not 

only the nature of atoms but also their different chemical and physical properties like charge, 

lipophilicity, electronegativity, atomic refraction, donor/acceptor of hydrogen in the potential Hbond, 

etc. In our study, we have used 2D SiRMS descriptors only in order to avoid conformational 

complexity and energy minimization requirements for higher dimensional descriptors and to derive 

reproducible models. The constant (variance<0.0001), intercorrelated (|r| >0.95) and other 

incompetent data were removed using an in-house software available at 

http://dtclab.webs.com/software-tools before model development. 
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3.5.2. Dataset splitting 

A well validated QSAR model is the main objective of any QSAR study which can be obtained 

through proper division of the dataset into training (used for model development) and test (used for 

model validation) sets. An unbiased external validation with uniform distribution of compounds into 

training and test sets can be obtained through rational dataset division (Golbraikh et al., 2003). For 

2D-QSAR modeling, the whole dataset utilized for modeling was divided into training (75%) and test 

(25%) sets using modified k-Medoids (Modified k-medoid GUI 1.3) (Park & Jun, 2009) method of 

dataset division. 

 

3.5.3. Variable selection and QSAR model development 

Development of well-validated QSAR models was the main aim of the present study in order to 

understand the radiosensitization effectiveness of the dataset compounds. Critical evaluation process 

helped in the selection of statistically significant models. In this study, we have built two QSAR 

models; a 2D-QSAR model to deduce a relationship between the molecular properties of the 

nitroimidazoles and their radiosensitization properties. For the model with Dragon descriptors, a pool 

of 32 descriptors were selected using Genetic Algorithm (GA) (Devillers, 1996; Khan & Roy, 2018) 

modeling implemented in double cross validation (DCV) (Roy & Ambure, 2016) tool (version 1.2). 

Then, the final model was generated using Partial Least Squares (PLS) regression (Khan & Roy, 

2018; Wold et al., 2001) method using descriptors selected from best subset selection (BSS). In case 

of SiRMS, the number of descriptors generated was large, i.e., about more than ten thousand. 

Handling of this large data is very complicated and so we have applied stepwise regression on the 

large pool of SiRMS descriptors to find out the essential descriptors contributing to the 

radiosensitization properties of the dataset. After descriptor thinning, the obtained pool of 300 

descriptors was further subjected to multilayered stepwise regression to obtain a manageable number 

of descriptors and run best subset selection for development of five descriptors models.  From the 

developed models obtained after best subset selection, we have selected one model based on different 

validation parameters for the test set. Finally, we have run a partial least squares regression (PLS) 

using SIMCA-P software (available at www.umetrics.com) and developed a PLS model. 

 

3.5.4. Statistical validation metrics and domain of applicability 

The statistical quality of the derived models was rigorously checked to judge the robustness in terms 

of reliability and predictivity measures using various internal and external validation parameters. In 

the present work we have computed various statistical parameters like determination coefficient 𝑅2, 

explained variance 𝑅𝑎
2, variance ratio (F), and standard error of estimate (s). Since these quality 

parameters are not sufficient to assess the predictive ability of the model, additional metrics were 

computed that could properly validate the predictions. For internal predictions, leave-one-out cross-

validation (𝑄(𝐿𝑂𝑂)
2 ) was reported, and for external predictions, parameters like 𝑅𝑝𝑟𝑒𝑑

2  or 𝑄𝐹1
2 ,𝑄𝐹2

2  and 

concordance correlation coefficient (CCC), were calculated (Roy & Mitra, 2011). We have also 

calculated 𝑟𝑚
2  metrics (i.e., 𝑟𝑚

2̅̅ ̅ and Δ𝑟𝑚
2 ) for both training and test set compounds (Kunal Roy & Mitra, 

2011). We have also validated the models using mean absolute error (MAE) based criteria for both 

external and internal validation (Roy et al., 2016). This was done since the 𝑄𝑒𝑥𝑡
2  based criteria do not 

always offer the correct indication of the prediction quality because of the influence of the response 

range as well as the distribution of the values of response in both the training and test set compounds 

(Roy et al., 2016). The Applicability Domain (AD) gives a theoretical region in chemical space 

defined by the respective model descriptors and responses in which the predictions are reliable 

(Gadaleta et al., 2016). AD assessment for both the models was performed using DModX (distance to 

model in the X-space) approach at 99% confidence level. 

http://www.umetrics.com/
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3.6. Study 6: QSAR and QSAAR modeling of nitroimidazole sulfonamide radiosensitizers: 

Application of Small Dataset Modelling 

 

The present study explores the features essential to show radiosensitization properties by 

nitroimidazole sulphonamide derivatives using QSAR and quantitative structure activity-activity 

relationship (QSAAR) modelling (Lessigiarska et al., 2006). Two-dimensional (2D) descriptors 

obtained from Dragon and SiRMS software were utilised during the development of well validated 

models. A small dataset of nitroimidazole sulfonamides is used for modelling in the current study 

where splitting of dataset into training and test sets would cause loss of chemical information leading 

to unreliable models. 

 

3.6.1. Dataset  

In vitro radiosensitization data of selected compounds involving sensitizer enhancement ratio (drug 

SER) and survival ratio (drug SR) was obtained from a previously published research work (Bonnet et 

al., 2018). A dataset of 21 compounds given in Table 4.6 was selected for 2D-QSAR modeling. 

Sensitizer Enhancement Ratio (SER) can be defined as the ratio of radiation dose for 1% survival 

without or with the drug in a condition where HCT116 cells (human colorectal carcinoma cell line) 

were exposed to the drug at 6−29 Gy radiation for 1 hour. Survival Ratio can be explained using the 

following expression: “SR= (cell survival with radiation)/(cell survival with drug and with radiation) 

interpolated from the radiation dose response curves at 15 Gy”. During modeling, the drug SER 

values were used as provided in the original article but drug SR values were converted into their 

logarithmic form (logSR) for analysis. The compounds were drawn in MarvinSketch software 

(version 14.10.27) (available at https://chemaxon.com/marvin) with hydrogen bond addition and 

proper aromatization and saved as MDL.mol, a suggested format for further descriptor calculation. 

 

Table 4.6: Dataset of 21 compounds used for modeling. 

Serial 

Number 

Compound 

Number 

Structure (SMILES) Drug 

SER 

Log Drug 

SR 

1 1 c1(n(ccn1)CC(COC)O)[N+](=O)[O-] 1.4 0.833 

2 2 c1(n(ccn1)CC(=O)NCCO)[N+](=O)[O-] 1.339 0.663 

3 4 c1n(c(cn1)[N+](=O)[O-])CCN1CCOCC1 1.8 1.652 

4 6 c1(n(ccn1)CS(=O)(=O)NCCCOC)[N+](=O)[O-] 1.2 0.462 

5 7 c1(n(ccn1)CS(=O)(=O)NCCCO)[N+](=O)[O-] 1.11 0.255 

6 8 c1(n(ccn1)CS(=O)(=O)NCCCN1CCOCC1)[N+](=O)[O-] 1.28 0.591 

7 12 c1(n(ccn1)CS(=O)(=O)NN1CCOCC1)[N+](=O)[O-] 1.11 0.301 

8 14 c1(n(ccn1)CCS(=O)(=O)NCCCO)[N+](=O)[O-] 1.27 0.623 

9 15 c1(n(ccn1)CCS(=O)(=O)NCCCN1CCOCC1)[N+](=O)[O-] 1.357 0.699 

10 16 c1n(cc(n1)[N+](=O)[O-])CS(=O)(=O)NCCCOC 1.105 0.114 

11 19 c1n(c(cn1)[N+](=O)[O-])CS(=O)(=O)NCCCO 1.81 2.057 

12 21 c1n(c(cn1)[N+](=O)[O-])CS(=O)(=O)NCCCN1CCOCC1 1.43 0.914 

13 22 c1n(c(cn1)[N+](=O)[O-])CCS(=O)(=O)NCCCOC 1.56 1.415 

14 24 c1n(c(cn1)[N+](=O)[O-])CCS(=O)(=O)NCCCO 1.81 2.212 

15 26 c1(n(c(cn1)[N+](=O)[O-])CCS(=O)(=O)NCCCOC)C 1.34 0.681 

16 28 c1(n(c(cn1)[N+](=O)[O-])CCS(=O)(=O)NCCCO)C 1.176 0.208 

17 30 c1(n(c(cn1)[N+](=O)[O- 1.68 1.447 

https://chemaxon.com/marvin
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])CCS(=O)(=O)NCCCCN1CCOCC1)C 

18 31 c1(n(c(cn1)[N+](=O)[O-])CCS(=O)(=O)NCCCN(C)C)C 1.57 1.173 

19 34 c1(n(c(cn1)[N+](=O)[O-

])CCS(=O)(=O)NCCCN1CCCC1)C 

1.54 1.134 

20 35 c1(n(c(cn1)[N+](=O)[O-

])CCS(=O)(=O)NCCCN1CCCCC1)C 

1.71 1.380 

21 38 c1(n(c(cn1)[N+](=O)[O-

])CCS(=O)(=O)NN1CCC(CC1)N(C)C)C 

1.67 1.398 

 

 

3.6.2. Molecular descriptors 

The molecular descriptor is the “final result of a logical and mathematical procedure, which 

transforms chemical information encoded within a symbolic representation of a molecule into a useful 

number or the result of some standardized experiment” (Consonni & Todeschini, 2010). A selected 

class of 356 2D molecular descriptors was calculated from Dragon version 7 (software available at 

http://www.talete.mi.it/index.htm.) software. These comprised E-state indices, connectivity, 

constitutional, functional, 2D atom pairs, ring, atom centered fragments and molecular property 

descriptors. Intercorrelated (|r| >0.95) and constant (variance < 0.0001) variables and other 

incompetent data were removed using a software available at http://dtclab.webs.com/software-tools 

prior to model development. This resulted in 224 Dragon descriptors which were used for modeling. 

Further, SiRMS descriptors were calculated using SiRMS (version 4.1.2.270) (Kuz’min et al., 2005) 

tool and used along with Dragon descriptors during modeling. Simplex representations of molecular 

structure (SiRMS) descriptors are a class of molecular descriptors developed from 1D to 4D 

molecular structures involving tetratomic fragments of different simplex descriptors having 

predefined chirality, composition, and symmetry (Kuz’min et al., 2005). 

3.6.3. Model development: Application of Small Dataset Modeler 

Before development of a QSAR model, the dataset is generally divided into a training set (calibration) 

and a test set (validation). Further, a double cross validation method (Roy & Ambure, 2016) of model 

development involves two nested cross-validation loops: internal (inner) and external (outer) cross-

validation loops as elaborately discussed in Section 3.1.4. However, the present study deals with a 

small dataset containing a limited number of data points (21 compounds), and splitting of this dataset 

into training and test sets is not desirable. Small dataset modeling 

(http://teqip.jdvu.ac.in/QSAR_Tools/DTCLab/) involves the DCV method of modeling for small 

datasets without dividing the dataset into training and test sets (Ambure et al., 2019). Here the 

‘modeling set’ in the inner loop is not generated. However, deriving all possible combinations (k) of 

the validation set (containing n compounds) and the calibration set (containing n − r compounds) is 

followed. The tool has an option for the user to define the number of compounds to be kept in the 

validation set (r) depending on which the calibration and validation sets are defined.  Calibration set 

compounds are used for the generation of Genetic Algorithm-Multiple Linear Regression (GA-MLR) 

(Devillers, 1996) models, and the validation sets are utilized for model prediction purpose. A number 

of internal and external validation metrics are calculated in the exhaustive double cross-validation 

technique for all the selected models. Additionally, the software also derives Partial Least Squares 

(PLS) (Wold et al., 2001) regression models corresponding to each MLR model. Further, the selection 

of best/top model can be done in any of the five following methods mentioned: 

i) Model (MLR/PLS) with the lowest mean absolute error or MAE (95%) in the validation set is 

selected. 

http://www.talete.mi.it/index.htm
http://dtclab.webs.com/software-tools
http://teqip.jdvu.ac.in/QSAR_Tools/DTCLab/
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ii) Model (MLR/PLS) with the lowest MAE (95%) in the modeling set is selected. 

iii) Model (MLR/PLS) with the highest 𝑄Leave‑many‑out
2  (modeling set). 

iv) Application of consensus modeling by using top ranking models selected based on the MAE 

(95%) values in the respective validation sets. Two types of consensus approaches include: a) simple 

arithmetic average of predictions from all the selected top models. b) weighted average of predictions 

by assigning appropriate weights to the selected top models based on the mean absolute error obtained 

from leave-one-out cross-validation, MAEcv(95%). 

v) A pool of unique descriptors from the top 3 models with lowest MAE (95%) of the validation 

set is used. These descriptors are used for further model development purpose. In case of MLR, Best 

Subset Selection (BSS) method is used which finds the best combinations of descriptors out of all the 

possible combinations of unique descriptors present in the selected models. In case of PLS models, 

the models are formed by all descriptors selected in the top models through a PLS run.  

The approach proposed in small dataset modeler (Figure 3.4) thus ensures the division of small 

dataset internally within the DCV algorithm without the actual need of a test set. Thus, there is no 

requirement of the dataset division. The small dataset modeling approach combines data curation, 

exhaustive double cross validation, and optimal model approaches including consensus predictions for 

model development, particularly for small datasets. 

 

Figure 3.4. The approach adopted to develop QSAR models for small-sized dataset using  

Small Dataset Modeler 

 

3.6.4. Statistical validation metrics 

A rigorous analysis using multiple approaches of assessment of the model quality for measurement of 

the fitness, stability, robustness, and predictivity of the developed models was carried out. In the 

present work we have computed various statistical parameters like determination coefficient (𝑅2) and 

leave one out squared correlation coefficient (𝑄𝐿𝑂𝑂
2 ) for internal validation. We have also calculated 

the leave-many-out squared correlation coefficient (𝑄𝐿𝑀𝑂(20%)
2 ) for the final PLS models (Roy et al., 

2015a). Further, 𝑟𝑚
2  metrics (Ojha et al., 2011), root mean square error (RMSE), and mean absolute 

error (MAE) were also calculated (Roy et al., 2016). 
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3.7. Study 7: Nitroaromatics as hypoxic cell radiosensitizers: A 2D-QSAR approach to 

explore structural features contributing to radiosensitization effectiveness 

 

3.7.1. The dataset 

The radiosensitization effectiveness (pC1.6) data for three nitroaromatics datasets (nitrofurans, 

nitrothiophenes and nitroimidazoles) were obtained from the previously published literature (Long & 

Liu, 2010; Naylor et al., 1990; Threadgill et al., 1991). The datasets comprised 18 nitrofuran 

analogues, 11 nitrothiophenes and 84 nitroimidazole derivatives in the composite set. ‘C1.6’ is a term 

used to explain the radiosensitization capacities; this is the molar concentration of the compound 

required to give a sensitizer enhancement ratio (SER) of 1.6. Thus, lower value for C1.6 will give 

greater sensitizing efficiency. For an efficient analysis, the C1.6 values were converted into their 

negative logarithmic scale (pC1.6). The structures in the datasets were drawn in MarvinSketch 

software (version 14.10.27) (software available at https://chemaxon.com/marvin) with proper 

aromatization and hydrogen bond addition and saved as MDL.mol format. 

Table 4.7. Experimental radiosensitization effectiveness (pC1.6) data for three nitroaromatics datasets 

(nitrofurans, nitrothiophenes and nitroimidazoles) 

Nitrofuran Dataset 

Compound ID Structure pC1.6 

NF-1 

 

1.301 

NF-2 

 

1.301 

NF-3 

 

1.602 

NF-4 

 

1.000 

NF-5 

 

1.301 

https://chemaxon.com/marvin
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NF-6 

 

1.301 

NF-7 

 

1.699 

NF-8 

 

1.398 

NF-9 

 

1.301 

NF-10 

 

1.523 

NF-11 

 

1.523 

NF-12 

 

2.097 
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NF-13 

 

2.097 

NF-14 

 

1.456 

NF-15 

 

1.602 

NF-16 

 

1.125 

NF-17 

 

1.398 

NF-18 

 

2.000 

Nitrothiophene Dataset 

Compound ID Structure pC1.6 
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NS-1 

 

1.000 

NS-2 

 

0.000 

NS-3 

 

1.155 

NS-4 

 

1.155 

NS-5 

 

1.523 

NS-6 

 

1.301 

NS-7 

 

0.699 

NS-8 

 

1.097 

NS-9 

 

1.301 
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NS-10 

 

1.301 

NS-11 

 

1.222 

Nitroimidazole dataset (Same as given in Study 5: Table 3.5) 

 

3.7.2. Descriptor calculation 

Before a QSAR model is developed, the structural information is converted into numerical values 

known as descriptors (Todeschini & Consonni, 2008). The three curated datasets were used for the 

calculation of descriptors using Dragon version 7 software. Specific classes of descriptors were used 

for model development including: connectivity, constitutional, topological, E-state indices, functional, 

2D atom pairs, 2D autocorrelation, ring, atom-centered fragments and molecular property descriptors. 

Descriptor were pre-treated to reduce redundant and noisy data; constant (variance < 0.0001) and 

intercorrelated (|r| >0.95) variables were removed using an in-house software available at http:// 

dtclab.webs.com/software-tools before model development. 

3.7.3. Data set splitting and model development 

Rational splitting of a dataset into training and test sets is a crucial step before a QSAR model 

development leading to the establishment of the models’ predictive power. However, a general 

problem faced by in silico researchers during the development of ideal QSAR models is the non-

availability of sufficient data suitable for data set splitting. Datasets with 25-50 datapoints or even less 

are difficult to divide into training and test sets and there is less chance of getting robust and 

predictive models. Ambure et al. (Ambure et al., 2019) proposed a method for small datasets which 

does not require the step of data set division. “Small dataset modelling” as proposed by these authors 

involves the Double Cross Validation (DCV) method (Baumann & Baumann, 2014; Roy & Ambure, 

2016). In this method, the entire dataset of n compounds is taken under consideration. The process 

involves the generation of all possible combinations (k) of the validation set (each containing r 

compounds) and the calibration set (containing n − r compounds). Here, the user is allowed to set the 

‘r’ value, i.e., the number to compounds to be retained in the validation set and depending on that all 

probable combinations of calibration and validation sets are generated. The models are generated 

using Multiple Linear Regression (MLR) (Aiken et al., 2003) method using Genetic Algorithm (GA) 

method of feature of selection. In this scheme of exhaustive DCV, several important validation 

metrics are calculated for all the elected models. The selection of the best models is dependent on a 

set of criteria discussed in the source literature (Ambure et al., 2019). In the current study, the number 

of data points for nitrofurans and nitrothiophenes is relatively very small (18 and 11 respectively) for 

dataset division. Hence, we have utilised the “small dataset modelling” technique for efficient model 

development for these datasets. For the nitrofuran dataset, we have chosen the best Multiple Linear 

Regression (MLR) (Aiken et al., 2003) model developed using the MLR plus Validation 1.3 tool 

available from https://dtclab.webs.com/software-tools. However, for the nitrothiophene dataset, the 

descriptors of the best MLR model were subjected to Partial Least Squares (PLS) regression [34] 



Chapter 3 Materials and Methods 

 

 
70 

 

using the Partial Least Squares tool (available from https://dtclab.webs.com/software-tools). Note that 

PLS is a robust and generalized version of MLR which converts the original sets of descriptors into 

new latent variables which are lower in number in comparison to the descriptors appearing in 

corresponding MLR model (Wold et al., 2001). PLS can handle numerous and noisy variables and do 

not suffer from the inter-correlation problem. 

In case of the nitroimidazole dataset with 84 datapoints, the Genetic Algorithm Multiple Linear 

Regression (GA-MLR) (Devillers, 1996) method was applied for the feature selection on the whole 

dataset. A pool of ten descriptors (features) was selected after this process which were further 

subjected to the Best Subset Selection (BSS) method which finds the best combinations of descriptors 

out of all the possible combinations of unique descriptors present in the selected models. The best 

descriptor combination obtained in this process were further subjected to PLS regression using the 

Partial Least Squares tool (available from https://dtclab.webs.com/software-tools) to obtain better 

quality model. In this work, we have not divided the nitroimidazole dataset though it has sufficient 

amount of data points because division of the data set was earlier performed by our group in a 

previous work (De et al., 2020). Thus, we have developed three local models from undivided data 

sets: nitrofuran model, nitrothiophene model and nitroimidazole model. These data sets were further 

clubbed to form a global dataset which was then modelled. 

 

During modeling the global dataset, the compounds were split into training and test sets using 

Kennard-Stone method (Saptoro et al., 2012) in Dataset Division GUI 1.2 software tool available 

from https://dtclab.webs.com/software-tools. The dataset was divided into training and test sets in 7:3 

ratio. Here, Genetic Algorithm method was used in the Double Cross Validation tool for variable 

selection. A pool of 16 descriptors was selected and the final model was generated using PLS 

regression method using the Partial Least Squares tool (available from 

https://dtclab.webs.com/software-tools) using descriptors selected from best subset selection (BSS). 

Figure 3.4 shows the flowchart of present work methodology showing local and global modeling. 

 

3.7.4. Statistical validation metrics 

During the course of the present work, we have performed rigorous analysis using multiple 

approaches of assessment of the model quality for measurement of the stability, robustness, fitness, 

and predictivity of the developed models. We have computed various statistical metrics like 

determination coefficient (𝑅2), adjusted determination coefficient (𝑅𝑎𝑑𝑗
2 ) and leave-one-out squared 

correlation coefficient (𝑄𝐿𝑂𝑂
2 ) for internal validation (Roy, 2007). We have also computed the leave-

many-out squared-correlation coefficient (𝑄𝐿𝑀𝑂(20%)
2 ) (Roy et al., 2015a). For external validation, in 

case of the global model, parameters like 𝑅𝑝𝑟𝑒𝑑
2  or 𝑄𝐹1

2 , 𝑄𝐹2
2  and concordance correlation coefficient 

(CCC) were calculated (Kunal Roy & Mitra, 2011). Furthermore, we have also calculated the 𝑟𝑚
2  

metrics (both 𝛥𝑟𝑚
2  and 𝑟𝑚

2̅̅ ̅ ) (Ojha et al., 2011) and validated the models using root mean squared error 

(RMSE) and mean absolute error (MAE) based criteria (Roy et al., 2016). 

 

https://dtclab.webs.com/software-tools
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Figure 3.5. The methodology of the present work involving local and global QSAR models. 
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4. Results and Discussions 

4.1. Study 1: Application of multilayered strategy for variable selection in QSAR modeling 

of PET and SPECT imaging agents as diagnostic agents for Alzheimer’s disease 

 

In the present study, PET and SPECT imaging agent datasets for both Aβ plaques and tau fibrils were 

modeled for their binding affinity using the PLS regression method. For Aβ dataset, the models for 

the individual PET and SPECT datasets were developed using PLS regression method after Stepwise 

Multiple Linear Regression (S-MLR) method. In case of the tau dataset, the final descriptors for the 

PLS model were obtained from Best Subset Selection (BSS) which was carried out on a pool of 

descriptors obtained from Double Cross Validation-Genetic Algorithm (DCV-GA) method of model 

development. The developed models are statistically robust and predictive to be used for data gap 

filling as suggested by the obtained values of the different validation metrics as given later. 

 

4.1.1. Descriptor Interpretation from QSAR models 

 

4.1.1.1. Modeling of PET imaging agents against Aβ plaques 

PLS model 1 having 4 latent variables (LV) shown in Table 1 gives acceptable values of the 

determination coefficient 𝑅2 (0.766) and cross-validated determination coefficient (𝑄𝐿𝑂𝑂
2 =0.600). The 

predictivity of the model was analyzed by predictive 𝑟2 (𝑜𝑟 𝑟𝑝𝑟𝑒𝑑
2 = 0.534) or 𝑄𝐹1

2  which shows 

acceptable predictivity for the test set compounds. The experimental and predicted pKi values for 

model 1 are given in the Supplementary Materials. The scatter plot of observed versus predicted pKi 

values are given in Fig. 4.1(a). 

 

 

 

Figure 4.1. Observed vs predicted scatter plot for PET (a) and SPECT (b) imaging agents against beta 

amyloid 

 

The descriptor TPSA(Tot) (a molecular property related descriptor) representing the topological polar 

surface area using N, O, S, P polar contributions shows a negative correlation to the binding affinity 

of PET imaging agents. The TPSA descriptor shows the importance of interaction of the O-, N-, S- 

and P- centered fragments towards beta amyloid plaques (Figure 4.2). For example, compounds like 
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A-P-30 (TPSA(Tot)=122.79), A-P-29 (TPSA(Tot)=104.33) and A-P-52 (TPSA(Tot)=90.94) having 

more number of O-, N-, S- and P- centered fragments have low pKi values (3.20, 3.91 and 3.19 

respectively). On the other hand, compounds like A-P-63 (TPSA(Tot)=36.61), A-P-31 

(TPSA(Tot)=32.26) and A-P-21 (TPSA(Tot)=30.49) having lower number of aforementioned 

fragments have high pKi values (4.55, 4.62 and 4.54 respectively). From this observation, we can 

conclude that hydrophobicity enhances the binding of PET imaging agents to amyloid plaques. 

 

The descriptor T(O..S), a 2D atom pair descriptor, denotes the sum of topological distances between 

oxygen and sulfur. This descriptor has a positive contribution to the binding affinity of the imaging 

agents, thus with an increase in the total sum of topological distances between oxygen and sulfur 

atoms, the binding affinity will increase and vice versa (Figure 4.2). In compounds like A-P-1, A-P-

51, A-P-48 and A-P-49, the high values for T(O..S) (T(O..S) = 4) contribute to higher pKi values 

(5.07, 4.36, 4.31 and 4.72 respectively) whereas in compounds like A-P-43, A-P-30 and A-P-52 the 

descriptor value is low (T(O..S) = 0 for all) resulting in low pKi values (3.43, 3.20 and 3.19 

respectively). 

 

The descriptor B10[C-C], another 2D atom pair descriptor, denotes the presence or absence of C-C at 

topological distance 10. The positive regression coefficient of this parameter suggested that presence 

of such fragment at the topological distance 10 enhances the binding affinity (Figure 4.2) as shown in 

compounds like A-P-1, A-P-51, A-P-48 and A-P-49. On the other hand, compounds like A-P-52, A-

P-43 and A-P-59 show poor binding affinity due to the absence of such fragments. Here, size (the 

distance between C and C atoms at 10 reflects the size of the molecules) plays an important role for 

the binding affinity. 

 

The descriptor nArX (functional group count descriptor) represents the number of halogen (X) on the 

aromatic ring contributing positively towards the binding affinity of the PET imaging agents (Figure 

4.2). In compounds like A-P-8, A-P-56 and A-P-57, the presence of one halogen on the aromatic ring 

contributes for the high binding affinity (pKi = 4.64, 4.77 and 4.56 respectively) whereas in 

compounds like A-P-43, A-P-52 and A -P-59 the absence of halogen group on the aromatic ring 

reduces the pKi value (3.43, 3.19 and 3.94 respectively).  

 

The descriptor nHDon (functional group count descriptor) denotes the number of donor atoms for H-

bonds (N and O). The descriptor shows a positive contribution towards binding affinity (pKi) as 

shown in compounds like A-P-1 (Fig.2), A-P-8, A-P-31 and A-P-58 all having two hydrogen bond 

donor sites and hence have higher pKi values (5.07, 4.64, 4.62 and 4.64 respectively). On the other 

hand, in compounds like A-P-30 (nHDon = 1) and A-P-62 (nHDon = 0) (Figure 4.2), the pKi values 

are low (3.20 and 3.92 respectively). 
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Figure 4.2. Descriptor contribution on binding affinity with respect to model 1 (PET dataset against 

beta amyloid) 

 

4.1.1.2. Modeling SPECT imaging agents against Aβ plaques 

PLS model 2 with 3 LVs (in Table 1) could explain 77.1% of the variance (adjusted determination 

coefficient). The leave one out (LOO) cross-validated determination coefficient (𝑄2= 0.758) above 

the critical value of greater than 0.5 suggests the statistical reliability of the model. The experimental 

and predicted pKi values for model 2 are given in the Supplementary Materials. The scatter plot of 

observed versus predicted pKi values are given in Fig. 4.1(b).  

The descriptor SAacc, a molecular property type descriptor, denotes the surface area of acceptor 

atoms from P_VSA-like descriptors. It shows a positive contribution to the binding affinity of SPECT 

imaging agents as shown in Fig.4.3. The positive regression coefficient indicates that with an increase 

in the descriptor value, the binding affinity will increase as seen in compounds like A-S-54, A-S-5 

and A-S-35 and vice versa as seen in compounds like A-S-73, A-S-76 and A-S-85. Thus, the presence 

of hydrogen bond donor atoms is beneficial for good binding to beta amyloid plaques. 

 

The descriptor F05[C-C] (a 2D atom pair descriptor), depicts the frequency of C-C at the topological 

distance 5, and it has a negative contribution towards the binding affinity pKi. This indicates that with 

an increase in the descriptor value (which is an indicator of size and shape), the pKi value will 

decrease and vice versa as shown in Fig.4.3. In compounds like A-S-5, A-S-65, A-S-64 and A-S-63 

the values for the descriptors are high as A-S-26, A-S-25, A-S-24 and A-S-23 respectively thus 

making the pKi values low (3.23, 3.52, 3.07 and 2.21 respectively) whereas in compounds like A-S-6, 

A-S-15 and A-S-16 (having low F05[C-C] values) the pKi values are high (4.74, 4.53 and 4.63). 
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Table 1: QSAR models for PET and SPECT imaging agents 

Model 

No. 
Target Dataset Model 

Latent 

Variables 

(LVs) 

1 
Amyloid beta 

(Aβ) 
PET 

𝑝𝐾𝑖 = 3.987 − 0.012 × 𝑻𝑷𝑺𝑨 (𝑻𝒐𝒕) + 0.112 × 𝑻(𝑶. . 𝑺) + 0.685 × 𝑩𝟏𝟎[𝑪 − 𝑪] + 0.382
× 𝒏𝑨𝒓𝑿 + 0.224 × 𝒏𝑯𝑫𝒐𝒏 

𝑁𝑡𝑟𝑎𝑖𝑛 = 29, 𝑅2 = 0.766, 𝑅𝑎𝑑𝑗
2 = 0.727, 𝑄𝑙𝑜𝑜

2 = 0.600, 𝑀𝐴𝐸 (𝑡𝑟𝑎𝑖𝑛) = 0.236, 𝑅𝑀𝑆𝐸𝑐

= 0.219 
𝑁𝑡𝑒𝑠𝑡 = 9, 𝑄𝐹1

2 = 0.534, 𝑄𝐹2
2 = 0.534, 𝑀𝐴𝐸 (𝑡𝑒𝑠𝑡) = 0.296, 𝑅𝑀𝑆𝐸𝑝 = 0.393 

 

4 

2 
Amyloid beta 

(Aβ) 
SPECT 

𝑝𝐾𝑖 = 3.536 + 0.015 × 𝑺𝑨𝒂𝒄𝒄 − 0.042 × 𝑭𝟎𝟓[𝑪 − 𝑪] − 0.284 × 𝑭𝟎𝟗[𝑪 − 𝑭] − 0.911
× 𝒏𝑹𝟏𝟎 + 0.252 × 𝑭𝟎𝟑[𝑪 − 𝑰] 

𝑁𝑡𝑟𝑎𝑖𝑛 = 55, 𝑅2 = 0.771, 𝑅𝑎𝑑𝑗
2 = 0.758, 𝑄𝑙𝑜𝑜

2 = 0.700, 𝑀𝐴𝐸 (𝑡𝑟𝑎𝑖𝑛) = 0.367, 𝑅𝑀𝑆𝐸𝑐

= 0.394 
𝑁𝑡𝑒𝑠𝑡 = 18, 𝑄𝐹1

2 = 0.739, 𝑄𝐹2
2 = 0.736, 𝑀𝐴𝐸 (𝑡𝑒𝑠𝑡) = 0.369, 𝑅𝑀𝑆𝐸𝑝 = 0.421 

3 

3 Tau 

PET and 

SPECT 

combined 

𝑝𝐾𝑖 = 0.157 + 0.0185 × 𝑫/𝑫𝒕𝒓𝟎𝟗 + 0.139 × 𝑺𝒂𝒂𝑪𝑯 − 0.176 × 𝑺𝒔𝒔𝑪𝑯𝟐 − 0.467
× 𝑩𝟎𝟖[𝑵 − 𝑭] 

𝑁𝑡𝑟𝑎𝑖𝑛 = 22, 𝑅2 = 0.910, 𝑅𝑎𝑑𝑗
2 = 0.889, 𝑄𝑙𝑜𝑜

2 = 0.839, 𝑀𝐴𝐸 (𝑡𝑟𝑎𝑖𝑛) = 0.229, 𝑅𝑀𝑆𝐸𝑐

= 0.198, 𝑟𝑚(𝑙𝑜𝑜)
2̅̅ ̅̅ ̅̅ ̅̅ = 0.781, 𝛥𝑟𝑚(𝑙𝑜𝑜)

2 = 0.032 

𝑁𝑡𝑒𝑠𝑡 = 9, 𝑄𝐹1
2 = 0.865, 𝑄𝐹2

2 = 0.850, 𝑀𝐴𝐸 (𝑡𝑒𝑠𝑡) = 0.275, 𝑅𝑀𝑆𝐸𝑝 = 0.325,

𝑟𝑚(𝑡𝑒𝑠𝑡)
2̅̅ ̅̅ ̅̅ ̅̅ ̅ = 0.768, 𝛥𝑟𝑚(𝑡𝑒𝑠𝑡)

2 = 0.114 

3 
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The descriptor F09[C-F] (a 2D atom pair descriptor), denotes the frequency of C-F at the topological 

distance 9 and shows a negative correlation with the binding affinity. This descriptor indicates both 

presence of a fluorine atom and size of the compound. A higher occurrence of C-F at topological 

distance 9 will decrease the binding affinity as observed in compounds A-S-41 (pKi = 3.42), A-S-47 

(pKi = 3.38) and A-S-63 (pKi = 2.21) whereas in compounds like A-S-52, A-S-54, A-S-34 and A-S-

33 with the absence of such groups the binding affinity is high (5.77, 5.96, 4.98 and 4.89 respectively) 

(shown in Fig.4.3).  

 

The descriptor nR10, a ring descriptor, indicates the number of 10 membered rings present in the 

compounds (here 4H‑1‑benzopyran ring), and the descriptor provides a negative contribution to the 

binding affinity. Compounds like A-S-17, A-S-18 and A-S-20 each containing one 10 membered ring 

has a low binding affinity value (pKi = 3.68, 3.58 and 2.66 respectively) whereas compounds like A-

S-52, A-S-54 and A-S-34, the absence of any 10 membered ring contributes to higher values of the 

binding affinity (shown in Fig.4.3). 

 

The descriptor F03[C-I], (a 2D atom pair descriptor), represents the frequency of C-I at the 

topological distance 3 has a positive contribution towards the binding affinity. Thus, with an increase 

in the value for this descriptor, the pKi value will increase as seen in compounds A-S-52, A-S-33 and 

A-S-34 (5.77, 4.89 and 4.98 respectively) whereas with a decrease in the value of F03[C-I], the pKi 

value will also decrease as seen in A-S-76, A-S-78 and A-S-85 (2.55, 2.85 and 2.70 respectively) 

(Fig.4.3). 

 

 

Figure 4.3. Descriptor contribution on binding affinity with respect to model 2 (SPECT dataset 

against beta amyloid) 
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4.1.1.3. Modeling PET and SPECT imaging agents against tau protein 

PLS model 3 with 3 latent variables (LVs) evolved as the best model, and it could show good 

statistical robustness and predictivity. Acceptable values for determination coefficient 𝑅2 (0.910) and 

cross-validated determination coefficient (𝑄𝐿𝑂𝑂
2 =0.899) were obtained. The predictivity of the model 

was analyzed by predictive𝑟2 (𝑜𝑟 𝑟𝑝𝑟𝑒𝑑
2 = 0.865) or 𝑄𝐹1

2  which shows good predictivity for the test 

set compounds. The scatter plot of observed versus predicted pKi values are given in Fig. 4.4. 

 

 
Figure 4.4. Observed vs predicted scatter plot for PET and SPECT imaging agents against tau protein 

The descriptor with the highest contribution, D/Dtr09 (i.e., distance/detour ring of order 9) is a ring 

descriptor which is based on operations made on distance or detour matrix D/Δ. The detour matrix is 

square symmetric matrix that contains the ratios of the lengths of the shortest to the longest path 

between any pair of vertices. The term D/Δ is calculated by: 

𝐷/∆= ∑ ∑(𝐷/∆)𝑖 𝑗

𝐴

𝑗=1

𝐴

𝑖=1

 

Here, Δ is the detour distance (Benfenati, 2011; Chartrand et al., 1993). This descriptor shows a 

positive contribution which indicates its positive influence on the binding affinity of the imaging 

agents as observed in compounds like T-P-3 (D/Dtr09=112.603), T-P-1 (D/Dtr09=96.788) and T-P-

30 (D/Dtr09=87.895) having higher binding affinities (3.96, 3.92 and 4.32 respectively). On the other 

hand, compounds like T-S-25 (pKi=1.31), T-P-9 (pKi=1.58) and T-S-26 (pKi=1.81) have low pKi 

values corresponding to low values for the descriptor (D/Dtr09=0 for all three compounds). Figure 5 

shows how the descriptor D/Dtr09 contributes towards the binding affinity of the imaging agents. 

 

The next important descriptor SaaCH, anE-state descriptor, denotes the sum of E-state of atom type 

aaCH where aaCH represents –CH groups in benzene nucleus. The descriptor shows a positive 

contribution to the binding affinity suggesting that the presence of such groups would increase the 

binding affinity as seen in compounds like T-P-5 (SaaCH=17.67, pKi=3.11) and T-P-1 

(SaaCH=16.71, pKi=3.92), while in compounds like T-S-25 (SaaCH=11.67, pKi=1.31) and T-S-26 

(SaaCH=11.59, pKi=1.81), the occurrence of such fragment is less resulting in less binding affinity 

(Figure 5). 
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The third descriptor SssCH2 is also an E-state descriptor, signifying the sum of E-state of atom type ssCH2 (-CH2-), which has a negative regression 

coefficient. This indicates that with an increasing descriptor value, the binding affinity will decrease as seen in compoundsT-P-19 (SssCH2=0.78, pKi=2.01) 

and T-S-25 (SssCH2=0.65, pKi=1.31) (in Fig. 5). The opposite occurs when the descriptor value is less, i.e., the binding affinity becomes higher as observed 

in compounds like T-P-2 (SssCH2=-0.48, pKi=3.19) and T-P-5 (SssCH2=-0.88, pKi=3.11) (in Figure 5). 

 

The least important descriptor is B08[N-F], a 2D atom pair descriptor, which denotes the presence or absence of N-F at the topological distance 8. The 

negative regression coefficient of this parameter suggests that presence of such fragment at the topological distance 8 is detrimental to the binding affinity as 

shown in compounds like T-P-8 (pKi=2.23) and T-P-18 (pKi=1.85). On the other hand, compounds like T-S-28, T-S-29 and T-S-30 show good binding 

affinity due to the absence of such fragments. Figure 5 shows the contribution of B08[N-F] descriptor. 

 

 
Figure 4.5. Descriptor contribution on binding affinity with respect to model 3 (PET and SPECT in tau protein) 
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4.1.2. Interpretation of PLS plots 

 

4.1.2.1. Variable importance plot 

The variable importance plot (VIP) (Akarachantachote et al., 2014) signifies the order of contribution of each descriptor. The most and least important 

descriptors can be identified using this plot. A variable with VIP score >1 indicates the descriptor’s higher statistical significance as compared to the one with 

a lower VIP value.The descriptors from higher to lower contribution for all the three models are given in Fig. 4.6. 

 
Figure 4.6. Variable importance plot (VIP) of the three PLS models 
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4.1.2.2. Regression coefficient plot 

The regression coefficient plot (Wold et al., 2001) (Fig. 4.7) gives information about the positive or negative contribution of descriptors towards the activity 

of the compounds. In case of model 1 for the PET dataset against Aβ fibrils, the descriptors like T(O..S), B10[C-C], nArX and nHDon having a positive 

regression coefficient signify that with an increase in the descriptor value the binding affinity increases, whereas descriptor having negative coefficients like 

TPSA(Tot) decrease the binding affinity with their increasing numerical values. In case of model 2 for the SPECT dataset against Aβ fibrils, SAacc and 

F03[C-I] descriptors have positive contributions (positive regression coefficients) whereas other three descriptors (F05[C-C], F09[C-F and nR10) have 

negative regression coefficients. For model 3, i.e., in case of tau protein dataset, it was found that descriptors D/Dtr09 and SaaCH have a positive regression 

coefficient and other two descriptors like SssCH2 and B08[N-F] have negative coefficients thereby decreasing pKi values significantly. 

 
Figure 4.7. Regression coefficient of the three PLS models 
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4.1.2.3. Score plot 

The distribution of the compounds in the latent variable space as defined by the scores is expressed in a score plot (Figure 4.8) (Jackson, 2005). From the 

plot, one can conclude that compounds that are situated near each other have similar characteristics or properties, whereas compounds which are far from 

each other have dissimilar properties with respect to their binding affinity. Compounds which are outside the ellipse in the plot are outliers. The Score plots 

for the derived models are shown in Figure 4.8. 

 
Figure 4.8. Score plot of the PLS models 
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4.1.2.4. Loading plot 

The relationship between the X-variables and Y-variables can be understood by the loading plot (Fig. 4.9) (Wold et al., 2001). The loading plot was 

developed using the first two PLS components in all the three cases. The influence of different variables on the model can be understood from the loading 

plot. Descriptors that are grouped together have similar meanings and similar effects on the response. Descriptors with different meaning are situated at a 

considerable distance from each other. Any descriptor situated far from the plot origin is considered to have a greater impact on the response. 

 
Figure 4.9. Loading plot of the three PLS models 
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4.1.2.5. Applicability Domain 

The applicability domain (AD) provides a theoretical region in chemical space defined by the respective model descriptors and responses in which the 

predictions are reliable (Gadaleta et al., 2016). The AD assessment of the proposed model for the imaging agents were performed according to the DModX 

(distance to model in the X-space) approach using SIMCA-P software. Figures 4.10, 4.11 and 4.12 show the AD plots of the three models. 

 
Figure 4.10. DModX Applicability Domain plot of Model 1 
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Figure 4.11. DModX Applicability Domain plot of Model 2 
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Figure 4.12. DModX Applicability Domain plot of Model 3 
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4.1.2.6. Y-randomization 

The statistical significance of the model is analyzed by a randomization plot (Figure 4.13). The randomization plot authenticates that the model is not the 

result of any chance correlation (Rücker et al., 2007).The randomization process provides a number of models by shuffling different combinations of X or Y 

variables (here Y-variable only) based on the fit of the reordered model. Here we have used 100 permutations for random model generation, though the 

number of permutations can be changed. To avoid chance correlation, the basic statistics of the randomization models (Q2 and R2) should be poor and not 

within the range of those for acceptable regression models (RY
2 intercept should not exceed 0.3 and QY

2 intercept should not exceed 0.05) (Rücker et al., 

2007). The randomization plots given in Fig. 4.13 show that the developed models are non-random and robust, and are suitable for prediction of the binding 

affinity of the imaging agents within the AD of the model.  

 
Figure 4.13. Y-randomization plots of 3 models
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4.1.3. Molecular docking 

Molecular docking studies yield critical information related to the orientation of the imaging agents at 

the binding zone of the enzyme and the information about the intermolecular interaction between 

protein and ligands at molecular level. The aim in the present study was to understand the interactions 

occurring between the two proteins and different PET and SPECT imaging agents and correlate the 

observations found with the QSAR results. It was found that hydrogen bonding and π bonding 

interactions were predominant. The ligand-receptor interaction analysis suggests that the imaging 

agents interact with both polar and non-polar amino acids. 

 

4.1.3.1. Molecular docking for selected PET imaging agents against Aβ plaques 

In cases of compounds A-P-2 and A-P-56 which have higher binding affinity (pKi = 5.15 and 4.77 

respectively), the interaction forces include hydrogen bonds (carbon-hydrogen bonds (Alkorta et al., 

1998), conventional hydrogen bonds and π-donor hydrogen bonds), π interactions (π-sulfur bond, π-π 

T shaped bond and π-alkyl bonds) and unfavorable acceptor-acceptor bond. The number of interacting 

residues is higher in case of these compounds thus supporting their high values of binding affinity. 

The amino acid residues interacting with compound A-P-2 are Val D:39, His B:13 and Val D:36. 

Fig. 4.14 shows the interactions obtained for the most stable pose where it is found that Val D:39 and 

His B:13 show π-alkyl (Echeverría, 2017; Ribas et al., 2002) and π-π T shaped (Martinez & Iverson, 

2012) interactions respectively with the ligand due to the presence of unsaturation in the aromatic 

nuclei. Also sulphur in the thiazole nucleus interacts with the aromatic nucleus (thiazole moiety) of 

histidine making π-sulphur interaction. On the other hand, Val D:36 makes carbon-hydrogen bond 

with the ligand.In compound A-P-56, the interacting amino acids include Val A:12, His B:13, Val 

D:36 and Val D:39. In Fig. 4.14, the different interactions are shown. Hydrogen bonds like carbon-

hydrogen bonds and π-donor hydrogen bonds are found with Val D:36 and His B:13 respectively. The 

alkyl part of Val A:12 interacts with Bromine and other π bonds are formed with Val D:39 and His 

B:13 residues.  

 

PET compounds like A-P-52 and A-P-50 having low binding affinity (pKi= 3.19 and 3.34) show 

similar kind of interactions (hydrogen and π bonds) as in case of higher affinity compounds, but the 

number of interacting amino acid residues are much less as shown in Fig. 4.14. Val D:39 was found to 

interact with both the ligands forming π-alkyl interactions. In compound A-P-52, the nitrogen of 

cyano group forms hydrogen bond with Val E:36 whereas in compound A-P-50, His B:13 shows π 

interactions (π-donor Hydrogen and π-π interactions) with the ligand. The docking sites for both high 

and low binding affinity PET imaging agents targeted against Aβ are given in Table 4.2. 

 

Relation with QSAR models 

In the docking study, it is observed that formation of hydrogen bonds between the ligands and 

receptor plays a vital role in binding. This observation supports the occurrence of TPSA(Tot) (total 

polar surface area using N, S, O and P polar contributions) and nHDon (number of donor atoms) 

descriptors in the QSAR models. Furthermore, formation of π-sulfur bonds can be correlated with the 

T(O..S) descriptor, where the presence of sulfur atoms in the molecules is essential. Val A12 residue 

forms hydrophobic interaction with compound A-P-56 due to the presence of bromine (halogen) 

which corroborates with the nArX descriptor proving that the presence of halogen groups is 

beneficial for binding. 
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Figure 4.14. Molecular interactions between high and low active PET imaging agents with Aβ protein 

4.1.3.2. Molecular docking for selected SPECT imaging agents against Aβ plaques 

In compounds like A-S-53 and A-S-52 having higher binding affinity (pKi = 6.0 and 5.77 

respectively), interaction forces include hydrogen bonding (carbon-hydrogen bonding , conventional 

hydrogen bonding and π-donor hydrogen bonds), π interactions (like π-alkyl, π-sigma interactions, π-

lone pair interactions and amide-π interactions) and alkyl interactions.The amino acid residues 

interacting with compound A-S-53 are Gly J:29, His B:13, Gly D:38, Leu A:17, Gly D:37, Gly 

C:37, Val D:39, Val E:39, Ile K:31 and Val D:40. In Fig.4.15, we can see the interactions for the 

most stable pose, where Val D:40, Ile K:31, Val D:39 and Leu A:17 makes π-alkyl (Echeverría, 2017; 

Ribas et al., 2002) interactions with the ligand due to the presence of unsaturation in the ligand 

moiety. Gly D:38 makes π-sigma interaction with the ligand. Hydrogen bond interactions are 

observed with Gly J:29, Val D:39, Gly D:37 and Gly C:37.  In compound A-S-52, hydrogen bond 

interaction such as carbon hydrogen bonds is observed with Gly K:29, Gly J:29 and Ala L:30 whereas 

Val D:39 makes π-donor hydrogen bond interaction. π-alkyl interaction is observed with His B:13, 
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Val D:40 and Ile K:31. The interacting amino acid residues are Ile K:31, Val D:39, Val D:40, Val 

E:39, His B:13, Ala L:30, Gly J:29 and Gly K:29. 

 

In compounds like A-S-55 and A-S-20 having low binding affinity (pKi = 2.18 and 2.66 respectively), 

similar kinds of interactions are observed like hydrogen bond and π interactions but the number of 

interacting residues are much less (Fig. 4.15). The docking sites for both high and low binding affinity 

SPECT imaging agents targeted against Aβ are given in Table 4.2. 

 

Relation with QSAR models 

From the docking study it is observed that hydrogen bonding formation between the protein receptor 

and ligand molecule plays an important role in binding affinity of the later. This observation 

corroborates with the SAacc (denotes the surface area of acceptor atoms) descriptor occurred in the 

QSAR model. 

 

4.1.3.3. Molecular docking for selected PET and SPECT imaging agents against tau protein 

The tau protein (PDB ID:6FAU) was docked with higher and lower active imaging agents in order to 

study their binding pattern and the molecular interactions occurring between them. In compounds like 

T-P-2 and T-S-29 with high binding affinities (pKi= 4.319 and 3.959 respectively), higher number of 

hydrogen bonding interactions and π-interactions have been observed. Compound T-P-2 makes 

interaction with Trp A:230, Asn A:226, Leu A:174, Val A:178 and Leu A:229 amino acid residues 

(Fig. 4.16). The stable pose makes π-alkyl interaction with Val A:178 and Leu A:174. The fluorine 

atom makes alkyl interaction with Leu A:229 and Val A:178 and halogen interaction with Asn A:226. 

The amino acid residues interacting with compound T-S-29 are Leu A:229, Val A:178, Leu A:174 

and Leu A:222. From Fig. 4.16, it is seen that π-interaction is the predominant binding mode with the 

protein (as observed with Val A:178, Leu A:174 and Leu A:222). Other interactions noticed are alkyl 

interaction and various hydrogen bonding interactions. Low affinity compounds include T-P-7 and T-

P-10 (pKi=1.311 and 1.957) which showed less number of interactions in comparison to higher 

affinity compounds (in Fig.10). Two π-alkyl interactions is observed for both the compounds, with 

Leu A:174 and Val A:178 in both the cases. The docking sites for both high and low binding affinity 

PET and SPECT imaging agents targeted against tau protein are given in Table 4.2. 

 

Relation with QSAR models 

In the docking study it is observed that π- interactions play a vital role in ligand-receptor binding. This 

observation supports the occurrence of D/Dtr09 (distance/detour ring of order 9) descriptor which is a 

ring descriptor. Increased number of aromatic nuclei will increase the value of this descriptor thereby 

increasing the binding affinity; also paving way for more π-interactions.  Also, π-interactions 

corroborate with SaaCH descriptor, where aaCH represents –CH groups in benzene nucleus. From 

the observations it is concluded that aromaticity is a major feature regulating the binding affinity of 

PET and SPECT imaging agents. 
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Figure 4.15. Molecular interactions between high and low active SPECT imaging agents with Aβ protein 
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Figure 4.16. Molecular interactions between high and low active PET or SPECT imaging agents with tau protein 
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Table 4.2: The docking site, interacting residues and different types of binding interaction occurring between the imaging agents and target protein (Aβ 

or tau) 

Dataset 
Imaging 

agents 

Compoun

d ID 
pKi 

(-)Docking 

interaction 

energy 

(kcal/mol) 

Docking site 
Interacting amino 

acids 
Binding interactions 

Beta 

amyloid 

PET 

A-P-2 5.15  23.53 

Val D:39, Gln B:13, Leu A:17, His 

B:13, Leu B:17, Val E:36, Leu C:17, 

Gly E:38, Val E:39, Val A:12, His 

A:13. 

Val D:39, His B:13,Val 

D:36 

Carbon hydrogen bond, 

unfavorable acceptor-acceptor, π-

donor hydrogen, π-sulphur, π- π 

T-shaped, π-alkyl and van der 

Waals  

A-P-56 4.77 25.71 

Val A:12, His B:13, Val E:39, Gly 

E:38, Leu B:17, Val E:36, Gly E:37, 

Val D:36, Gly D:38, Gln B:15, Val 

D:39, His A:13. 

Val A:12, His B:13, 

Val D:36, Val D:39 

Carbon hydrogen bond, π-donor 

hydrogen, π-sulphur, alkyl, π-

alkyl and van der Waals 

A-P-52 3.19  17.95 

Val E:36, Gly E:38, Gln B:15, His 

B:13, Val D:39, Gln A:15, Leu A:17, 

Gly D:38, Val D:36 

Val E:36, Val D:39 Carbon hydrogen bond, π-alkyl 

and van der Waals 

A-P-50 3.34 20.68 

Val D:39, His B:13, Gly E:38, Leu 

C:17, Val E:36, Leu B:17, Leu A:17, 

Gln B:15, Gly D:38 

Val D:39, His B:13 Carbon hydrogen bond, π-π T-

shaped, π-alkyl and van der Waals 

SPECT 

A-S-53  6.0  -7.469 

Gly J29, Ala J30, Ile J31, His B13, 

Gln B15, Gly D38, Leu A17, Gly 

D37, Gly C38, Gly C37, Val C36, 

Val D36, Leu B17, Val E36, Val 

D39, Val E39, Gly E38, Ile K31, Gly 

E37, Val D40, Ala L30, Gly K29 Ala 

K30 

Gly J:29, His B:13, Gly 

D:38, Leu A:17, Gly 

D:37, Gly C:37, Val 

D:39, Val E:39, Ile 

K:31, Val D:40 

Conventional hydrogen bond, 

carbon hydrogen bond, π-donor 

hydrogen bond, π-sigma, π-alkyl 

and van der Waals  

A-S-52 5.77 -23.89 Ile K31, Gly E38, Val D39, Gly D38, 

Gln C15, Val C39, Gly C38, Val 

Ile K:31, Val D:39, Val 

D:40, Val E:39, His 

Carbon hydrogen bond, π-donor 

hydrogen bond, alkyl, π-alkyl and 
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D36, Leu A17, Gly D37, Gln B15, 

Lys B16, Val D40, Gly E37, Val 

E39, His B13, Ala L30, Gly J29, Gly 

K29, Ala K30 

B:13, Ala L:30, Gly 

J:29, Gly K:29 

van der Waals 

A-S-55 2.18  7.20 

Ile I:31, Ile J:31, Gly C:38, Gly C:37, 

Gly D:38, Gly D:37, Leu A:17, Leu 

C:17, Gln C:16, Val E:39, Gly E:38, 

Gln B:15, Val D:39, Val C:39, Val 

D:40, Val C:40, Gly J:29, Gly I:29 

Val D:39, Val D:40, 

Gly I:29 

Carbon hydrogen bond,  alkyl, π-

alkyl and van der Waals 

A-S-20 2.66 31.87 

Val A:12, Val D:39, Leu A:17, Gly 

D:38, Leu C:17, Val D:36, Val E:36, 

Gly E:37, Gly E:38, Leu B:17, Gln 

B:15, His B:13 

Val D:39, Val D:36, 

Val E:36, His B:13 

Conventional hydrogen bond, 

carbon hydrogen bond, π-alkyl 

and van der Waals 

Tau 

protein 

PET and 

SPECT 

(combin

ed) 

T-P-2 4.319  33.49 

Trp A:230, Asn A:226, Leu A:174, 

Lys A:122, Phe A:119, Asn A:42, 

Ser A:45, Lys A:49, Val A:178, Leu 

A:229 

Trp A:230, Asn A:226, 

Leu A:174, Val A:178, 

Leu A:229 

Conventional hydrogen bond, 

halogen (Fluorine), alkyl, π-alkyl, 

water hydrogen bond and van der 

Waals 

T-S-29 3.959 19.82 

Leu A:229, Val A:178, Leu A:174, 

Leu A:222, Ile A:219, Lys A:122, 

Asn A:175 

Leu A:229, Val A:178, 

Leu A:174, Leu A:222, 

Asn A:175 

Conventional hydrogen bonds, 

alkyl, π-alkyl, water hydrogen 

bond and van der Waals 

T-P-10 1.311  34.12 

Lys A:122, Gly A:171, Asn A:175, 

Leu A:174, Glu A:182, Asn A:226, 

Val A:178 

Leu A:174, Val A:178 π-alkyl, water hydrogen bond and 

van der Waals  

T-P-7 1.957 29.80 

Leu A:174, Val A:178, Arg A:129, 

Asn A:175, Ser A:45, Val A:46, Asn 

A:42, Phe A:119, Lys A:49, Leu 

A:222, Asn A:226 

Leu A:174, Val A:178 π-alkyl, water hydrogen bond and 

van der Waals  
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4.1.4. QSAR modeling and molecular docking studies for newly designed PET and SPECT imaging agents 

A set of 12 imaging agents (6 each for both PET and SPECT) were designed for and their QSAR prediction and docking studies were performed to 

understand the binding properties towards Aβ plaques. Also, another 6 imaging agents (PET and SPECT combined) targeting tau protein were designed for 

QSAR model prediction and molecular binding. From the QSAR analysis, it was found that all the compounds designed for both Aβ and tau protein gave 

good predicted binding affinity (Table 4.3) and also falls under the model applicability domain as calculated by DModX method. The docking interactions as 

given in the Figures 4.17, 4.18 and 4.19 also support the observations found for the actual dataset compounds. Similar interactions are observed in case of the 

newly designed compounds, thus ensuring the validity of the new design. 

Table 4.3. The predicted binding affinity values and different types of molecular interactions occurring in case of the newly designed PET and SPECT 

imaging agents 

NEWLY DESIGNED PET IMAGING AGENTS FOR BETA AMYLOID 

SL 

NO. 
Structure 

Predicted 

pKi from 

QSAR 

model 

(-)Docking 

interaction 

energy 

(kcal/mol) 

Docking Site Interacting residues Type of Interactions Present 

N-1 

 

5.57 34.64 Gln C15, Gln B15, Val E39, Gly 

E37, Gly D37, Gly D38, Ile K31, 

Val D40, Ile J31, Gly J29, Ala 

J30, Val D39, Gly E38, His B13 

Val E39, Gly E37, 

Gly D37, Gly D38, 

Ile K31, Val D40, 

Val D39, Gly E38, 

His B13 

Conventional hydrogen bond 

interaction, carbon-hydrogen bond 

interaction, halogen (Fluorine) 

interaction, pi-donor hydrogen 

interaction, pi-sigma interaction, 

amide-pi stacked interaction, pi-alkyl 

interaction and van der Waals 

interaction 

N-2  

 

5.52 32.03 Gly D37, Gly C37, Val C36, Val 

D36, Leu A17, Gln B15, Val 

D39, His B13, Val E39, Gln C15, 

Gly E38, Gly D38, Val C39, Gly 

C38 

Gly D37, Gly C37, 

Val C36, Gln B15, 

Val D39, His B13, 

Val E39  

Conventional hydrogen bond 

interaction, carbon-hydrogen bond 

interaction, alkyl interaction, pi-alkyl 

interaction and van der Waals 

interaction 
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N-3  

 

5.41 31.86 Val E39, Gly E38, Gln C15, Gln 

B15, Gly D38, Leu A17, Val 

D36, Gly C37, Gly D37, Val 

C36, Gly C38, Val D39 

Val E39, Gly E38, 

Gln B15, Leu A17, 

Gly C37, Gly D37, 

Val C36, Val D39 

Conventional hydrogen bond 

interaction, carbon-hydrogen bond 

interaction, alkyl interaction, pi-alkyl 

interaction and van der Waals 

interaction 

N-4  

 

5.40 20.37 Gly E38, Gly D38, Gly E37, Val 

D36, Val E36, Lys B16, Leu 

A17, Leu B17, Gln A15, Val 

D39, Gln B15, Gln C15 

Gly E38, Gly D38, 

Val E36, Leu A17, 

Leu B17, Gln A15, 

Gln B15, Gln C15 

Conventional hydrogen bond 

interaction, carbon-hydrogen bond 

interaction, pi-lone pain interaction, 

alkyl interaction, pi-alkyl interaction 

and van der Waals interaction 

N-5  

 

5.37 30.34 Val E39, Gly E38, Gln C15, Gly 

D38, Val D36, Gly D37, Gly 

C37, Val C36, Gly C38, Leu 

A17, Gln A15, Gln B15, Val 

D39, His B13 

Val E39, Gln C15, 

Gly C37, Val C36, 

Leu A17, Val D39, 

His B13 

Conventional hydrogen bond 

interaction, carbon-hydrogen bond 

interaction, alkyl interaction, pi-alkyl 

interaction and van der Waals 

interaction 

N-6  

 

5.28 29.03 Gln B15, His B13, Gly E38, Val 

E39, Ala L30, Gly K29, Ala K30, 

Gly J29, Ile K31, Val D40, Gly 

E37, Gly D38, Val E36, Val D39, 

Gln C15 

Gln B15, Gly E38, 

Val E39, Gly J29, Ile 

K31, Val D40, Gly 

E37, Val D39, Gln 

C15 

Carbon-hydrogen interaction, halogen 

(Cl,Br,I) interaction, Sulfur-X 

interaction, pi-donor hydrogen 

interaction, pi-alkyl interaction 

NEWLY DESIGNED SPECT IMAGING AGENTS FOR BETA AMYLOID 

SL 

NO. 
Structure 

Predicted 

pKi from 

QSAR 

model 

(-)Docking 

interaction 

energy 

(kcal/mol) 

Docking Site Interacting residues Type of Interactions Present 

N-7 

 

6.91 38.21 Gly E38, Val E36, Gly E37, Gly 

D38, Leu B17, Val D39, Leu 

A17, Gly C38, Gly D37, Gln 

B15, Val D36, Gln C15, Val E39 

Gly E38, Val E36, 

Gly E37, Gly D38, 

Leu A17, Val D36, 

Gln C15 

Conventional hydrogen bond 

interaction, carbon-hydrogen bond 

interaction, amide-pi stacked 

interaction, alkyl interaction, pi-alkyl 

interaction and van der Waals 

interaction 
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N-8 

 

6.66 33.94 Gly E38, Val E39, Val A12, His 

A13, Gln A15, Gln B15, His B13, 

His A14, Val D39, Val E36, Gly 

D38 

Gln B15, His B13, 

Val D39, Val E36 

Conventional hydrogen bond 

interaction, carbon-hydrogen bond 

interaction, pi-donor hydrogen 

interaction, alkyl interaction, pi-alkyl 

interaction and van der Waals 

interaction 

N-9 

 

6.66 27.41 Val E39, Gly E38, Gly D38, Leu 

A17, Val C36, Gly C38, Gln 

A15, Val C39, Gln B15, Val D39, 

His B13 

Gly E38, Val C36, 

Val C39, Gln B15  

Carbon-hydrogen bond interaction, 

halogen (Cl, Br, I) interaction, alkyl 

interaction and van der Waals 

interaction 

N-10  

 

6.52 28.30 Val E39, Gly E38, Leu C17, Val 

E36, Leu B17, Leu A17, Gly c37, 

Gly C38, Gly D37, Gly D38, Val 

D36, Gln B15 

Val E39, Leu A17, 

Gly C37 

Conventional hydrogen bond 

interaction, halogen (Cl, Br, I) 

interaction, pi-alkyl interaction and van 

der Waals interaction 

N-11  

 

6.28 29.66 Leu A17, Gln A15, Val D36, Gly 

D38, Gly E38, leu, C17, Gln C15, 

Gln D15, Val E40, Val E39, Val 

D39, Gln B15 

Leu A17, Val D36, 

Val E39 

Unfavorable acceptor-acceptor 

interaction, alkyl interaction, pi-alkyl 

interaction and van der Waals 

interaction 
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N-12  

 

6.17 22.66 His B13, Val E39, Val D39, Gly 

E38, Gly D38, Val E36, Val D36, 

Leu B17, Leu A17, Gln B15 

His B13, Val D39 Conventional hydrogen bond 

interaction, alkyl interaction, pi-alkyl 

interaction and van der Waals 

interaction 

 
NEWLY DESIGNED PET AND SPECT IMAGING AGENTS FOR TAU PROTEIN 

SL 

NO. 

Structure 

Predicted 

pKi from 

QSAR 

model 

(-)Docking 

interaction 

energy 

(kcal/mol) 

Docking Site Interacting residues Type of Interactions Present 

N-13 

 

3.69 23.35 Ile A:219, Leu A:222, Asn 

A:175, Arg A:129, Val A:178, 

Leu A:174, Lys A:49 

Ile A:219, Arg 

A:129, Val A:178, 

Leu A:174 

π-cation, π-alkyl, water hydrogen and 

van der Waals interaction 

N-14 

 

3.57 24.35 Arg A:56, Arg A:129, Leu A:222, 

Ile A:219, Leu A:218, Leu A:174, 

Asn A:175, Val A:178, Tyr 

A:130 

Arg A:56, Arg 

A:129, Leu A:222, 

Ile A:219, Tyr A:130 

Conventional hydrogen bond, halogen 

(fluorine), π-alkyl, water hydrogen 

bond and van der Waals interaction 
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N-15 

 

3.63 33.43 Leu A:218, Ile A:219, Gly A:171, 

Leu A:222, Asn A:175, Asn 

A:226, Leu A:229, Val A:178, 

Leu A:174 

Leu A:218, Ile 

A:219, Leu A:222, 

Asn A:175, Asn 

A:226, Val A:178 

Carbon hydrogen bond, Sulfur – X, 

alkyl, π-alkyl, water hydrogen bond 

and van der Waals interaction 

N-16 

 

3.87 33.32 Asn A:226, Val A:178, Leu 

A:222, Gly A:171, Ser A:45, Lys 

A:49, Lys A:122, Arg A:129, Leu 

A:174,  

Val A:178, Lys 

A:122 Leu A:174 

π-cation, π-alkyl, water hydrogen and 

van der Waals interaction 

N-17 

 

4.51 35.87 Leu A:229, Tro A:230, Asn 

A:226, Leu A:174, Gly A:171, 

Lys A:122, Asn A:175, Val 

A:178, Glu A:182 

Leu A:229, Tro 

A:230, Asn A:226, 

Leu A:174, Gly 

A:171, Lys A:122, 

Asn A:175, Val 

A:178, Glu A:182 

Carbon hydrogen bond, π-donor 

hydrogen, alkyl, π-alkyl, water 

hydrogen and van der Waals 

interaction 

N-18 

 

4.44 36.92 Trp A:230, Leu A:229, Val 

A:178, Gly A:171, Asn A:175, 

Leu A:174 

Trp A:230, Leu 

A:229, Val A:178 

Alkyl, π-alkyl, water hydrogen and van 

der Waals interaction 
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Figure 4.17. Molecular docking results of newly designed PET imaging agents targeted against Aβ plaques showing the intermolecular interactions 
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Figure 4.18. Molecular docking results of newly designed SPECT imaging agents targeted against Aβ plaques showing the intermolecular interactions 
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Figure 4.19. Molecular docking results of newly designed PET (first 3) and SPECT (last 3) imaging agents targeted against tau protein showing the 

intermolecular interactions
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4.2. Study 2: Chemometric modeling of PET imaging agents for diagnosis of Parkinson’s 

disease: A QSAR approach 

Based on the binding affinity and selectivity endpoints of 35 xanthine PET tracer antagonists of 

adenosine A2A receptor, we have developed one model for the binding affinity (Q2=0.85, R2=0.90, 

Q2
F1=0.80) and 4 models (Q2=0.80-0.87, R2=0.87-0.91, Q2

F1=0.84-0.85) for selectivity. All the models 

were externally and internally validated which showed model robustness and good predictivity in 

terms of the statistical results. We have also checked the rm
2 parameters for both internal sets 

(𝑟𝑚(𝑙𝑜𝑜)
2̅̅ ̅̅ ̅̅ ̅̅ ̅, 𝛥𝑟𝑚(𝑙𝑜𝑜)

2 ) and external sets (𝑟𝑚(𝑡𝑒𝑠𝑡)
2̅̅ ̅̅ ̅̅ ̅̅ ̅̅  and 𝛥𝑟𝑚(𝑡𝑒𝑠𝑡)

2 ), and the statistical results were above the 

critical point justifying the reliability of the models. To improve the quality of the external prediction 

for selectivity, we also performed “Intelligent Consensus Prediction” of the multiple MLR models 

using the ICP tool (Kunal Roy et al., 2018), and found that the consensus predictions were better than 

the individual MLR model derived predictions. The winner model was consensus model 0 (CM0). 

4.2.1. Modeling binding affinity of PET tracers towards Adenosine (A2A) receptor 

The model for binding affinity consists of five descriptors: C-025, F09 [N-O], nBnz, NRS, and nCIR 

which significantly influence the binding of the antagonists to the adenosine (A2A) receptor. The 5 

descriptor MLR model (Equation 4.1) developed using Genetic Function Algorithm (GFA) could 

predict 85.0% variance of the training set and 80.0% of the test set. The values of all descriptors 

appearing in the model for training and test set compounds are given in Table 4.4. The observed 

versus predicted scattered plot is given Figure 4.20. 

𝑝𝐾𝑖(𝐴2𝐴𝑅) = −0.849(±0.2167) − 0.36271(±0.06190) × 𝑪 − 𝟎𝟐𝟓 + 0.17693(±0.05895) ×
𝑭𝟎𝟗[𝑵 − 𝑶] − 0.52109(±0.07616) × 𝑵𝑹𝑺 + 0.81699(±0.09908) × 𝒏𝑩𝒏𝒛 +
0.3024(±0.03363) × 𝒏𝑪𝑰𝑹  

𝑛𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 = 25, 𝑅2 = 0.901, 𝑅𝑎𝑑𝑗
2 = 0.875, 𝑄2 = 0.850, 𝑆 = 0.170027, 𝐹 = 34.62, 𝑃𝑅𝐸𝑆𝑆

= 0.833306, 𝑟𝑚(𝑙𝑜𝑜)
2̅̅ ̅̅ ̅̅ ̅̅ ̅ = 0.790, 𝛥𝑟𝑚(𝐿𝑂𝑂)

2 = 0.072, 𝑀𝐴𝐸 𝑏𝑎𝑠𝑒𝑑 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎

= 𝑀𝑜𝑑𝑒𝑟𝑎𝑡𝑒 

𝑛𝑡𝑒𝑠𝑡  = 10, 𝑄𝐹1
2 = 0.80, 𝑄𝐹2

2 = 0.681, 𝑟𝑚(𝑡𝑒𝑠𝑡)
2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 0.54, 𝛥𝑟𝑚(𝑡𝑒𝑠𝑡)

2 = 0.23, 𝑀𝐴𝐸 𝑏𝑎𝑠𝑒𝑑 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎 =

𝐺𝑜𝑜𝑑                                            
                                                                                             

 

Figure 4.20. Observed vs predicted A2AR binding affinity scatter plot. 
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Table 4.4. Descriptor values appearing in the model for training and test set compounds including the 

predicted pKi (A2AR) values. 

No. nCIR NRS nBnz C-025 F09[N-O] pKi(A2AR) Pred_pKi(A2AR) 

1 7 5 2 2 0 -0.4472 -0.4120 

2 7 5 2 2 0 -0.4314 -0.4120 

3* 7 5 2 1 0 0.0000 -0.0493 

4 8 4 1 0 2 0.6990 0.6737 

5* 4 2 0 0 0 -0.8195 -0.6741 

6 4 2 0 0 0 -0.5185 -0.6741 

7 5 3 1 1 0 -0.6721 -0.4346 

8* 9 4 1 0 0 1.0000 0.6241 

9* 9 4 1 0 0 0.0458 0.6241 

10 9 4 1 1 0 0.1549 0.2614 

11* 6 4 1 0 0 -0.6021 -0.2888 

12 6 4 1 1 0 -0.6990 -0.6515 

13 6 4 1 1 0 -0.4771 -0.6515 

14 5 3 1 2 2 -0.3010 -0.4435 

15 6 4 1 1 0 -0.6990 -0.6515 

16 6 4 1 1 0 -0.9031 -0.6515 

17 6 4 1 1 0 -0.3010 -0.6515 

18 6 4 1 1 0 -0.6021 -0.6515 

19 5 3 1 1 1 -0.4771 -0.2577 

20 3 3 2 4 0 -1.3010 -1.3123 

21* 9 4 1 1 0 0.2218 0.2614 

22* 9 4 1 1 0 0.2218 0.2614 

23 9 4 1 1 0 0.2218 0.2614 

24* 9 4 1 1 0 -0.0414 0.2614 

25 9 4 1 1 0 0.3979 0.2614 

26* 9 4 1 1 0 0.2218 0.2614 

27 5 3 1 1 1 -0.2553 -0.2577 

28 6 4 1 0 0 -0.4472 -0.2888 

29* 6 4 1 0 0 -0.1761 -0.2888 

30 6 4 1 0 0 0.0000 -0.2888 
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31 6 4 1 0 0 -0.3979 -0.2888 

32 5 3 3 4 1 0.3010 0.2921 

33 5 3 2 2 0 0.0969 0.0216 

34 5 3 2 2 0 0.0000 0.0216 

35 5 3 0 1 1 -1.2041 -1.0767 

‘*’-Compounds in test set 

Table 4.5:  Definition and contribution of all the descriptors obtained from the MLR models (models 

developed by using binding affinity) 

 

Sl. 

no. 

Name of 

descriptors 

Descriptor 

Type 
Contribution Discussion 

Probable 

mechanism of 

binding 

1 C-025 Atom 

centered 

fragment 

descriptor 

-ve C-025 can be depicted as R--

CR--R, where ‘R’ can be any 

group linked to carbon and ‘--

’ is any aromatic bond. It is 

the number of fragments in 

which a C (sp2) aromatic atom 

is bound to three carbon 

atoms, two of them by an 

“aromatic bond” and the third 

by a simple single bond 

Flexibility which 

helps in 

accommodating the 

antagonist well in the 

receptor pocket 

2 nBnz Ring 

descriptor 

+ve Indicates number of benzene-

like rings 

π-π stacking 

interaction 

3 F09 [N-O] 2D atom 

pair 

descriptor 

+ve Frequency of N-O fragment at 

the topological distance 9 

Hydrogen bonding 

4 NRS Ring 

descriptor 

-ve A ring descriptor indicates 

number of ring systems within 

a molecule 

- 

5 nCIR Ring 

descriptor 

+ve Number of circuits, i.e., larger 

loops around two or more 

rings in a molecule 

Hydrophobic 

interaction/ π-π 

stacking interaction 

 

 

4.2.1.1. Essential features required for binding and receptor interaction 

The descriptors obtained in the QSAR model gives an insight regarding the mechanism of interaction 

occurring during binding of the xanthine PET tracer antagonists to adenosine A2A receptor. 

Unsaturation and aromaticity play a dominating role in regulating the receptor binding affinity which 

is evident from the occurrence of descriptors such as C-025, nBnz, NRS and nCIR. Descriptors like 

nBnz and nCIR has positive influences on the adenosine A2A receptor binding (Figure 4.21). But on 

the other hand, descriptors like C-025 and NRS has negative effects on the binding affinity of the PET 

tracers (Figure 4.22). The occurrence of these similar types of descriptors with opposite influence is 

contradictory and leads to a conclusion that aromaticity provided by benzene nucleus (as seen in 
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compounds like A-32 and A-23) is more important for binding. On the other hand, the presence of 

heterocyclic aromatic ring and fused ring system decreases the overall binding affinity of the 

radiotracer molecule (found in compounds A-1, A-2 and A-20).  

The 2D atom pair descriptor F09 [N-O] gives information about the electronegativity of the 

compounds and the positive coefficient of the descriptor suggests that higher occurrence of nitrogen 

and oxygen at topological distance 9 would enhance binding affinity of the compounds as seen in 

compounds A-4 and A-32. It is found that the presence of electronegative atoms in the compounds or 

chemical structures can influence the binding to the receptor through hydrogen bonding (Kunal Roy et 

al., 2018).  

 

Figure 4.21: Features increasing the binding affinity (pKi) value. 

 

Figure 4.22: Features decreasing the binding affinity (pKi) value. 

4.2.1.2. Molecular docking 

Molecular docking helped in understanding the optimized conformation of the complex between the 

imaging agent and A2A receptor and gave evidences related to the orientation of the imaging agents at 

the binding zone of the receptor. The major goal was to understand the molecular interactions taking 

place during radiotracer binding and correlate these findings with QSAR analysis. The docking 

analysis showed the predominance of different types of π bonding interactions and hydrogen bonding 

interactions. In higher active compounds like A-4, A-8 and A-25 (pA2AR  (BA)= 0.699, 1.000 and 

0.398 respectively), the interaction forces include mainly hydrogen bonding interactions 

(conventional hydrogen bond and carbon-hydrogen bond interaction), π interactions (π-cation, π-

donor hydrogen, π-π stacked, π-π T-shaped and π-alkyl) (Figure 4.23). Other interactions include 

halogen and alkyl interaction in compound A-4 and salt bridge formation in compound A-8. Higher 

number of interacting  
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residues supports the fact that these compounds have higher binding affinity. Compounds having 

binding affinity in the medium range like compound number A-14 and A-27 (pA2AR(BA)= -0.301 and 

-0.255 respectively) makes less number of interactions with the adenosine receptor but the type of 

interactions remains similar, i.e., π interactions and hydrogen bonding interactions. The lowest active 

compounds like compound number A-20 and A-35 (pA2AR(BA)= -1.301and -1.204 respectively) 

show the least number of interactions (Figure 4.24). All the details of binding including interacting 

residues and type of binding interactions are given in Table 2. 

Table 4.6: Details of interacting residues and different types of binding interaction occurring between 

the PET imaging agents and the target protein (adenosine A2A receptor). 

Compound 

No. 
Activity 

Binding 

affinity 

[pA2AR(BA)] 

(-)Docking 

interaction 

energy 

(kcal/mol) 

Interacting Residues Binding Interactions 

A-4 High 0.699 57.07 

Ala A:88, Val A:186, 

Leu A:85, Asn A:181, 

His A:250, Asn A:253, 

Phe A:168, Ser A:67, 

Met A:270, Leu A:267, 

Ile A:274, Ala A:63, Ile 

A:66, Leu A:249, Met 

A:177, Trp A:246 

Conventional 

hydrogen bond, 

carbon hydrogen 

bond, halogen 

(Fluorine), π-cation, 

π-donor hydrogen 

bond, π-π stacked, π-

π T-shaped, alkyl, π-

alkyl  

A-8 High 1.000 64.46 

Met A:270, Asn A:253, 

Leu A:249, Phe A:168, 

Ala A:81, Ile A:66, Glu 

A:169 

Conventional 

hydrogen bond, 

carbon hydrogen 

bond, π-π stacked, π-

alkyl, salt bridge 

A-25 High 0.398 64.43 

Leu A:267, Tyr A:271, 

Ile A:274, Asn A:181, 

Gln A:89, Leu A:85, 

Leu A:249, Val A:84, 

Ser A:67, Glu A:169 

Conventional 

hydrogen bond, 

carbon hydrogen 

bond, π-sigma, π-π T-

shaped, π-alkyl 

A-14 Medium -0.301 40.01 

Val A:84, Leu A:249, 

Met A;270, Ile A:274, 

Ile A:66, Tyr A;271, 

Phe A:168 

π-sulfur, π-π T-

shaped, π-π stacked, 

amide-π stacked, π-

alkyl 

A-27 Medium -0.255 43.06 

Asn A:253, Ser A:67, 

Ile A:274, Leu A:167, 

Glu A:169, Ala A:63, 

Ile A:66, Leu A:249, 

Val A:84 

Conventional 

hydrogen bond, 

carbon hydrogen 

bond, π-anion, π-

alkyl 

A-20 Low -1.301 37.90 

Val A:84, Leu A:249, 

Leu A:267, Tyr A:271, 

Ser A:67, Ile A:274, 

Asn A:253 

Conventional 

hydrogen bond, π-π 

T-shaped, π- sigmsa, 

π-alkyl, alkyl 

A-35 Low -1.204 34.29 

Val A:84, Ala A:277, 

Leu A:249, Ile A:274, 

Met A:270, Glu A:169 

π-alkyl, alkyl, π-

anion 
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Figure 4.23: Docking interactions for compounds having higher binding affinity (pKi) 

 

Figure 4.24: Docking interactions for compounds having medium (A-14) and low (A-35) binding 

affinity (pKi) 

4.2.1.3. Relationship with QSAR models 

The docking study shows different types of π interactions occurring between the PET radiotracer 

molecules and adenosine A2A receptor. This observation supports the occurrence of nBnz and nCIR 

descriptors obtained in the QSAR models. The presence of aromatic rings like benzene can enhance 

binding with the receptor through aromatic π-π stacking interaction with the phenyl/imidazole residue 

of the receptor (Jaakola et al., 2008). The interaction of these antagonists through π-π stacking 

interaction eventually blocks the receptor in the indirect pathway thus blocking the activity of GABA-

mediated influence in the globus pallidus pars externa (GPe). This helps the PD patients to gain the 

motor function again by regaining the balance between direct and indirect pathway. Nitrogen and 

oxygen are capable of hydrogen bond formation and various types of hydrogen bonding as observed 

in both higher active and lower active compounds, and this can be also correlated to F09[N-O] 

descriptor which gives an idea about the electronegativity of the molecule. 
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4.2.2. Modeling selectivity of PET tracers towards Adenosine (A2A) receptor 

In the current work, we have developed four MLR models to understand the selectivity of the PET 

tracer molecules towards adenosine A2A receptor. A single QSAR model may not be efficient enough 

for the prediction of activity since the property of molecules cannot be understood by a limited 

number of features. The use of multiple models for prediction using consensus approach helps in 

reducing model uncertainty by enhancing the prediction quality of external set and also to reducing 

the prediction errors (Roy et al., 2016). The four MLR models are given below: 

Model 1 

 𝑙𝑜𝑔 𝐴2𝐴 𝑅(𝑆𝑒𝑙) = 0.5875(±0.4130) + 0.4643(±0.1574) 𝐶 − 027 − 0.8679(±0.1797)𝐶 − 040 +

0.7245(±0.1006)𝐹09[𝑁 − 𝑂] + 0.8382(±0.01749)𝐸𝑇𝐴_𝐵𝑒𝑡𝑎_𝑠  

𝑛𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 = 21, 𝑅2 = 0.915, 𝑅𝑎𝑑𝑗
2 = 0.893, 𝑄2 = 0.867, 𝑆 = 0.234982, 𝐹 = 42.88, 

𝑃𝑅𝐸𝑆𝑆 = 1.37546, 𝑟𝑚(𝐿𝑂𝑂)
2̅̅ ̅̅ ̅̅ ̅̅ ̅ = 0.81227, 𝛥𝑟𝑚(𝐿𝑂𝑂)

2 = 0.07373, 𝑀𝐴𝐸 𝑏𝑎𝑠𝑒𝑑 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎 = 𝑀𝑜𝑑𝑒𝑟𝑎𝑡𝑒 

𝑛𝑡𝑒𝑠𝑡  = 10, 𝑄𝐹1
2 = 0.84, 𝑄𝐹2

2 = 0.81, 𝑟𝑚(𝑡𝑒𝑠𝑡)
2̅̅ ̅̅ ̅̅ ̅̅ ̅ = 0.7682, 𝛥𝑟𝑚(𝑡𝑒𝑠𝑡)

2 = 0.11949, 𝑀𝐴𝐸 𝑏𝑎𝑠𝑒𝑑 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎 = 𝐺𝑜𝑜𝑑 

 

Model 2  

𝑙𝑜𝑔 𝐴2𝐴 𝑅(𝑆𝑒𝑙) = 0.36359(±0.43605) − 0.76227(±0.18863)𝐶 − 040 − 0.05224(±0.02421)𝑇(𝐹. . 𝐶𝑙) +

0.71046(±0.11057)𝐹09[𝑁 − 𝑂] + 0.09777(±0.01808)𝐸𝑇𝐴_𝐵𝑒𝑡𝑎_𝑠   

𝑛𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 = 21, 𝑅2 = 0.90, 𝑅𝑎𝑑𝑗
2 = 0.87, 𝑄2 = 0.82, 𝑆 = 0.274853, 𝐹 = 35.21, 

𝑃𝑅𝐸𝑆𝑆 = 1.05627, 𝑟𝑚(𝐿𝑂𝑂)
2̅̅ ̅̅ ̅̅ ̅̅ ̅ = 0.7526, 𝛥𝑟𝑚(𝐿𝑂𝑂)

2 = 0.05874, 𝑀𝐴𝐸 𝑏𝑎𝑠𝑒𝑑 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎 = 𝑀𝑜𝑑𝑒𝑟𝑎𝑡𝑒 

𝑛𝑡𝑒𝑠𝑡  = 10, 𝑄𝐹1
2 = 0.84, 𝑄𝐹2

2 = 0.82, 𝑟𝑚(𝑡𝑒𝑠𝑡)
2̅̅ ̅̅ ̅̅ ̅̅ ̅ = 0.7737, 𝛥𝑟𝑚(𝑡𝑒𝑠𝑡)

2 = 0.04197, 𝑀𝐴𝐸 𝑏𝑎𝑠𝑒𝑑 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎 = 𝐺𝑜𝑜𝑑 

 

Model 3 

𝑙𝑜𝑔 𝐴2𝐴 𝑅(𝑆𝑒𝑙) = 0.9642(±0.4535) + 0.31245(±0.08846) 𝑛𝐶𝐼𝐶 + 0.4848(±0.1856)𝐶 − 027

− 0.9394(±0.2114)𝐶 − 040 + 0.6662(±0.1184)𝐹09[𝑁 − 𝑂]  

𝑛𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 = 21, 𝑅2 = 0.883 𝑅𝑎𝑑𝑗
2 = 0.854, 𝑆 = 0.274853, 𝐹 = 30.27, 

𝑃𝑅𝐸𝑆𝑆 = 1.72765, 𝑄2 = 0.833, 𝑟𝑚(𝐿𝑂𝑂)
2̅̅ ̅̅ ̅̅ ̅̅ ̅ = 0.76, 𝛥𝑟𝑚(𝐿𝑂𝑂)

2 = 0.12, 𝑀𝐴𝐸 𝑏𝑎𝑠𝑒𝑑 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎 = 𝑀𝑜𝑑𝑒𝑟𝑎𝑡𝑒, 

𝑛𝑡𝑒𝑠𝑡  = 10, 𝑄𝐹1
2 = 0.84, 𝑄𝐹2

2 = 0.82, 𝑟𝑚(𝑡𝑒𝑠𝑡)
2̅̅ ̅̅ ̅̅ ̅̅ ̅ = 0.77, 𝛥𝑟𝑚(𝑡𝑒𝑠𝑡)

2 = 0.13, 𝑀𝐴𝐸 𝑏𝑎𝑠𝑒𝑑 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎 = 𝐺𝑜𝑜𝑑 

 

Model 4 

𝑙𝑜𝑔 𝐴2𝐴 𝑅(𝑆𝑒𝑙) = 1.3245(±0.2988) − 0.6702(±0.2119) 𝐶 − 040 + 0.10445(±0.04427)𝑆𝑠𝑠𝑁

+ 0.05519(±0.01932)𝐹07[𝐶 − 𝐶] + 0.5954(±0.1263)𝐹09[𝑁 − 𝑂]  

𝑛𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 = 21, 𝑅2 = 0.872 𝑅𝑎𝑑𝑗
2 = 0.84, 𝑆 = 0.287861, 𝐹 = 27.24, 

𝑃𝑅𝐸𝑆𝑆 = 2.09555, 𝑄2 = 0.827, 𝑟𝑚(𝐿𝑂𝑂)
2̅̅ ̅̅ ̅̅ ̅̅ ̅ = 0.717, 𝛥𝑟𝑚(𝐿𝑂𝑂)

2 = 0.131, 𝑀𝐴𝐸 𝑏𝑎𝑠𝑒𝑑 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎 = 𝑀𝑜𝑑𝑒𝑟𝑎𝑡𝑒,  

𝑛𝑡𝑒𝑠𝑡  = 10, 𝑄𝐹1
2 = 0.85, 𝑄𝐹2

2 = 0.83, 𝑟𝑚(𝑡𝑒𝑠𝑡)
2̅̅ ̅̅ ̅̅ ̅̅ ̅ = 0.78, 𝛥𝑟𝑚(𝑡𝑒𝑠𝑡)

2 = 0.07, 𝑀𝐴𝐸 𝑏𝑎𝑠𝑒𝑑 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎 = 𝐺𝑜𝑜𝑑 
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The significant descriptors obtained from the four MLR models (M1-M4) contributing to A2A receptor 

selectivity are C-040, C-027, F09 [N-O], ETA_Beta_s, nCIC, T (F..Cl), SsssN and F07[C-C]. All the 

descriptors positively contribute to the A2A receptor selectivity, except C-040, as identified from the 

regression coefficients of the descriptors and summarized in Table 4.7. We have also checked the 

applicability domain of the developed MLR models. The models showed good predictive ability as 

per the statistical results. The details of the descriptors, their contribution and frequency of appearance 

in all the four models are explained elaborately in Table 4.7. The experimental versus predicted A2AR 

selectivity scatter plot is given in Figure 4.25. 

 

 

Figure 4.25. Observed vs predicted A2AR selectivity plot for all four MLR models.
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Table 4.7: Definition, frequency and contribution of all the descriptors obtained from the MLR models.  

Sl. 

No. 

Name of 

descriptors 

Type of 

descriptor 
Contribution Discussion 

Frequency of 

descriptors 

1 C-027 Atom centred 

fragment 
+ve Counts for certain structural fragment (R--CH--X) in the antagonist, 

where ‘R’ can be any group linked to carbon and ‘--’ is any aromatic 

bond. X can be any electronegative atom (O, N, S, P, Se, halogens) 

3 

2 ETA_Beta_s ETA indices +ve Sum of all sigma bond contributions considering non-hydrogen 

vertices divided by 2. The descriptor deals with the presence of 

dissimilar heteroatoms.  

1 

3 F09 [N-O] 2D atom pairs +ve Frequency of the N-O fragment at the topological distance 9 4 

4 SsssN Atom-type E-state 

indices 

+ve E-state of sssN which encodes the intrinsic electronic state of the 

nitrogen atom as perturbed by the electronic influence of other 

molecules with the context of topological character within the 

molecule. SsssN is the atom-type E-state of all tertiary nitrogen in 

molecules. 

1 

5 nCIC Ring descriptors +ve Number of rings (cyclomatic number) present in the antagonist 2 

6 C-040 Atom centred 

fragment 

-ve Represented as R-C(=X)-X / R-C#X / X=C=X fragments where 

number of carbon atoms are attached to heteroatoms by single/double 

or triple bonds 

4 

7 F07[C-C] 2D atom pairs +ve Frequency of C - C at topological distance 7 1 
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4.3.3.1. Mechanistic interpretation 

All the descriptors obtained in the four models and their frequency gives an idea about their 

importance in modeling the selectivity of the PET tracers towards adenosine A2A receptor. The 

descriptors like C-027, F09[N-O], SsssN, T(F..Cl) and ETA_Beta_s appearing in  the models give 

information about the electronic feature of the compounds and are essential when selectivity of 

receptor is considered (Figure 4.26). Electronegativity is a chemical property that describes the 

tendency of an atom to draw electron towards itself. If a compound contains higher number of 

electronegative atoms in its structure, then the selectivity of the A2A receptor for that compound also 

increases.  

The presence of atom-centred fragments like C-027 (R--CH--X) in compounds like A-23 and A-25 

increases the antagonist selectivity of the PET compounds. Since ‘X’ represents any electronegative 

atom like O, N, S, P, Se, halogens, thus the presence of heteroatoms increases the selectivity of the 

compounds towards A2A receptor. The descriptor F09[N-O] explains the frequency of presence of 

nitrogen and oxygen at topological distance 9 and its positive regression coefficient indicates its 

influential activity on the antagonistic behavior of the imaging agents (as seen in compounds A-4 and 

A-27). Another similar kind of descriptor is T (F..Cl), explaining the information about sum of 

topological distances between F and Cl atoms in the chemical structure. These descriptors too give 

information about the electronegative atoms, i.e. nitrogen and oxygen in F09[N-O] and fluorine and 

chlorine in T(F..Cl). ETA_Beta_s (𝛴𝛽𝑠) is an extended topochemical atom (ETA) descriptor, which 

can be represented as sum of 𝛽𝑠 values of all non-hydrogen vertices by 2. The term ′𝛽𝑠 ′ can be 

denoted as 

∑𝛽𝑠 = ∑𝑥𝜎 

Here, 𝑥 represents contribution of sigma bonds and 𝜎 signifies parameters related to sigma bonds. 

During the computation of 𝛽 values, the sigma bond value for two similar types of electronegative 

atoms should be considered as 0.5 and dissimilar electronegative atoms should be considered as 0.75. 

This suggests that compounds bearing dissimilar heteroatoms will have greater selectivity to A2A 

receptor as seen in compound A-25, A-23 and A-4. Sigma bonds connected with different 

heteroatoms will have higher descriptor values indicating that the presence of dissimilar heteroatoms 

is more favorable for selectivity than similar heteroatoms. E-state descriptor SsssN (>N—) encodes 

the intrinsic electronic state of the nitrogen atom as perturbed by the electronic influence of other 

molecules with the context of topological character within the molecule. The electronegative 

contribution of nitrogen is well depicted in this descriptor, and the positive regression coefficient 

shows that an increase in the number of tertiary nitrogen benefits in receptor selectivity as seen in 

compounds A-30 and A-4. 

Other descriptors which significantly contribute to A2A receptor selectivity are nCIC, F07[C-C], C-

040. These descriptors give information about the number of rings present, type of bonds and size of 

the antagonists showing selectivity towards the receptor. The number of rings (cyclomatic number) in 

the structure is indicated by nCIC descriptor. The positive regression coefficient of the descriptor 

suggests that presence of high number of rings increases the selectivity towards the A2A receptor as 

observed in compounds A-25 and A-4. F07[C-C], a 2D atom pair stands for frequency of C – C 

fragment at the topological distance 7. It provides information about the size (chain length) of the 

molecule. This means that with an increase in the number of this fragment, i.e., carbon chain, the 

selectivity towards the A2A receptor increases (as in compounds A-4 and A-25). The atom-centered 

fragment descriptor, C-040 (Table 4.7) gives information about the number of carbon atoms that are 
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attached to heteroatoms by single/double or triple bonds in the straight chain length. The negative 

regression coefficient suggests that an increase in the number of such fragments decreases the 

selectivity of the compound towards the A2A receptor as seen in compounds A-6, A-7 and A-35. As 

this fragment suggests high number of double and triple bonds attached with the carbon, it can be 

concluded that unsaturation in the straight chain of the antagonists is unfavorable for the receptor 

selectivity.  

 

Figure 4.26: Features affecting the adenosine A2A selectivity. 

4.2.3. Intelligent Consensus Predictions 

For further refinement of the predictions obtained from the individual models we have applied 

intelligent consensus modeling methods. Consensus modelling helps in enhancing the prediction 

performance of the models and also reduces the test set errors. It was observed that consensus 

prediction of the test set compounds (Table 4.8) are better in terms of both MAE based criteria and 

predicted R2 parameter. Four different consensus approaches were used employing “Intelligent 

Consensus Prediction” tool (Kunal Roy et al., 2018): CM0 (simple average of predictions), CM1 

(average of predictions from the 'qualified' individual models), CM2 (weighted average predictions 

(WAPs) from 'qualified' individual models) and CM3 (best selection of predictions (compound-wise) 

from 'qualified' individual models). From the four consensus model obtained, CM0 was found to be 

the best. 
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Table 4.8: Detailed summary of the QSAR models and consensus models obtained for selectivity PET tracer compounds for adenosine A2A selectivity. 

Dataset 

 

Type of model Training set statistics Test set statistics 

Model 

R2 

 

Model 

Q2
(LOO)  

 

MAE_train 𝑟𝑚(𝐿𝑂𝑂)
2̅̅ ̅̅ ̅̅ ̅̅ ̅ 𝛥𝑟𝑚(𝐿𝑂𝑂)

2  R2
pred 

or 

Q2F1 

Q2F2 CCC 𝑟𝑚(𝑡𝑒𝑠𝑡)
2̅̅ ̅̅ ̅̅ ̅̅ ̅ 𝛥𝑟𝑚(𝑡𝑒𝑠𝑡)

2  MAE 

(95%)  

MAE 

Individual 

Models 

(N1-N5) 

IM1 0.92 0.87 Good 0.81 0.07 0.84 0.81 - 0.77 0.12 0.18 Good 

IM2 0.90 0.82 Moderate 0.75 0.06 0.84 0.82 - 0.77 0.04 0.24 Good 

IM3 0.88 0.83 Moderate 0.76 0.12 0.84 0.82 - 0.77 0.13 0.18 Good 

IM4 0.87 0.83 Moderate 0.72 0.13 0.85 0.83 - 0.78 0.07 0.22 Good 

Consensu

s Models 

CM0 - - - - - 0.88 0.86 0.93 0.82 0.10 0.16 Good 

CM1 - - - - - 0.86 0.84 0.92 0.82 0.11 0.18 Good 

CM2 - - - - - 0.85 0.83 0.92 0.82 0.11 0.18 Good 

CM3 - - - - - 0.83 0.81 0.90 0.80 0.10 0.19 Good 
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4.2.4. Applicability Domain (AD) 

Applicability domain (AD) is an important tool for reliable application of QSAR models. It can be 

considered as a “theoretical region in chemical space defined by the respective model descriptors and 

responses in which the predictions are reliable”. We have checked the AD of all the models using 

standardization approach to check whether any molecule in the test set lies outside the AD of a model. 

From, the domain of applicability analysis it was found that there were no test set compounds outside 

the AD and no compound in the training set came as outlier (see Table 4.9). 

 

Table 4.9. Predicted A2AR selectivity of all the four selectivity models along with the AD 

information. 

Training Set 

Compd. 

No 

Obs A2AR 

selectivity 

Selectivity 

Model 1 

Pred 

A2AR 

selectivity 

AD 

Info 

Selectivity 

Model 2 

Pred 

A2AR 

selectivity 

AD 

Info 

Selectivity 

Model 3 

Pred 

A2AR 

selectivity 

AD 

Info 

Selectivity 

Model 4 

Pred 

A2AR 

selectivity 

AD 

Info 

1 2.779 2.851 In 3.003 In 2.837 In 3.108 In 

2 2.808 2.914 In 3.077 In 2.837 In 3.059 In 

4 4.217 4.111 In 4.204 In 4.170 In 4.163 In 

6 0.894 0.977 In 1.068 In 0.960 In 1.041 In 

7 1.231 1.145 In 1.263 In 1.273 In 1.206 In 

10 2.715 2.809 In 2.955 In 2.837 In 2.800 In 

12 2.000 2.494 In 2.118 In 2.525 In 2.399 In 

13 2.636 2.494 In 2.588 In 2.525 In 2.382 In 

15 2.398 2.452 In 2.539 In 2.525 In 2.374 In 

16 2.398 2.515 In 2.612 In 2.525 In 2.362 In 

17 2.903 2.515 In 2.612 In 2.525 In 2.355 In 

18 2.398 2.515 In 2.247 In 2.525 In 2.368 In 

19 2.653 2.522 In 2.194 In 2.424 In 2.246 In 

20 1.839 1.719 In 1.683 In 1.900 In 1.987 In 

23 3.176 3.189 In 2.857 In 3.322 In 2.726 In 

25 3.240 3.357 In 3.052 In 3.322 In 3.107 In 

27 2.675 2.884 In 2.907 In 2.879 In 2.906 In 

28 2.607 2.683 In 2.808 In 2.525 In 2.816 In 

30 3.199 2.746 In 2.881 In 2.525 In 3.104 In 

31 2.841 2.578 In 2.686 In 2.525 In 2.815 In 
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35 1.818 1.953 In 2.072 In 1.939 In 2.104 In 

Test Set 

Compd. 

No 

Obs A2AR 

selectivity 

Selectivity 

Model 1 

Pred 

A2AR 

selectivity 

AD 

Info 

Selectivity 

Model 2 

Pred 

A2AR 

selectivity 

AD 

Info 

Selectivity 

Model 3 

Pred 

A2AR 

selectivity 

AD 

Info 

Selectivity 

Model 4 

Pred 

A2AR 

selectivity 

AD 

Info 

3 3.0249 2.809 In 2.955 In 2.837 In 3.206 In 

5 1.0763 0.935 In 1.019 In 0.960 In 0.930 In 

8 3.2292 2.704 In 2.832 In 2.837 In 2.771 In 

9 2.8254 2.872 In 3.028 In 2.837 In 2.881 In 

11 2.3118 2.620 In 2.735 In 2.525 In 2.682 In 

21 2.9513 3.063 In 2.710 In 3.322 In 2.782 In 

22 3.2041 3.126 In 2.783 In 3.322 In 2.758 In 

24 3.1271 3.294 In 2.979 In 3.322 In 3.154 In 

26 3.0637 3.399 In 3.101 In 3.322 In 3.164 In 

29 2.9845 2.641 In 2.759 In 2.525 In 2.834 In 

 

4.2.5. Comparison with a previously published model 

A direct comparison between the current and a previously published model (Roy et al., 2018) is 

infeasible due to the differences in the composition of training and test sets. However, the current 

model can be considered more advantageous since it has been developed using simple and easily 

interpretable two-dimensional descriptors which does not require any conformational analysis or 

energy minimization before their calculation. 
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4.3. Study 3: QSAR modeling of PET imaging agents for the diagnosis of Parkinson’s disease 

targeting Dopamine receptor 

 

 

4.3.1. Modeling binding affinity of PET tracers towards dopamine (D2) receptor 

The final PLS model of 3 latent variables (LVs) consisted of five descriptors that explains the binding 

properties of the PET radioligands towards dopamine receptor. The final model is given below: 

𝑝𝐾𝑖 = 4.512 − 0.184 × 𝑆𝑎𝑎𝐶𝐻 − 1.554 × 𝐵08[𝐶 − 𝑆] + 0.060 × 𝑆𝑠𝐹 − 2.350 × 𝐵10[𝑁 − 𝐹]

+ 1.425 × 𝐵10[𝐶 − 𝑂] 

𝑛𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 = 27, 𝑅2 = 0.731, 𝑅𝑎𝑑𝑗
2 = 0.696, 𝑄2 = 0.623, 𝑟𝑚(𝐿𝑂𝑂)

2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 0.507, 𝛥𝑟𝑚(𝐿𝑂𝑂)
2 =

0.159, 𝑀𝐴𝐸(𝑡𝑟𝑎𝑖𝑛) = 0.528, 𝑆𝐷(𝑡𝑟𝑎𝑖𝑛) = 0.550 , 𝑃𝑅𝐸𝑆𝑆 =15.392   

𝑛𝑡𝑒𝑠𝑡  = 7, 𝑄𝐹1
2 = 0.687, 𝑄𝐹2

2 = 0.664, 𝑟𝑚(𝑡𝑒𝑠𝑡)
2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 0.742, 𝛥𝑟𝑚(𝑡𝑒𝑠𝑡)

2 = 0.116, 𝑀𝐴𝐸(𝑡𝑒𝑠𝑡)

= 0.505, 𝑆𝐷(𝑡𝑒𝑠𝑡) = 0.280, 𝐶𝐶𝐶(𝑇𝑒𝑠𝑡) = 0.812  

 

4.3.2. Mechanistic interpretation 

The variable importance plot (VIP) (Figure 4.27) gives an idea about the influence of the individual 

descriptors on the model and thereby on the binding affinity (Akarachantachote et al., 2014). The 

order of importance of the descriptors was found as follows: SaaCH, B10[N-F], B10[C-O], SsF and 

B08[C-S]. The VIP gives an understanding that descriptors SaaCH and B10[N-F] are highly 

influential due to their VIP scores being more than 1. The regression coefficient plot (not shown)  

provides a basic understanding about the contribution of the individual descriptor on the model (Wold 

et al., 2001). It is seen that the descriptors SaaCH, B08[C-S] and B10[N-F] negatively contributes to 

the model while the descriptors SsF and B10[C-O] positively contribute to the model. The details of 

the descriptors and their contributions are given in Table 4.10 and also explained below in detail. The 

observed vs predicted scatter plot is shown in Figure 4.28. 

 

 

Figure 4.27. Variable importance plot of the PLS model 
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Figure 4.28. Observed vs predicted pKi plot. 

Table 4.10. Descriptor meaning and their contribution 

Serial 

No 

Descriptor Descriptor 

type 

Contribution Discussion 

1 SaaCH Atom type E 

state 

-ve Sum of the atom-type E-state values for  

aromatic –CH group. 

2 B08[C-S] 2D atom 

pairs 

-ve Presence or absence of carbon and sulphur at 

the topological distance 8 

3 SsF Atom type E 

state 

+ve Sum of the atom type E-state values for –F 

fragments. 

4 B10[N-F] 2D atom 

pairs 

-ve Presence or absence of nitrogen and fluorine at 

the topological distance 10 

5 B10[C-O] 2D atom 

pairs 

+ve Presence or absence of carbon and oxygen at 

the topological distance 10 

 

The E-state indices descriptor SaaCH gives idea on the sum of the atom-type E-state values for 

aromatic –CH groups. From the regression coefficient of the descriptor, it can be inferred that 

aromaticity hinders the binding of the PET compounds to the D2 receptor as in compounds 8 (SaaCH 

= 18.392) (Figure 4.29), 10 (SaaCH = 16.63) and 11 (SaaCH= 14.214). These compounds are 

aromatic and have high SaaCH values, and they have lower binding affinity values (pKi= 2.931, 1.460 

and 1.839). Further, in compounds like 29 and 32, aromaticity is less as compared to the previously 

mentioned compounds, thus having lower values for the descriptor (SaaCH= 3.583 and 1.640 

respectively). These compounds have better binding affinity (compound 29 (pKi= 5.700) and 

compound 32 (pKi= 5.721)) towards dopamine receptor. 
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The next important descriptor is B10[N-F] (2D atom pair type) and the negative contribution implies 

that the presence of nitrogen and fluorine at the topological distance 10 will hinder the binding 

affinity seen in compounds 11 (B10[N-F]= 1; pKi= 1.838) (Figure 4.29) and 33 (B10[N-F]= 1; pKi= 

2.886). Further, the absence of this fragment will increase the binding affinity observed in compounds 

29 (B10[N-F] = 0; pKi= 5.700) and 32 (B10[N-F] = 0; pKi= 5.721). The effect of the 

electronegativity of fluorine atom on nitrogen is a determining factor for the good binding which is 

latter explained while studying the descriptor SsF. The closeness between nitrogen and fluorine atom 

explains how the binding will occur.  

 

B10[C-O] is another 2D atom pair descriptor representing the presence or absence of C-O fragment at 

the topological distance 10. The descriptor positively affects the binding affinity of the PET tracers 

towards dopamine receptor as seen in compounds 18 (B10[C-O] = 1; pKi= 5.921) (Figure 4.29), 29 

(B10[C-O] = 1; pKi= 5.721) and 32 (B10[C-O] = 1; pKi= 5.700). The presence of this kind of 

fragment affects the electronegativity of the compounds essential for binding. The absence of this 

fragment on the other hand decreases the dopamine binding affinity observed in compounds like 1 

(pKi= 2.321) and 5 (pKi= 2.262). 

 

The E-state values for the descriptor SsF depends on the number of fluorine atoms present in a PET 

tracer molecule. From the regression coefficient, it can be understood that with increasing fluorine 

atoms the binding affinity also increases as observed in 18 (SsF= 14.107; pKi= 5.921), 32 (SsF= 

12.490; pKi= 5.698) (Figure 4.29) and 31(SsF= 13.108; pKi= 4.833). The electronegative fluorine 

atom is presumed to decrease electron charge density on nitrogen groups. This reduces nitrogen 

basicity and its prospect to get protonated at physiological pH which a basic requirement for good 

binding to dopamine receptors [34]. 

 

The least important descriptor is B08[C-S], which is also a 2D atom pair descriptor and gives an idea 

of the presence or absence of C-S fragment at a topological distance 8. The negative contribution 

suggests that the presence of this fragment will result in a decreased binding affinity towards the 

dopamine receptor which is observed in compounds 21 (pKi= 2.807) and 20 (pKi= 3.107) (Figure 

4.29). Alternatively, compounds like 18 (pKi= 5.921), 29 (pKi= 5.721) and 32 (pKi= 5.698) have no 

such fragment thus having higher binding affinity. 
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Figure 4.29. Descriptors appearing in the PLS model and their contribution 

 

From the descriptors and their contributions, we can draw an inference that the oxygen for B10[C-O] 

and fluorine for SsF impart an electronegative character to the PET ligands which plays an essential 

role for the good dopamine (D2) binding.  

 

4.3.3. Plot Interpretation 

4.3.3.1. Loading plot- This plot gives a relationship between the X- variables (i.e., the descriptors) 

and Y-variable (i.e., response) (De et al., 2018a). In Figure 4.30, five X-variables and one Y variable 

are shown.  Generally, the plot is developed with the first and second components. A loading plot 

provides an insight about how much a variable contributes to a model and which variable provides the 

maximum footprint. For interpretation, the distance from the origin is taken under consideration. 

Descriptors which are similar in nature and providing similar contribution are correlated and grouped 

together. Descriptors which are situated far away from the plot origin are supposed to have greater 

impact on the Y-response. From the loading plot it is seen that descriptors SaaCH and B10[N-F] are 

far away from the plot origin supporting their higher influence also explained by the VIP. The positive 

or negative algebraic symbol is also taken under consideration in a PLS plot. Features explained by 

descriptors SsF and B10[C-O] are beneficial for binding because of their closeness to pKi in the plot. 

On the other hand, SaaCH, B10[N-F] and B08[C-S] are present in the negative side of the plot origin 

and are detrimental for good binding. 

 

4.3.3.2. Score Plot- Figure 4.31 shows the distribution of the compounds in the latent variable space 

as defined by the scores. We have plotted the scores of the first two components t1 and t2. The 

applicability domain of the model is designated by the ellipse, as defined by Hotelling's t2. Hotelling's 

t2 defines multivariate generalization of Student's t-test. The method offers a check for compounds 

adhering to multivariate normality (Jackson, 2005). Compounds which are situated near each other in 
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the plot have similar properties, whereas compounds which are far from each other have dissimilar 

properties with respect to their binding affinity towards dopamine receptor. As an example, we can 

take compounds 14, 15, 16 and 17 are clubbed together as a group on the plot space and can be 

considered to be with similar properties. On the other hand, compounds 18 and 12 are completely 

located on the opposite side of the origin and far from each other and they represent heterogeneity in 

their properties. Since there are no compounds out of the ellipse, we can conclude that there are no 

outliers according to this method. 

 

 

Figure 4.30. Loading plot of the PLS model 

 

 

Figure 4.31. Score plot of the PLS model 
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4.3.3.3. Y-Randomization Plot- Model randomization gives a notion about the model significance and 

ensures that the model is not an outcome of a chance correlation (Topliss & Edwards, 1979). A 

randomized model is generated by the development of multiple models by shuffling or reordering 

different combinations of X or Y variables (here Y variable only) and based on the fit of the reordered 

model. In the present study we have used 100 permutations which can be changed according to the 

choice of the user. A randomized model should have very poor statistics. The R2 and Q2 values for the 

random models (Y-axis) are plotted against correlation coefficient between the original Y values and 

the permuted Y values (X axis); the 𝑅𝑦
2 intercept should not exceed 0.3 and the 𝑄𝑦

2 intercept should 

not exceed 0.05. Figure 4.32 shows the correlation between original Y-vector and permuted Y-vector 

versus cumulative 𝑅𝑦
2, cumulative 𝑄𝑦

2  plot where 𝑅𝑦
2 intercept = 0.09 and 𝑄𝑦

2 intercept = -0.393 

proving the model is robust and non-random. 

 

 

Figure 4.32. Y-Randomization plot of the PLS model 

 

4.3.3.4. Applicability Domain (AD)- The prediction reliability of a particular model is dependent on 

its applicability domain (AD) assessment. Applicability domain (AD) “represents a chemical space 

from which a model is derived and where a prediction is considered to be reliable” (Gadaleta et al., 

2016). The AD evaluation was done using the DModX (distance to model) in the X-space using 

SIMCA 16.0.2 software available at https://landing.umetrics.com/downloads-simca. The AD plots are 

given in Figures 4.33 and 4.34 and for training and test sets respectively, and it is found that there are 

no outliers in case of training set, and none of the compounds are outside AD in case of the test set at 

99% confidence level (D-crit= 0.009999, M-Dcrit[3]= 3.213). 

https://landing.umetrics.com/downloads-simca
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Figure 4.33. DModX Applicability Domain of the training set. 

 

 

Figure 4.34. DModX Applicability Domain of the test set. 

 

 

 

 

 

 

 

 

 



Chapter 4 Results and Discussions 

 

 
123 

 

4.4. Study 4: Computational modeling of PET imaging agents against vesicular acetylcholine 

transporter (VAChT) protein binding affinity: Application of 2D-QSAR modeling and 

molecular docking techniques 

The present work demonstrates the contribution of different structural attributes of PET imaging 

agents required for binding to and quantifying the presence of vesicular acetylcholine transporter. The 

main work is focused on the development of a simple 2D-QSAR model to obtain the major structural 

features responsible for binding. These features were further validated using structural similarity-

based read across study as well as molecular docking techniques.  

4.4.1. QSAR modeling of binding affinity of PET imaging agents towards VAChT 

The dataset procured for this study consisted of 19 compounds A three-descriptor partial least squares 

(PLS) model with two latent variables (LVs) was developed which could explain 71.77% of the 

variance. The leave-one-out cross-validated determination coefficient (i.e., 𝑄𝐿𝑂𝑂
2 = 0.523) is above 

the critical threshold value fulfilling the statistical reliability of the model. The observed versus 

predicted pKi scatter plot is shown in Figure 4.35. 

𝑝𝐾𝑖 =  2.018 − 0.831 × 𝐵06[𝑁 − 𝑂] + 0.757 × 𝐹08[𝐶 − 𝑁] − 0.812 × 𝐹09[𝑁 − 𝐹] 

𝑁 = 19, 𝑅2 = 0.718, 𝑄(𝐿𝑂𝑂)
2 = 0.523, 𝑟𝑚(𝐿𝑂𝑂)

2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 0.439, 𝛥𝑟𝑚(𝐿𝑂𝑂)
2 = 0.027, 𝑀𝐴𝐸 = 0.335, 𝑆𝐷 =

0.273  

 

Figure 4.35: Observed versus predicted scatter plot of the PLS model 

The descriptors appearing in the final PLS model are all 2D atom pair descriptors suggesting the 

importance of the presence of a particular atom pair in the PET tracer molecule. The variable 

importance plot (Akarachantachote et al., 2014) given in Figure 2 shows the significance level of each 

descriptor toward VAChT binding affinity. Descriptor F09[N-F] was the most significant descriptor 

with VIP Score>1 (VIP= 1.289) followed by F08[C-N] (VIP= 1.043) and B06[N-O] (VIP= 0.502). 

F09[N-F] which contributes negatively to the binding affinity, is the frequency of the N-F fragment at 

a topological distance 9. Compounds like 10 and 11 (Figure 4.36) have nitrogen and fluorine at a 

topological distance 9, thereby decreasing the binding affinity towards VAChT, whereas in 

compounds like 21 and 23, the N-F fragment at 9 distance is absent and the pKi values are high.  
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Figure 4.36: Variable importance plot and significance of the descriptors appearing in the PLS 

model. 

The next important 2D atom pair descriptor is F08[C-N] which denotes the frequency of C-N 

fragment at a topological distance 8. The positive regression coefficient indicates that with an increase 

in the frequency of C-N at 8 distances, the binding affinity will increase as observed in compounds 

like 20 (Figure 4.36), 23, and 25. These compounds have three such fragments and have high pKi 

values of 3.658, 3.319, and 2.700 respectively. 

The least important among all the descriptors is B06[N-O] which implies the presence or absence of 

an N-O fragment at a topological distance 6. The negative contribution indicates that the presence of 

such a fragment will decrease the VAChT binding of the PET imaging agents as seen in compounds 

like 10 and 11 (Figure 4.36). These compounds have a very low binding affinity towards (1.251 and 

1.032 respectively) VAChT receptor. 

The significance and validity of the developed model were further analyzed using some important 

PLS plots, namely, the loading plot, randomization plot, and applicability domain which are described 

below. 

A loading plot (Figure 4.37) explains the relationship between the independent variables or 

descriptors (X-variables) with the dependent variable or pKi values (Y-variable). The influence of the 

descriptors on the developed model can be recognized from the loading plot. Descriptors that are far 

from the plot origin (like F08[C-N] and F09[N-F]) contribute significantly more toward the binding 

affinity. Descriptors with different meanings appear distantly from each other in the loading plot.  

Model randomization confirms that the model is not the outcome of any chance correlation (Topliss & 

Edwards, 1979). The randomization plot determines the statistical significance of the model. 

Multiple models are generated during a randomization plot development by shuffling different 
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combinations of either X-variables (X-randomization) or Y-response (Y-randomization). Y-

randomization was performed in the present study with 100 permutations for each model for random 

model generation. For a non-random model 𝑅𝑦
2 intercept should not exceed 0.3 and 𝑄𝑦

2  intercept 

should not exceed 0.05. The randomization plot given in Figure 4.38 shows that the developed model 

is non-random and robust and is suitable for prediction. 

 

Figure 4.37: Loading plot of the PLS model 

 

Figure 4.38: Y-randomization of developed PLS model 

According to OECD guideline 3, a developed QSAR model should possess a defined chemical 

domain of applicability. AD can be interpreted as a chemical space defined by the structural 

information or molecular properties of the chemicals used in the model development (Gadaleta et al., 

2016). Compounds present within this chemical space can only be properly predicted. In this study, 

the DModX (distance to model in X-space) method of AD determination at a 99% confidence interval 

(D-crit= 0.009999) was applied using SIMCA 16.0.2 software 

(https://landing.umetrics.com/downloads-simca). AD plot (Figure 4.39) shows none of the 

compounds was an outlier. 

https://landing.umetrics.com/downloads-simca
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Figure 4.39. DModX AD plot of the PLS model 

4.4.2. Read-Across based prediction 

To explore the predictivity of the selected features used for QSAR modeling, a similarity-based read- 

across prediction was performed by using a group of five compounds (compound ID: 3, 11, 12, 21, 

and 27) as the test set (Chatterjee et al., 2022a). Three types of similarity were measured: the 

Euclidean Distance-based, the Gaussian Kernel Similarity-based, and the Laplacean Kernel Similarity 

based predictions using Read-Across-v4.1 (https://sites.google.com/jadavpuruniversity.in/dtc-lab-

software/home) tool and after hyperparameter optimization using Auto_RA_Optimizer-v1.0 tool 

(https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home) it was found that the external 

validation results obtained from quantitative Read-Across algorithm using Gaussian Kernel 

Similarity-based functions (𝑄𝐹1
2 = 0.763, 𝑄𝐹2

2 = 0.763, 𝑅𝑀𝑆𝐸 = 0.414, 𝑀𝐴𝐸 = 0.331) was better 

compared to the results obtained with the other two read-across approaches (Table 4.11).  

Table 4.11. Comparison between three types of read-across predictions 

Method Ntrain 𝑅2 𝑄(𝐿𝑂𝑂)
2  𝑀𝐴𝐸 Ntest 𝑄𝐹1

2  𝑄𝐹2
2  𝑀𝐴𝐸 

QSAR 19 0.718 0.523 0.335 - - - - 

Read-

Across 

Euclidean 

distance 

14 

- - - 

5 

0.189 0.189 0.596 

Gaussian 

Kernel 
- - - 0.763 0.763 0.331 

Laplacian 

Kernel 
- - - 0.719 0.719 0.380 

Note: Bold values indicate best prediction 

 

4.4.3. Molecular Docking 

Molecular docking must include a reasonably accurate model of energy and should be able to deal 

with the combinatorial complexity experienced by the molecular flexibility of the docking partners. In 

the present research, molecular docking studies were performed to understand the individual 

molecular interactions and orientation of the imaging agents occurring at the binding zone of the 

VAChT receptor (Figure 4.40). Initially, the standard compound, i.e., vesamicol was docked at the 

https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home
https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home
https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home
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binding site to understand its nature of interactions. Further, both high and low-active compounds 

were also used for the docking study. In the case of vesamicol (compound 9), which has a moderate 

binding affinity (pKi= 2.261), the interaction forces include hydrogen bond interactions (both 

conventional and carbon-hydrogen bond interactions) and π-anion interactions. The amino acid 

residues engaged in vesamicol binding are Asp A:202, Asp A:483, and Ser A:480. Comparing 

vesamicol-VAChT binding interactions with highly active compounds like compound ID 20 (pKi= 

3.658), 21 (pKi= 3.602), and 22 (pKi= 3.347), it was observed that similar interactions were also 

involved in their binding. However, it was found that these highly active compounds were docked 

with more interactions at their binding site with far better binding (Table 4.12). For compound 20, 

halogen (fluorine) interactions, attractive charge, π-cation, and π-alkyl interactions were formed along 

with hydrogen bond interactions. In the case of compound 21, additional interactions include 

attractive charge, π-anion, and π-cation interactions. Similarly, in the case of compound 22, attractive 

charges, alkyl, and π-alkyl interactions were formed along with conventional hydrogen bond and 

carbon-hydrogen bond interactions. The formation of attractive charge interaction of Asp A:483 

amino acid with the nitrogen of piperidine moiety of all three high active compounds was a 

noteworthy finding inferring the importance of the fragment in VAChT binding. 

In the case of lower active compounds like compound 10 (pKi= 1.032) and compound 29 (pKi= 

0.967), the number of molecular interactions was much less than the higher active ones (Table 4.12). 

Conventional hydrogen bond and carbon-hydrogen bond interactions were prevalent, with additional 

halogen and π-alkyl in the case of compound 29. 

Table 4.12: The interacting residues and different types of binding interaction occurring between the 

PET imaging agents and VAChT. 

Compound Category pKi 

(-)Docking 

interaction 

energy 

(kcal/mol) 

Binding amino 

acids 
Types of interactions 

9 (Vesamicol) Standard 2.261 27.57 
Asp A:202, Asp 

A:483, Ser A:480 

Conventional hydrogen bond interactions, 

carbon-hydrogen interactions, and π-anion 

interaction 

20 

Highly 

active 

3.658 37.00 

Ser A:415, Asp 

A:410, Tyr A:417, 

Arg A:477, Arg 

A:479, Asp A:483, 

Arg A:482 

Conventional hydrogen bond interactions, 

carbon-hydrogen interactions, attractive 

charge, halogen (fluorine) interaction, π-

cation, and π-alkyl interaction  

21 3.602 38.27 

Arg A:477, Asp 

A:483, Ser A:480, 

Arg A:482, Asp 

A:202 

Conventional hydrogen bond interactions, 

carbon-hydrogen interactions, attractive 

charge, π-cation, and π-anion interactions 

22 3.347 43.95 

Pro A:205, Tyr 

A:494, Arg A:482, 

Asp A:483, Ser 

A:480, Pro A:490 

Conventional hydrogen bond interactions, 

carbon-hydrogen interactions, attractive 

charge, alkyl, and π-alkyl interactions 

10 

Least active 

1.032 33.87 
Asp A:202, Arg 

A:482, Pro A:490 

Conventional hydrogen bond interactions 

and carbon-hydrogen interactions 

29 0.967 31.41 
Arg A:479, Arg 

A:477, Tyr A:417 

Conventional hydrogen bond interactions, 

carbon-hydrogen interactions, halogen 

(fluorine), and π-alkyl interactions 
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Relationship with QSAR features 

From QSAR modeling it was found that F08[C-N] is the only positively correlated descriptor. Therefore, the presence of nitrogen in the PET imaging agent is 

very essential for good VAChT binding. In the case of highly active compounds (compounds 20, 21, and 22) used for molecular docking, it was found that 

attractive charge interaction was prevalent in all three compounds which occurred between Asp A:483 amino acid with the nitrogen of piperidine moiety of 

the PET tracer. These two observations correlate with each other and thus can be inferred nitrogen (as piperidine moiety) is essential for good VAChT 

binding. 

 

Figure 4.40.   Molecular docking interactions of highly active, least active and standard compounds against VAChT binding.
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4.5. Study 5: Exploration of nitroimidazoles as radiosensitizers: Application of multi-layered 

feature selection approach in QSAR modeling 

Statistically significant 2D-QSAR models using Dragon and simplex (SiRMS) descriptors explaining 

the chemical features required for good radiosensitization are presented in the following section. The 

observed versus predicted pC1.6 values are plotted for both the models is shown in Figure 4.41. 

4.5.1. 2D-QSAR model using Dragon descriptors 

𝑝𝐶1.6 = 3.612 + 0.613𝐶 − 035 − 0.285𝑛𝐶𝑝 − 1.129𝐶 − 043 + 0.068𝐻 − 052 − 1.630𝐶 − 042

+ 0.295𝑛𝑅𝑁𝐻𝑅 

𝑁𝑡𝑟𝑎𝑖𝑛 = 63, 𝑅2 = 0.773, 𝑅𝑎𝑑𝑗
2 = 0.757, 𝑄(𝐿𝑂𝑂)

2 = 0.746, 𝑟𝑚(𝑇𝑟𝑎𝑖𝑛)
2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = 0.647, 𝛥𝑟𝑚(𝑇𝑟𝑎𝑖𝑛)

2 = 0.173, 𝑀𝐴𝐸(𝑇𝑟𝑎𝑖𝑛)

= 0.246, 𝑆𝐷(𝑇𝑟𝑎𝑖𝑛) = 0.195, 𝑅𝑀𝑆𝐸𝐶 = 0.30, 𝑄𝑢𝑎𝑙𝑖𝑡𝑦 = 𝐺𝑜𝑜𝑑 

𝑁𝑡𝑒𝑠𝑡 = 21, 𝑄𝐹1
2 = 0.752, 𝑄𝐹2

2 = 0.724, 𝑟𝑚(𝑇𝑒𝑠𝑡)
2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 0.608, 𝛥𝑟𝑚(𝑇𝑒𝑠𝑡)

2 = 0.216, 𝐶𝐶𝐶 (𝑇𝑒𝑠𝑡): 0.831, 𝑀𝐴𝐸(𝑇𝑒𝑠𝑡)

= 0.240, 𝑆𝐷(𝑇𝑒𝑠𝑡) = 0.204, 𝑅𝑀𝑆𝐸𝑃 = 0.31, 𝑄𝑢𝑎𝑙𝑖𝑡𝑦 =  𝑀𝑜𝑑𝑒𝑟𝑎𝑡𝑒 

Model 1 

The PLS model with 4 latent variables (LVs) could predict 74.6% variance of the training set and 

75.2% of the test set. Important internal and external metrics used to determine the quality of a QSAR 

model are listed in equation 1. Mechanistic interpretation of the six descriptors obtained in the model 

would give us an insight about the structural features of the nitroimidazoles which are likely to 

influence their radiosensitization effectiveness. The obtained descriptors are C-035, nCp, C-043, H-

052, C-042 and nRNHR. The model contains four atom centred fragments C-035 (R--CX..X; positive 

contribution), C-043 (X--CR..X, negative contribution), H-052 (hydrogen (He) attached to sp3 carbon 

(C0) with one X attached to next carbon, ‘e’ represents the formal oxidation number; positive 

contribution) and C-042 (X--CH..X; negative contribution). These descriptors are further explained 

with molecular structures from the dataset in Figure 4.42. The other two descriptor belonging to 

functional group counts are nCp (number of terminal primary C(sp3); negative contribution) and 

nRNHR (number of secondary amines (aliphatic); positive contribution). The descriptors obtained in 

the model gives us an idea regarding the vital features essential for better radiosensitization which 

includes the position of nitro group in the imidazole moiety. Atom centred fragment-based descriptors 

like C-042 and C-043 could explain that presence of nitro group at position 4 and position 5 would 

decrease the pC1.6.  

 
Figure 4.41. Scatter plots for observed vs predicted pC1.6values for Model 1 and Model 2. 
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Figure 4.42. Descriptor features obtained from Dragon controlling the radiosensitization effectiveness 

of nitroimidazoles. 

The variable importance plot (VIP) analysis gives us a premonition that C-042 and C-035 are the most 

important descriptors (VIP>1) and contributing mostly towards the radiation enhancement of the 

compounds. The loading plot gives the relationship between the Y-variable (pC1.6) and the X- 

variables (descriptors). For interpretation of the loading, the distance from the plot origin is 

considered, where similar types of descriptors with similar properties are located together. The 

variables which are far away from the plot origin are considered to have stronger impact on the 

model. This statement is verified by descriptors C-042 and C-035 which are proved to have higher 

impact from the VIP values also. The closeness of any descriptor to the Y-variable signifies its higher 

influence on the response. The VIP and loading plot are shown in Figure 4.43. 

The 2D-QSAR model with Dragon descriptors gives an insight about the importance of the position of 

nitro group in the nitroimidazole compounds. Also, it is found that the presence of secondary aliphatic 

amine has significant importance on radiosensitization. 
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Figure 4.43. VIP and loading plot of Model 1. 

 

4.5.2. 2D-QSAR model using SiRMS descriptors 

We have further tried to improve the quality of the model by the use of SiRMS descriptors. The 

obtained 2D-QSAR model using SiRMS descriptors for radiosensitization effectiveness of 

nitroimidazoles was highly robust in terms of the statistical parameters as the values of quality metrics 

were above the recommended threshold as currently practiced (Ojha et al., 2011). 

 

𝑝𝐶1.6 = 1.381 +  0.802𝐹𝑟3(𝑒𝑙𝑚)/𝐶_𝑁_𝑁/1_2𝑠, 1_3𝑎/            + 0.494𝑆_𝐴(𝑐ℎ𝑔)/𝐴_𝐶_𝐷_𝐷

/1_2𝑠, 1_4𝑎, 3_4𝑠/6            +  0.004𝑆_𝐴(𝑐ℎ𝑔)/𝐵_𝐶_𝐶_𝐶/1_4𝑠, 3_4𝑠/4            

−  0.377𝐹𝑟5(𝑡𝑦𝑝𝑒)/𝐶. 3_𝐶. 𝐴𝑅_𝐶. 𝐴𝑅_𝐶. 𝐴𝑅_𝑁. 𝐴𝑅/1_2𝑠, 2_3𝑎, 2_5𝑎, 4_5𝑎

/            + 0.269𝐹𝑟5(𝑒𝑛)/𝐶_𝐶_𝐶_𝐶_𝐷/1_5𝑠, 2_3𝑠, 2_5𝑠, 3_4𝑎/  

𝑁𝑡𝑟𝑎𝑖𝑛 =  63, 𝑅2 =  0.82, 𝑅𝑎𝑑𝑗
2 =  0.81, 𝑄(𝐿𝑂𝑂)

2 =  0.79, 𝑟𝑚(𝑙𝑜𝑜)
2̅̅ ̅̅ ̅̅ ̅̅ ̅ =  0.70, 𝛥𝑟𝑚(𝑙𝑜𝑜)

2 =  0.14, 𝑀𝐴𝐸𝑡𝑟𝑎𝑖𝑛

=  0.22, 𝑆𝐷𝑡𝑟𝑎𝑖𝑛 =  0.18, 𝑅𝑀𝑆𝐸𝐶 = 0.26, 𝑄𝑢𝑎𝑙𝑖𝑡𝑦(𝑇𝑟𝑎𝑖𝑛)  =  𝑀𝑜𝑑𝑒𝑟𝑎𝑡𝑒 

 𝑁𝑡𝑒𝑠𝑡 =  21, 𝑄𝐹1
2 (𝑜𝑟 𝑅𝑝𝑟𝑒𝑑

2 ) =  0.80, 𝑄𝐹2
2 =  0.77, 𝑟𝑚(𝑇𝑒𝑠𝑡)

2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =  0.70, 𝛥𝑟𝑚(𝑇𝑒𝑠𝑡)
2 =  0.05, 𝐶𝐶𝐶(𝑇𝑒𝑠𝑡)  

=  0.88, 𝑀𝐴𝐸𝑡𝑒𝑠𝑡 =  0.23, 𝑆𝐷𝑡𝑒𝑠𝑡 =  0.16, 𝑅𝑀𝑆𝐸𝑃 = 0.28, 𝑄𝑢𝑎𝑙𝑖𝑡𝑦(𝑇𝑒𝑠𝑡)  

=  𝑀𝑜𝑑𝑒𝑟𝑎𝑡𝑒 

Model 2 

The PLS equation with 3 LVs is able to predict 79% variance of the training set (𝑄2) and 80% of the 

test set (𝑅𝑝𝑟𝑒𝑑
2 ). The various internal and external metric values obtained are given in equation 2. The 

observed and predicted radiosensitization effectiveness values of the nitroimidazoles are listed in 

Table S1 in the Supplementary Section.  

From VIP (Figure 4.44) the descriptors from highest to lowest order of significance are as follows: 

Fr3(elm)/C_N_N/1_2s,1_3a/, S_A(chg)/A_C_D_D/1_2s,1_4a,3_4s/6, 

S_A(chg)/B_C_C_C/1_4s,3_4s/4, Fr5(type)/C.3_C.AR_C.AR_C.AR_N.AR/1_2s,2_3a,2_5a,4_5a/ 

and Fr5(en)/C_C_C_C_D/1_5s,2_3s,2_5s,3_4a/. The loading plot developed using first two 

components describe the relationship between the X-variables and Y-variable is shown in Figure 

4.45. 
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Figure 4.44: Variable importance plot of SiRMS model. (A- Fr3(elm)/C_N_N/1_2s,1_3a/, B- 

S_A(chg)/A_C_D_D/1_2s,1_4a,3_4s/6, C- S_A(chg)/B_C_C_C/1_4s,3_4s/4, D-  

Fr5(type)/C.3_C.AR_C.AR_C.AR_N.AR/1_2s,2_3a,2_5a,4_5a/, E- 

Fr5(en)/C_C_C_C_D/1_5s,2_3s,2_5s,3_4a/) 

 

 

Figure 4.45: Loading plot of SiRMS model. 

The highest contributing descriptor is Fr3(elm)/C_N_N/1_2s,1_3a/ which is a three atomic fragment 

depicted by N-C=N (Figure 4.46: Box 1). Here, the unsaturation between carbon and nitrogen takes 

place within the imidazole moiety and the other nitrogen is from the nitro group. This descriptor has a 

positive impact on the radiosensitization of the nitroimidazoles thus with higher number of such 

fragments increases the pC1.6 value. All the compounds in the dataset have this particular group once 

or twice. Compounds with two fragments of this kind has higher pC1.6 values as prominently seen in 

compounds like 63, 47, 11, 53, 46, 51, 43, 45, 10, 22, 54, etc. Compounds with only one fragment 

have considerably lower pC1.6 values as observed in 72, 71, 82, 78, 75, 86, 80, 81, 85, 84, etc. Thus, 

the importance of this fragment leads us to a conclusion that the presence of nitro groups in 

nitroimidazole should be between N1 and N3 position of imidazole moiety so as to show better 

radiosensitization property.  
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The second important descriptor is S_A(chg)/A_C_D_D/1_2s,1_4a,3_4s/6 that represents the partial 

charge of any of the four atom fragment as given in Figure 4.46: Box 2. The fragment here has two 

possibilities, one with single nitrogen present within the imidazole moiety and another with two 

nitrogens (one from the imidazole moiety and another from the nitro group) (given in Box 2). Most of 

the compounds having this fragment have a nitro group attached at position 2 of the imidazole ring. 

Thus, the position of nitro group plays a vital role in controlling the pC1.6 value. This fragment has a 

positive influence on the radiosensitization effectiveness observed in compounds like 63, 66, 65, 68, 

47, 11 and 53. Compounds which are devoid of these kinds of fragments have considerably low pC1.6 

value (such as in 74, 77, 80, 75, 78, 71 and 72).  

 

 

Figure 4.46. Simplex representation of molecular structures (SiRMS) fragments appearing in the 

nitroimidazole dataset. (I- Fr3(elm)/C_N_N/1_2s,1_3a/, II- S_A(chg)/A_C_D_D/1_2s,1_4a,3_4s/6, 

III- S_A(chg)/B_C_C_C/1_4s,3_4s/4, IV- 

Fr5(type)/C.3_C.AR_C.AR_C.AR_N.AR/1_2s,2_3a,2_5a,4_5a/, V- 

Fr5(en)/C_C_C_C_D/1_5s,2_3s,2_5s,3_4a/).  

 

The next important descriptor is S_A(chg)/B_C_C_C/1_4s,3_4s/4 which represents the partial charge 

of a four atom fragments as given in Figure 4.46: Box 3. The presence of the mentioned fragment 

(i.e., three carbon chain attached to nitrogen from a cyclic nucleus) would increase the 

radiosensitization effectiveness due to the positive influence of the descriptor. Compounds like 47, 51, 

43, 46, 55, 49, 54 and 53 have higher partial charges due to the presence of the mentioned fragments 

thereby increasing the radiosensitization effectiveness whereas in compounds with no such fragments 

(like in 71, 72, 82, 78, 75, 80 and 81) the effect of such charges is not observed thereby the pC1.6 value 

is less. 

The next important descriptor Fr5(type)/C.3_C.AR_C.AR_C.AR_N.AR/1_2s,2_3a,2_5a,4_5a/  is a 

five atomic fragment signifying the following formula: C(sp3)-C(aromatic)-C(aromatic)-C(aromatic)-

N(aromatic). The structure of the possible fragment is given in Figure 4.46: Box 4. The presence of 
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this type of fragment reduces the radiosensitization effectiveness as indicated by the negative 

influence of the descriptor on pC1.6 value. This is well observed in compounds like 72, 59, 57, 61, 69, 

62, 41 and 70. On the other hand, absence of this fragment increases the radiosensitization property as 

seen in compounds such as 43, 45, 51, 46, 11, 53, 47 and 63. 

 
Figure 4.47: Features controlling the increase or decrease in pC1.6. 

The descriptor with the least significance is Fr5(en)/C_C_C_C_D/1_5s,2_3s,2_5s,3_4a/ which 

denotes the electronegativity of the compound due to the presence of a four atomic fragment given in 

Figure 4.46: Box 5. The positive contribution suggested that the presence of any of the given 

fragments will influence the electronegativity of the compound thereby increasing the pC1.6 value. 

Compounds 9, 10 and 11 have been reported to have two such fragments and thereby increase the 

radiosensitization effectiveness.  

4.5.3. Applicability Domain Assessment 

The prediction reliability of both the 2D-QSAR models is determined by the applicability domain 

(AD) assessment. AD gives a theoretical region in chemical space defined by the respective model 

descriptors and responses in which the predictions are reliable (Gadaleta et al., 2016). AD assessment 

for both the models was performed using DModX (distance to model in the X-space) approach at 99% 

confidence level (Figure 4.48 and 4.49). Both the models displayed good coverage of domain of 

applicability showing maximum number of compounds in the AD (only compound 6 is outside the 

AD in case of Model 1, i.e., 2D-QSAR model with Dragon descriptors). There was no outlier obtained 

from the test set for both the models. We have also performed AD assessment at 95% confidence 

level for both the models and found that in this case three compounds in the test set were outside AD 

for the model with Dragon descriptors and two compounds in the test set for the model with SiRMS 

descriptors. 
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Figure 4.48: Applicability Domain of training and test set of Model 1 (with dragon descriptors) at 99% confidence level. 

 

 

Figure 4.49: Applicability Domain of training and test set of Model 2 (with SiRMS descriptor) at 99% confidence level.
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4.5.4. Y-randomization 

The Y-randomization plot analysis helps to understand the statistical significance of the model. The 

randomization plot confirms that the model is not the result of any chance correlation (Rücker et al., 

2007). In this process, a number of models are generated by shuffling different combinations of X or 

Y variables (here Y variable only) based on the fit of the reordered model. In our work, we have used 

100 permutations for random model generation. A model with no chance correlation would show very 

poor statistics for the randomized models, i.e., RY
2 intercept should not exceed 0.3 and QY

2 intercept 

should not exceed 0.05 (Rücker et al., 2007). The randomization plots given in Figure 4.50 show that 

the developed models are non-random and robust (as understood from their RY
2 and QY

2 values) and 

are suitable for prediction of the radiosensitization effectiveness within the AD of the model.  

 

Figure 4.50. Y-randomization plots for Model 1 and Model 2. 

4.5.5. True External Predictions 

The prediction of responses for external compounds based on their molecular features using 

chemometric methods can reduce the experiment costs and animal handling. To verify the predictive 

power of both the models, we have used a set of eight nitroimidazole derivatives (Table 4.13) as an 

external prediction set (Krause et al., 2005; Long & Liu, 2010; Brown et al., 1981). The original 

dataset in the source literature contains 86 nitroimidazoles but we have removed two of them and used 

the rest 84 for modeling. These two compounds are now used for prediction purpose. In addition to 

this, the domain of applicability and their predictive reliability are analyzed using ‘prediction 
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reliability indicator’ tool (Roy et al., 2018). The prediction quality and domain of applicability are 

given in Table 4.14. From the prediction status, it can be inferred that model with fragment-based 

SiRMS descriptors provides better prediction than model with dragon descriptors.  

Table 4.13. External dataset and their predicted pC1.6 values 

Compound 

Number 
Structure 

Observed 

pC1.6 

Predicted 

pC1.6 using 

model 1 

Predicted 

pC1.6 

using 

model 2 

Reference 

P-1 

 

4.05 3.58 3.67 
(Long & 

Liu, 2010) 

P-2 

 

2.89 3.88 3.82 
(Long & 

Liu, 2010) 

P-3 

 

- 1.98 2.18 
(Krause et 

al., 2005) 

P-4 

 

- 4.22 2.18 
(Krause et 

al., 2005) 

P-5 

 

- 2.81 2.18 
(Krause et 

al., 2005) 

P-6 

 

- 2.53 2.18 
(Krause et 

al., 2005) 

P-7 

 

- 3.33 3.48 
(Brown et 

al., 1981) 
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P-8 

 

- 3.04 3.48 
(Brown et 

al., 1981) 

 

Table 4.14. Prediction quality (Roy et al., 2018) for the true external dataset. 

Compound 

Number 

Prediction Status of model with Dragon 

descriptors 

Prediction Status of model with SiRMS 

descriptors 

Composite 

Score 

Prediction 

Quality 

AD status 

(using 

standardization 

approach) 

Composite 

Score 

Prediction 

Quality 

AD status (using 

standardization 

approach) 

P-1 3 Good Outside AD 3 Good In 

P-2 3 Good In 3 Good In 

P-3 2 Moderate In 3 Good In 

P-4 3 Good In 3 Good In 

P-5 3 Good In 3 Good In 

P-6 3 Good Outside AD 3 Good In 

P-7 3 Good In 3 Good In 

P-8 3 Good In 3 Good In 

 

4.5.6. Comparison with the previously published research 

In the previously published research by Long and Liu (Long & Liu, 2010), the authors developed 

MLR and projection pursuit regression (PPR) (Du et al., 2002; Friedman & Stuetzle, 1981; Liu et al., 

2007) models using complex descriptors such as geometrical, electrostatic and quantum chemical 

descriptors. The models developed by us cannot be critically compared to the previously published 

since the calibration and validation set compositions are different. However, it can be found that our 

MLR model developed using SiRMS descriptor is better in terms of both training and test set 

validation metrics if we consider their MLR model (Table 4.15). Also, the current model comes with 

an added advantage of presence of lower number of simple descriptors and non-requirement 

of conformation analysis or energy minimization prior to their calculation. Furthermore, the PPR 

based model reported in the previous study is derived from a more complicated process which uses 

projection-based approach to convert high dimensional data to lower dimension. Moreover, 3D 

descriptors were used in the previous work. MLR or PLS models are more straight-forward and 

reproducible as used in the current work. In addition, 2D descriptors used in the present work are easy 

to compute and do not need any conformation analysis or energy minimization process.  
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Table 4.15. Comparison of the current SiRMS model with previously developed MLR model. 

Model 

Total no. of 

compounds 

used 

No. of 

compounds 

in the 

training set 

No. of 

compounds 

in the test 

set 

Descriptor 

type 

No. of 

descriptors in 

final model 

Training Set Test Set 

𝑹𝟐 𝑸𝟐 RMSEC 𝑸𝑭𝟏
𝟐  RMSEP 

Current 

study 
84 63 21 

2D 

(fragment 

based 

SiRMS) 

5 (3 LVs) 0.82 0.79 0.26 0.80 0.28 

Long and 

Liu, 2010  
86 68 18 3D 6 0.80 0.76 0.28 0.76 0.28 
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4.6. Study 6: QSAR and QSAAR modeling of nitroimidazole sulfonamide radiosensitizers: 

Application of Small Dataset Modelling 

2D-QSAR models using Dragon and SiRMS descriptors explaining chemical features required for 

good drug radiosensitization (both SER and logSR) are shown in the following section. There are 4 

models developed of which two are QSAR models and the rest two are QSAAR models. All the 

models are three-descriptor PLS models with 2 latent variables (LVs) showing acceptable values for 

all validation metrics as shown in Table 4.16. The validation metrics included 𝑅2, 𝑄2, 𝑄𝐿𝑀𝑂 (20%)
2 , 

𝑟𝑚(𝐿𝑂𝑂)
2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 𝛥𝑟𝑚(𝐿𝑂𝑂)

2 , SD (95% data; Training), MAE (95% data; Training) and RMSE. Furthermore, we 

have calculated the 𝑄𝐹1
2  metric for the validation set in each iteration cycle for each model during the 

calculation of 𝑄𝐿𝑀𝑂 (20%)
2  (Table 4.17). The experimental and predicted values for all the models are 

given in Table 4.18) and the observed versus predicted plots for all the developed QSAR and QSAAR 

models are shown in Figure 4.51. The different PLS plots including variable importance plot, loading 

plot, regression coefficient plot and randomisation plot are discussed later in Section 4.6.4.  

 

 

Figure 4.51: Scatter plots for QSAR and QSAAR models. 
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4.6.1. Model 1: Modeling Drug Sensitizer Enhancement Ratio (SER)  

𝑆𝐸𝑅 = 0.931 + 0.452 × 𝐻 − 049 − 0.238 × 𝐵05[𝑂 − 𝑆] + 0.09 × 𝐹05[𝐶 − 𝑆] 

The first descriptor H-049 belongs to atom-centred fragment type, which indicates H atom attached to 

C3 (sp3)/C2 (sp2)/C3 (sp2)/C3 (sp). The descriptor symbolizes the hydrogen of a CH group with the 

carbon bonded to varying numbers of heteroatoms in a variety of hybridizations. The descriptor has a 

positive contribution towards the response (Figure 4.52) which is well understood from certain higher 

active compounds in the dataset like compounds 19 (SER=1.81) and 24 (SER=1.81), each of which 

has two H-049 fragments. On the other hand, compounds like 12 (SER=1.11) and 16 (SER=1.105) 

having only one such fragments have low SER values. 

The next descriptor is B05[O-S], which is a 2D atom pair descriptor demonstrating the presence or 

absence of oxygen and sulphur atoms at the topological distance 5. The negative contribution explains 

that presence of oxygen and sulphur atoms at the topological distance 5 will lower the SER values 

(Figure 4.52) as observed in compounds 7 (SER=1.11) and 16 (SER=1.105). On the other hand, in 

compounds like 4 (SER=1.835) and 30 (SER=1.687), the absence of such fragment does not lower the 

SER value. 

The descriptor F05[C-S], another 2D atom pair descriptor, denotes the frequency of C - S at the 

topological distance 5. The positive contribution of the descriptor indicates that higher frequency of 

the C-S fragment at the topological distance 5 will increase the SER value (Figure 4.52)   as seen in 

compounds 30 (F05[C-S]= 3, SER=1.68) and 38 (F05[C-S]=3, SER=1.67). 

 

Figure 4.52. Features increasing or decreasing SER values as explained in Model 1. 

 

4.6.2. Model 2: Modeling Drug Survival Ratio (logSR) 

𝑙𝑜𝑔𝑆𝑅 = 1.965 − 1.08 × 𝑆_𝐴(𝑐ℎ𝑔)/𝐴_𝐵_𝐵_𝐷/1_4𝑠, 3_4𝑠/4 − 1.073 × 𝐶 − 033 − 0.108 × 𝐹07[𝐶

− 𝐶] 

S_A(chg)/A_B_B_D/1_4s,3_4s/4 represents a four atomic fragment labeled by partial charges, and its 

negative regression coefficient indicates that it reduces the radiosensitization property with the 

presence of such fragment (shown in Figure 4.53). In compounds like 26 and 28, presence of such 

fragment reduces the radiosensitization (logSR= 0.681 and 0.208). 
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C-033 is an atom-centred fragment descriptor represented by R--CH..X fragment. ‘R’ denotes any 

group linked through carbon, ‘- -’ represents an aromatic bond as in benzene or delocalized bonds 

such as the N-O bond in a nitro group, ‘..’ represents aromatic single bonds as the C-N bond in 

pyrrole and ‘X’ is any electronegative atom (O, N, S, P, Se, halogens) (R Todeschini & Consonni, 

2009). The negative coefficient indicates that presence of this type of fragment lowers logSR (Figure 

4.53) values as observed in compounds 6 (C-033= 1, logSR= 0.462) and 7 (C-033= 1, logSR= 0.255).  

F07[C-C] is a 2D atom pair descriptor, which signifies the frequency of the C-C fragment at the 

topological distance 7. The negative coefficient indicates that a higher value of the descriptor may 

decrease the radiosensitization (logSR value) (Figure 4.53). This is observed in compounds like 12 

and 8 where F07[C-C] are high (6 and 5 respectively) and their logSR values are low (0.301 and 

0.591 respectively). 

 

Figure 4.53. Factors decreasing logSR values as explained in Model 2 

4.6.3. Quantitative Structure Activity-Activity Relationship (QSAAR) models 

QSAAR models are mathematical expressions correlating two biological end points, here SER and 

logSR, with the aim to extrapolate any one explicit activity endpoint when the experimental data is 

not available. This advanced technique can overcome the additional cost of manifold experimental 

procedures. In the present study, we have developed two QSAAR models, one taking SER as the 

endpoint and logSR as an independent variable and another taking logSR as the endpoint and SER as 

an independent variable. It was found that these two endpoints had positive correlation between 

themselves explaining that increase in experimental value of any of the endpoints would increase the 

other endpoint and vice versa.  

4.6.1.1. Model 3: QSAAR modeling of SER 

𝑆𝐸𝑅 = 1.084 + 0.018 × 𝐹03[𝐶 − 𝐶] + 0.363 × 𝑙𝑜𝑔𝑆𝑅 − 0.001 × 𝑇(𝑁. . 𝑂) 

Model 3 is a PLS model with 2 latent variables and shows acceptable values of the validation metrics. 

Here, logSR has been used as an independent variable to produce a QSAAR model for drug SER. 
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Thus, for any compound, if survival ratio (SR) value is known, the SER value can be extrapolated 

using model 3. This reduces time and experimental expenses. In the model, logSR shows a positive 

regression coefficient; hence, a higher value of logSR will increase SER values as observed in 

compounds like 19 (logSR= 2.212, SER= 1.81) and 24 (logSR= 2.057, SER= 1.81). 

The descriptor F03[C-C] is a 2D atom pair descriptor signifying the frequency of C-C fragments at 

the topological distance 3. This makes a positive contribution to the endpoint thus indicating that with 

an increase in the F03[C-C] descriptor value, SER value will also increase as seen in compounds 30 

(F03[C-C]=14, SER=1.68) and 35 (F03[C-C]=13, SER=1.71). Another 2D atom pair descriptor 

T(N..O) appears in the model signifying the sum of topological distances between N..O. This 

descriptor has a negative influence on the SER values indicating that the total distance between 

nitrogen and oxygen should be low for higher SER values as in compound 4 (T(N..O)=51, SER=1.8).  

Compounds with higher T(N..O) values will have lower SER values as observed in compounds 8 

(T(N..O)=130, SER=1.28) and 12 (T(N..O)=106, SER=1.11). Features increasing and decreasing SER 

values are shown in Figure 4.54. 

 

Figure 4.54. Features increasing or decreasing SER value as explained in Model 3 

 

4.6.1.2. Model 4: QSAAR modeling of logSR 

 

𝑙𝑜𝑔𝑆𝑅 = −3.364 + 2.735 × 𝑆𝐸𝑅 − 0.028 × 𝐹03[𝐶 − 𝐶] + 0.125 × 𝑛𝑂 

In Model 4, SER has been used as an independent variable for modeling logSR. SER makes a positive 

contribution to logSR, proving the authenticity of the previously developed model 3 and this can be 

explained by the same compounds 19 and 24. 

F03[C-C] is a 2D atom pair descriptor symbolizing the frequency of the C-C fragment at the 

topological distance 3. The descriptor shows a negative regression coefficient, thus signifying that 

with an increase in F03[C-C] values, logSR value will decrease and vice versa. It is observed that in 

compounds 15 and 34, the F03[C-C] values are high (10 and 11 respectively) and their logSR values 

are low (log SR= 0.699 and 1.134 respectively). The opposite is observed in compounds 19 (F03[C-

C]= 2, logSR= 2.057) and 24 (F03[C-C]= 4, logSR= 2.212) having lower values for F03[C-C]. 

Descriptor nO is a constitutional descriptor meaning the number of oxygen atoms present in a 

molecule. The positive regression coefficient indicates that presence of oxygen atoms is beneficial for 

the in vitro radiosensitization (logSR). In compounds like 19 (logSR= 2.057) and 24 (logSR= 2.212), 

higher number of oxygen (nO=5) contributes to a higher value of logSR. Features increasing and 

decreasing logSR value are shown in Figure 4.55.  
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Figure 4.55. Features increasing or decreasing logSR value as explained in Model 5. 

 

Table 4.16: Validation metrics of the four models developed using the Small Dataset Modeler. 

Model 

Number 
Endpoint 

Number of 

descriptors 
LV R2 Q2 

𝑄𝐿𝑀𝑂 (20%)
2  𝑟𝑚(𝐿𝑂𝑂)

2̅̅ ̅̅ ̅̅ ̅̅ ̅ 𝛥𝑟𝑚(𝐿𝑂𝑂)
2  SD (95% 

data;TRAIN)  

MAE (95% 

data;TRAIN)  
RMSE 

1 SER 3 2 0.834 0.746 0.712 0.660 0.134 0.066 0.073 0.096 

2 logSR 3 2 0.798 0.660 0.665 0.563 0.109 0.189 0.216 0.261 

3 QSAAR_SER 3 2 0.993 0.985 0.982 0.972 0.012 0.013 0.016 0.027 

4 QSAAR_logSR 3 2 0.991 0.983 0.983 0.968 0.014 0.037 0.046 0.055 
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Table 4.17: 𝑄𝐹1
2  metric for the validation set for each model in each iteration during the calculation of 

𝑄𝐿𝑀𝑂 (20%)
2 . 

Model No. Iteration  Compound numbers belonging to validation set 𝑄𝐹1
2  

M1 

Step 1 1, 8, 19, 28, 38 0.522 

Step 2 2, 12, 21, 30 0.669 

Step 3 4, 14, 22, 31 0.800 

Step 4 6, 15, 24, 34 0.720 

Step 5 7, 16, 26, 35 0.896 

 

M2 

Step 1 1, 8, 19, 28, 38 0.720 

Step 2 2, 12, 21, 30 0.559 

Step 3 4, 14, 22, 31 0.901 

Step 4 6, 15, 24, 34 0.709 

Step 5 7, 16, 26, 35 0.561 

 

M3 

Step 1 1, 8, 19, 28, 38 0.966 

Step 2 2, 12, 21, 30 0.993 

Step 3 4, 14, 22, 31 0.983 

Step 4 6, 15, 24, 34 0.980 

Step 5 7, 16, 26, 35 0.995 

 

M4 

Step 1 1, 8, 19, 28, 38 0.987 

Step 2 2, 12, 21, 30 0.965 

Step 3 4, 14, 22, 31 0.996 

Step 4 6, 15, 24, 34 0.980 

Step 5 7, 16, 26, 35 0.991 

 

Table 4.18: Experimental SER and logSR values and Predicted SER and logSR values for all four 

models 

 

Compound 

ID 

Exp SER Exp logSR M1 M2 M3 M4 

Pred SER Pred logSR Pred SER 

(QSAAR 

model) 

Pred log SR 

(QSAAR 

model) 

1 1.400 0.833 1.383 0.833 1.417 0.833 

2 1.339 0.663 1.383 0.663 1.351 0.663 

4 1.800 1.652 1.835 1.652 1.795 1.652 

6 1.200 0.462 1.145 0.462 1.223 0.462 

7 1.110 0.255 1.145 0.255 1.130 0.255 

8 1.280 0.591 1.145 0.591 1.313 0.591 

12 1.110 0.301 1.145 0.301 1.141 0.301 

14 1.270 0.623 1.235 0.623 1.288 0.623 

15 1.357 0.699 1.473 0.699 1.375 0.699 

16 1.105 0.114 1.145 0.114 1.089 0.114 
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19 1.810 2.057 1.597 2.057 1.782 2.057 

21 1.430 0.914 1.597 0.914 1.428 0.914 

22 1.560 1.415 1.687 1.415 1.592 1.415 

24 1.810 2.212 1.687 2.212 1.863 2.212 

26 1.340 0.681 1.325 0.681 1.379 0.681 

28 1.176 0.208 1.325 0.208 1.190 0.208 

30 1.680 1.447 1.653 1.447 1.708 1.447 

31 1.570 1.173 1.563 1.173 1.574 1.173 

34 1.540 1.134 1.563 1.134 1.595 1.134 

35 1.710 1.380 1.563 1.380 1.721 1.380 

38 1.670 1.398 1.653 1.398 1.683 1.398 

4.6.4. Plot interpretation 

4.6.4.1. Variable importance plot (VIP) 

A VIP can provide with a better knowledge about the descriptors and their contribution in controlling 

the radiosensitization properties of nitroimidazole sulfonamides. The plot signifies the order of 

contribution of each descriptor appearing in the model. The most and least important descriptors can 

be identified using this plot. A variable with VIP score > 1 indicates the descriptor has higher 

statistical significance as compared to the one with a lower VIP value (Akarachantachote et al., 2014). 

The VIP plot showing the descriptors from higher to lower significance is given in the Figure 4.56 

and 4.57. 

 
Figure 4.56. VIP of Model 1 and Model 2 (QSAR models) 

 
Figure 4.57: VIP of Model 3 and Model 4 (QSAAR models) 
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4.6.4.2. Loading Plot 

The loading plot defines the relationship between X variables and Y variables (Wold et al., 2001). The 

plot was developed using the two latent variables for all the four models. The plot describes the 

impact of the different variables. Descriptors that are grouped together have similar meanings and 

similar effects on the response whereas descriptors with different meanings are situated at a 

considerable distance from each other. Descriptors which are situated far from the plot origin have 

greater impact on the response. The loading plots of the four models are given in the Figures 4.58 and 

4.59. 

 
Figure 4.58. Loading Plot of Model 1 and Model 2 

 

 
Figure 4.59. Loading Plot of Model 3 and Model 4 

 

 

4.6.4.3. Randomization Plot 

Model randomization is done to ensure that the model is not the result of any chance correlation 

(Rücker et al., 2007). The statistical significance of the model is determined by a randomisation 

model. During the model randomisation, multiple models are generated by shuffling different 

combinations of X or Y variables (here Y variable) based on the fit of the reordered model. Here, we 

have used 100 permutations for each model for random model generation. A model not generated out 

of chance correlation should have poor statistics (𝑅𝑦
2 intercept should not exceed 0.3 and 𝑄𝑦

2  intercept 

should not exceed 0.05). The randomization plots given in Figures 4.60 and 4.61 show that the 

developed models are non-random and robust and are suitable for prediction. 
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Figure 4.60. Y-Randomisation Plot of Model 1 and Model 2 

 

 

Figure 4.61. Y-Randomisation Plot of Model 3 and Model 4 

 

4.6.5. Applicability Domain assessment 

Applicability Domain (AD) explains the prediction reliability of a particular model. It is the “chemical 

space from which a model is derived and where a prediction is considered to be reliable” (Gadaleta et 

al., 2016). AD evaluation was done using DModX (distance to model) in the X-space using SIMCA 

16.0.2 software (https://landing.umetrics.com/downloads-simca). The AD plots are given in Figures 

4.62 and 4.63. It is found that there is no outlier in any of the four models developed at 95% 

confidence level (D-crit= 0.009999).  

 

https://landing.umetrics.com/downloads-simca
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Figure 4.62. DModX Applicability Domain plot of Model 1 and Model 2 

 

 

Figure 4.63. DModX Applicability Domain of Model 3 and Model 4. 
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4.6.6. Prediction dataset 

A QSAR model helps in the prediction of external datasets based on their molecular features thereby 

reducing the experiment costs and animal handling. To study the predictive power of the developed 

models, we have used 14 compounds whose SER and logSR values have been predicted. These 14 

compounds were selected from Table 1 of the source article (Bonnet et al., 2018). This table contained 

about 36 nitroimidazole sulphonamides out of which 21 compounds were used for QSAR and 

QSAAR modelling and rest 14 compounds were used as an external set for prediction. Further, we 

have analysed the prediction quality and domain of applicability using Prediction Reliability 

Indicator tool (Roy et al., 2018). The prediction status and domain of applicability are given in Table 

4.19. Prediction was possible for model 1 (M1), model 2 (M2) and model 3 (M3). In M1 and M2, the 

predicted SER and predicted logSR values were calculated for 14 compounds. In case of M3 

(QSAAR-SER), SR15 values were obtained from source article (Bonnet et al., 2018) and the values 

were converted to logarithmic form and used as an independent variable for the calculation of 

predicted SER values. Prediction for model M4 was not possible since experimental SER values for 

the prediction compounds are not available. During prediction with model M1, three compounds had 

bad/unreliable predictions. This is due to the difference between the mean of the training set response 

and predicted value of the query compound being considerably higher. However, these compounds 

fall inside the AD of the model. In case of M2, one compound (compound no. 25) is outside AD, 

however it shows moderate prediction quality. During prediction with model M3, all the compounds 

are found to have ‘moderate’ prediction quality and are inside the model AD. 
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Table 4.19. Prediction dataset and their predicted SER and logSR values along with prediction quality and AD status obtained from ‘Prediction Reliability 

Indicator’ tool. 

Serial 

No. 

Compound 

No. 
Structure (SMILES) 

M1 (SER) M2 (logSR) M3 (QSAAR-SER) 

Pred_SE

R 

Prediction 

Quality 

AD 

sta

tus 

Pred_logS

R 

Predictio

n Quality 

AD 

status 

Pred_SE

R 

Predictio

n Quality 

AD 

statu

s 

1 9 
c1(n(ccn1)CS(=O)(=O)NCCCN1CCCC1)

[N+](=O)[O-] 
0.694 

Bad/ 

Unreliable 
In 0.355 Moderate In 1.174 Moderate In 

2 10 
c1(n(ccn1)CS(=O)(=O)NCCC(=O)O)[N+]

(=O)[O-] 
0.694 

Bad/ 

Unreliable 
In 0.570 Moderate In 1.207 Moderate In 

3 11 
c1(n(ccn1)CS(=O)(=O)NCCCC(=O)O)[N

+](=O)[O-] 
0.784 Moderate In 0.570 Moderate In 1.106 Moderate In 

4 13 
c1(n(ccn1)CCS(=O)(=O)NCCCOC)[N+](

=O)[O-] 
0.784 Moderate In 0.462 Moderate In 1.356 Moderate In 

5 18 
c1n(cc(n1)[N+](=O)[O-

])CS(=O)(=O)NCCCO 
0.694 

Bad/ 

Unreliable 
In 0.570 Moderate In - - - 

6 20 
c1n(cc(n1)[N+](=O)[O-

])CS(=O)(=O)NCCCN1CCOCC1 
0.931 Moderate In 0.355 Moderate In 1.371 Moderate In 

7 23 
c1n(cc(n1)[N+](=O)[O-

])CCS(=O)(=O)NCCCOC 
0.784 Moderate In 0.462 Moderate In 1.401 Moderate In 

8 25 
c1(n(c(cn1)[N+](=O)[O-

])CCS(=O)(=O)NCCCO)C 
0.874 Moderate In 0.456 Moderate 

Outsid

e AD 
1.387 Moderate In 

9 27 
c1(n(c(cn1)[N+](=O)[O-

])CCS(=O)(=O)NCCCCOC)C  
1.201 Moderate In 1.428 Moderate In 1.382 Moderate In 

10 29 
c1(n(c(cn1)[N+](=O)[O-

])CCS(=O)(=O)NCCCN1CCOCC1)C 
1.111 Moderate In 1.320 Moderate In 1.304 Moderate In 

11 32 
c1(n(c(cn1)[N+](=O)[O-

])CCS(=O)(=O)NCCCCN(C)C)C 
1.201 Moderate In 1.428 Moderate In 1.471 Moderate In 

12 33 
c1(n(c(cn1)[N+](=O)[O-

])CCS(=O)(=O)NCCCN(CC)CC)C 
1.111 Moderate In 1.320 Moderate In 1.548 Moderate In 

13 36 
c1(n(c(cn1)[N+](=O)[O-

])CCS(=O)(=O)NN1CCOCC1)C 
0.874 Moderate In 1.535 Moderate In 1.130 Moderate In 

14 37 
c1(n(c(cn1)[N+](=O)[O-

])CCS(=O)(=O)NN1CCN(CC1)C)C 
1.111 Moderate In 1.428 Moderate In 1.215 Moderate In 
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4.7. Study 7: Nitroaromatics as hypoxic cell radiosensitizers: A 2D-QSAR approach to 

explore structural features contributing to radiosensitization effectiveness 

4.7.1. Modeling local nitro datasets 

2D-QSAR models for explaining radiosensitization effectiveness (pC1.6) are discussed in this section. 

The QSAR models from individual class of nitro compounds were found to have good and acceptable 

values for all validation metrics. The validation metrics included 𝑅2, 𝑄2, 𝑄𝐿𝑀𝑂 
2 , 𝛥𝑟𝑚(𝐿𝑂𝑂)

2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, 𝛥𝑟𝑚(𝐿𝑂𝑂)
2 , 

MAE and RMSE. The current work proposes statistically robust and acceptable local models 

employing simple 2D descriptors. The observed versus predicted pC1.6 plots for the local models are 

given in Figure 4.64 

4.7.1.1. QSAR model studying radiosensitization effectiveness of Nitrofurans 

 

𝑝𝐶1.6 = −0.617(±0.249) − 0.361(±0.039)𝑛𝑇𝐴 + 0.127(±0.028)𝑛𝐶𝑟𝑠 + 1.050(±0.110)𝐷𝐵𝐼 

𝑁 = 18, 𝑅2 = 0.911, 𝑅𝑎𝑑𝑗
2 = 0.892, 𝑄𝐿𝑂𝑂

2 =  0.842, 𝑄𝐿𝑀𝑂(20%)
2 = 0.780, 𝑟𝑚(𝐿𝑂𝑂)

2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 0.786, 𝛥𝑟𝑚(𝐿𝑂𝑂)
2

= 0.037, 𝑀𝐴𝐸(95%) = 0.078, 𝑅𝑀𝑆𝐸 = 0.090, 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑄𝑢𝑎𝑙𝑖𝑡𝑦 = 𝑀𝑜𝑑𝑒𝑟𝑎𝑡𝑒 

 

The number of data points in case of nitrofurans was very less and not suitable for data set division 

into training and test sets. Thus, small dataset modeling was used for robust model development 

where data set division is not worthy. The MLR model developed showed good determination 

coefficient (𝑅2) and leave-one-out squared correlation coefficient (𝑄𝐿𝑂𝑂
2 ) for internal validation. The 

leave-many-out predicted variance (𝑄𝐿𝑀𝑂
2 ) was also calculated. The descriptors appearing in the 

model are: nTA (number of terminal atoms), nCrs (number of ring secondary C(sp3)) and DBI 

(Dragon branching index).  

The descriptor nTA belonging to the constitutional type has a negative contribution towards 

radiosensitization effectiveness; thus, compounds having higher number of terminal atoms will have 

lower pC1.6 value and vice versa. This can be explained with compounds NF-10 and NF-12. In 

compound NF-10, which has a lower value for pC1.6 (pC1.6= 1.523), the number of terminal atoms is 7 

(in higher side) (Figure 4.65-a). Again, compound NF-12 which has a lower number of terminal 

atoms (nTA=3) shows higher pC1.6 value (pC1.6=2.09691).   

nCrs represents the number of sp3 hybridised secondary carbon present in a ring system. The positive 

contribution implicates that with an increase in nCrs values, radiosensitization effectiveness will 

increase. This has been observed in compounds like NF-18 (nCrs=3) (Figure 4.65-a) and NF-12 

(nCrs=1) where presence of such secondary carbon has increased the pC1.6 value (pC1.6=2 and 2.097 

respectively).  

Another positively correlated descriptor, DBI, represents the branching nature of the compound. With 

an increase in the branching index, the radiosensitization will increase as observed in compound NF-

13 (DBI= 4.301, pC1.6= 2.097) (Figure 4.65-a). 
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Figure 4.64. Observed vs predicted pC1.6 scatter plot for the local nitro datasets. 

 

4.7.1.2. QSAR model studying radiosensitization effectiveness of Nitrothiophenes 

 

𝑝𝐶1.6 = 0.816 + 0.191𝑛𝐶𝑠 + 4.555𝑀𝐴𝑇𝑆4𝑣 

𝑁 = 11, 𝑅2 = 0.933, 𝑄𝐿𝑂𝑂
2 =  0.807, 𝑄𝐿𝑀𝑂(20%)

2 = 0.896, 𝛥𝑟𝑚(𝐿𝑂𝑂)
2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = 0.660, 𝛥𝑟𝑚(𝐿𝑂𝑂)

2

= 0.178, 𝑀𝐴𝐸𝐹𝑖𝑡𝑡𝑒𝑑 = 0.081, 𝑀𝐴𝐸𝐿𝑂𝑂 = 0.124, 𝑅𝑀𝑆𝐸 = 0.101,

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑄𝑢𝑎𝑙𝑖𝑡𝑦 = 𝑀𝑜𝑑𝑒𝑟𝑎𝑡𝑒 

Small dataset modeling was utilised again owing to the limited number of compounds in the dataset. 

The developed PLS model has two descriptors and one latent variable: nCs (total number of 

secondary carbon (sp3)) and MATS4v (Moran autocorrelation of lag 4 weighted by van der Waals 

volume). From the VIP plot  (Figure 4.66-a), it was found that MATS4v has higher VIP score than 

nCs denoting that MATS4v is of higher significance than nCs. The predicted variance explained by 

specific features for each latent variable is given in the Supplementary section.  

MATS4v is a 2D autocorrelation descriptor, which represents the distribution mode of the atomic van 

der Waals volumes along the topological structure of nitrothiophenes. Here, the path connecting a pair 

of atoms has length 4 and applies the atomic van der Waals volumes as weighting scheme. The 

positive regression coefficient advocates that a higher positive value of the descriptor enhances the 

radiosensitivity as observed in compound NT-9 (MATS4v= 0.068914, pC1.6= 1.30103) (Figure 4.65-

b). 

nCs is a functional group count descriptor and has a positive correlation with radiosensitization 

effectiveness. A secondary carbon is one which is bound by two other carbon atoms. Increase in the 

number of such fragments in nitrothiophenes will increase their radiosensitivity. This is observed in 

compounds like NT-5 (nCs=3, pC1.6= 1.522879) (Figure 4.65-b) and NT-6 (nCs=4, pC1.6= 1.30103).  

 

4.7.1.3. QSAR model studying radiosensitization effectiveness of Nitroimidazoles 

𝑝𝐶1.6 = 0.873 − 1.267𝐶 − 042 − 0.227𝐻 − 051 + 0.287𝐵09[𝐶 − 𝐶] + 3.115𝑃𝐷𝐼 

𝑁 = 84,  𝑅2 = 0.733, 𝑅𝑎𝑑𝑗
2 = 0.723, 𝑄𝐿𝑂𝑂

2 =  0.701 , 𝑄𝐿𝑀𝑂(20%)
2 = 0.696, 𝑟𝑚(𝐿𝑂𝑂)

2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =

0.588, 𝛥𝑟𝑚(𝐿𝑂𝑂)
2 = 0.193, 𝑀𝐴𝐸 = 0.251, 𝑅𝑀𝑆𝐸 = 0.321, 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑄𝑢𝑎𝑙𝑖𝑡𝑦 = 𝑀𝑜𝑑𝑒𝑟𝑎𝑡𝑒  
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Figure 4.65. Contribution of the descriptors obtained in local nitro dataset modeling towards 

radiosensitization effectiveness (pC1.6 values). 

A four descriptor PLS model with 3 latent variables (LVs) was developed for the nitroimidazole 

dataset. Here, the number of compounds in the dataset was relatively higher and could be divided into 

training and test sets for model development. However, this dataset was earlier used by our group for 

model development in a previously published literature [37] where division of this dataset provided 

acceptable results. Here, we have tried modeling for the whole dataset using GA-MLR method of 

variable selection followed by BSS method of model development. The descriptors selected in the 

best MLR model was further subjected to PLS regression with 3 LVs which showed good 

determination coefficient (𝑅2) and leave-one-out squared correlation coefficient (𝑄𝐿𝑂𝑂
2 ) as given in 

model 3. From the VIP plot (Figure 4.66-b), the significance of the descriptors are as follows: C-042, 

B09[C-C], H-051 and PDI. 

The descriptor C-042 is an atom-centred fragment descriptor representing the fragment X--CH..X 

(Figure), where X is any electronegative atom (O, N, S, P, Se, halogens); ‘--' is an aromatic bond as in 

benzene or delocalized bonds such as the N-O bond in a nitro group; and ‘..’ is an aromatic single 

bond as the C-N bond in pyrrole. The negative regression coefficient implicates that increase in the 

number of such type of fragments in the nitroimidazole analogues will hinder its radiosensitivity. This 

has been observed in compounds like NI-69 (C-042=1, pC1.6= 1.85) and NI-70 (C-042=1, pC1.6= 

1.80) (Figure 4.65-c) where the presence of C-042 fragment caused a lowering in pC1.6 values.  
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The next descriptor is B09[C-C], a 2D atom pair descriptor denoting the presence or absence of C-C 

fragment at the topological distance 9. The positive coefficient of this descriptor implies that the value 

of B09[C-C] is directly proportional to the radiosensitization effectiveness, which is established from 

the presence of such fragments in most of the active compounds (e.g., compounds NI-8 and NI-11) 

(Figure 4.65-c). 

Another atom-centred fragment descriptor, H-051 corresponds to H attached to alpha carbon (where 

alpha carbon is any carbon attached through a single bond with -C=X, -C#X, -C-X). This descriptor 

also contributes negatively towards the radiosensitive effectiveness; thus, with an increase in the 

descriptor value, pC1.6 value will decrease. This can be explained with compound number NI-70 

where there are three such H-051(H-051= 3) fragments and pC1.6 is low (pC1.6= 1.80). 

The last descriptor for this model is PDI or packing density index is a molecular property descriptor. 

PDI is described as the ratio between the McGowan volume and the total surface area (Pirovano et al., 

2015). The descriptor has a positive correlation with pC1.6 thereby implicating an enhancing effect on 

radiosensitivity. This is observed in compounds NI-46 (PDI=0.922; pC1.6= 4.28) and NI-44 

(PDI=0.927; pC1.6= 4.12) (Figure 4.65-c).  

The loading plot of the two local PLS models are given in the Figure 4.67. 

 

Figure 4.66. Variable importance plot of local nitrothiophene and nitroimidazole datasets. 

 

Figure 4.67. Loading plot of local nitrothiophene and nitroimidazole datasets 
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4.7.2. Modeling the global nitroaromatics dataset 

The global dataset, i.e., the dataset containing all the compounds from the individual local datasets 

was subjected to modeling using Dragon descriptors. The dataset was divided into training and test 

sets by the Kennard-Stone method of data division, and then the DCV-GA method was utilised for 

feature selection. The final model was developed using the Best Subset Selection (BSS) method 

followed by PLS regression. The PLS model with 3 LVs derived exhibited 88.1% variance for the 

training set (86.5% in terms of leave one out variance) and 92.5% for the test set variance (in terms of 

𝑄𝐹1
2  𝑜𝑟 𝑅𝑝𝑟𝑒𝑑

2 ). The observed versus predicted pC1.6 plot for the global model is given in Figure 4.68. 

The residuals of the observed and predicted pC1.6 values for some compounds were on the higher side 

as evident from the scatter plot. However, it was found that all the training set and test set compounds 

were inside the domain of applicability which will be discussed in later section. 

𝑝𝐶1.6 =  1.256 + 1.318𝑛𝐼𝑚𝑖𝑑𝑎𝑧𝑜𝑙𝑒 + 0.951𝐶 − 044 + 0.354𝐵09[𝐶 − 𝐶] − 0.459𝐵03[𝑂 − 𝑆] 

𝑁𝑡𝑟𝑎𝑖𝑛 = 79, 𝑅2 = 0.881, 𝑅𝑎𝑑𝑗
2 = 0.876, 𝑄𝐿𝑂𝑂

2 = 0.865, 𝑄𝐿𝑀𝑂(20%)
2 = 0.866,

𝑟𝑚(𝐿𝑂𝑂)
2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 0.806, 𝛥𝑟𝑚(𝐿𝑂𝑂)

2 = 0.101, 𝑀𝐴𝐸(𝑡𝑟𝑎𝑖𝑛) = 0.262, 𝑆𝐷(𝑡𝑟𝑎𝑖𝑛)

= 0.256, 𝑅𝑀𝑆𝐸𝐶 = 0.344, 𝑄𝑢𝑎𝑙𝑖𝑡𝑦𝑇𝑟𝑎𝑖𝑛 = 𝐺𝑜𝑜𝑑 

𝑁𝑡𝑒𝑠𝑡 = 34, 𝑄𝐹1
2 = 0.925, 𝑄𝐹2

2 = 0.899, 𝑟𝑚(𝐿𝑂𝑂)
2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 0.863, 𝛥𝑟𝑚(𝐿𝑂𝑂)

2 = 0.006, 𝐶𝐶𝐶

= 0.948, 𝑀𝐴𝐸(𝑇𝑒𝑠𝑡) = 0.301, 𝑆𝐷(𝑇𝑒𝑠𝑡) = 0.211, 𝑅𝑀𝑆𝐸𝑃 = 0.366, 𝑄𝑢𝑎𝑙𝑖𝑡𝑦𝑇𝑒𝑠𝑡

= 𝐺𝑜𝑜𝑑 

 

 

Figure 4.68: Scatter plot of the global model 

The model is constituted of four descriptors, viz., nImidazole, C-044, B09[C-C] and B03[O-S]. From 

the VIP plot (Figure 4.69-a), the descriptors are in the following order of significance: C-044, 

nImidazole, B03[O-S] and B09[C-C].  
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Figure 4.69. Variable importance plot and loading plot of the global model 

The first descriptor is C-044, which is an atom centre fragment descriptor and represented as X--

CX..X, where X is any electronegative atom (O, N, S, P, Se, halogens); ‘--' is an aromatic bond as in 

benzene or delocalized bonds such as the N-O bond in a nitro group; and ‘..’ is an aromatic single 

bond as the C-N bond in pyrrole. Compounds showing positive values for the C-044 descriptor were 

found to have a specific fragment in their structure, i.e., O=NC-N. Here the O=N fragment represents 

the delocalized bonds in the nitro group and C-N is an aromatic single bond in pyrrole giving an idea 

of the 2-nitroimidazole fragment (Figure 4.70). Hence, the descriptor C-044 provides a knowledge 

that nitroimidazoles are better radiosensitizers having higher radiosensitization effectiveness. Next, 

nImidazole is a functional group descriptor indicating the number of imidazole present in the 

compound. The positive correlation gives an idea that imidazole group will increase the compounds’ 

radiosensitivity, leading to a conclusion that nitroimidazoles are better radiosensitizers than nitrofuran 

or nitrothiophenes (Figure 4.70).  

Another 2D atom pair descriptor B03[O-S] describes the presence or absence of O-S fragment at a 

topological distance 3. It has a negative correlation with radiosensitization effectiveness denoting that 

with the presence of such fragment pC1.6 value decreases as in compounds NS-1 (pC1.6= 1.0) (Figure 

4.70) and NS-2 (pC1.6= 0.0). 

The next descriptor is B09[C-C], a 2D atom pair descriptor, which denotes the presence or absence of 

C-C fragment at the topological distance 9. The positive coefficient indicates that presence of C-C 

fragment at distance 9 will enhance pC1.6 values as seen in compounds like NI-51 (pC1.6= 4.3) (Figure 

4.70) and NI-8 (pC1.6= 4.22). 

From, the descriptors obtained in the global dataset, it can be inferred that nitroimidazoles are better 

radiosensitizers than nitrofuran or nitrothiophene analogues. Although the global model gives any 

idea regarding the superiority of nitroimidazoles giving better radiosensitization, the model actually 

takes into account a diverse group of chemicals. Also, division of dataset gives us more reliance 

regarding the predictivity of the model. 

The loading plot explains the relationship between the descriptors (or the X-variables) with the 

response (or the Y-variable). The first two latent variables were utilised for the development of the 

plot. Through a loading plot, the impact of the descriptors on the response can be understood. 

Descriptors having similar meaning are grouped together close to one another. This can be explained 

by Figure 4.69-b where descriptors C-044 and nImidazole are grouped together and they almost 
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impart the same meaning (contribution of imidazole group). Compounds with high impact on the 

model are situated far from the plot origin (e.g., C-044 and nImidazole).  

 
Figure 4.70. Contribution of the descriptors appearing in the global model 

Golbraikh and Tropsha’s Criteria 

We have calculated the Golbraikh-Tropsha’s criteria (Golbraikh & Tropsha, 2002) for all the local 

models as well as for the global model and reported in Table 4.20. All the models developed in the 

present study passed the criteria.  

Table 4.20. Golbraikh and Tropsha’s criteria for all local and global models. 

Metrics Acceptable range 
Local 

Nitrofuran  

Local 

Nitrothiophene 

Local 

Nitroimidazole 

Global 

dataset 

𝑟2 >0.6 0.911 0.933 0.733 0.881 

𝑄2 >0.5 0.842 0.896 0.701 0.865 

|𝑟0 − 𝑟0
′2| <0.3 0.008 0.067 0.094 0.016 

k 

[(𝑟2 − 𝑟0
2)/𝑟2)] 

0.85<k<1.15 

[(𝑟2 − 𝑟0
2)/𝑟2)]<0.1 

1 

0 

1 

0 

1 

0 

1 

0 

k' 

[(𝑟2 − 𝑟0
′2)/𝑟2)] 

0.85<k’<1.15 

[(𝑟2 − 𝑟′0
2)/𝑟2)]<0.1 

0.997 

0.009 

0.992 

0.0045 

0.992 

0.129 

1 

0.018 

 

4.7.3. Applicability Domain (AD) assessment 

In accordance with OECD guideline 3, any QSAR model should hold a defined domain of 

applicability. AD can be interpreted as a chemical space defined by the structural information or 

molecular properties of the chemicals used in the model development (Gadaleta et al., 2016). Any 

compound which is present within the chemical space can only be properly predicted. In the present 

study, for the nitrofurans data set, we have used the standardization approach (Kunal Roy et al., 

2015). There was no outlier found for the nitrofuran dataset. In case of local nitrothiophenes, local 

nitroimidazoles and global datasets, we have applied the DModX (distance to model in X-space) 

method of AD determination at 99% confidence interval (D-crit= 0.009999) using SIMCA 16.0.2 

software (https://landing.umetrics.com/downloads-simca). The AD plots for the two local datasets 

given in Figure 4.71 and 4.72 show that there was no outlier. In case of the global dataset as shown in 

Figure 4.73, it was observed that there was neither any outlier in the training set nor any compound 

was outside the AD in the test set.  

https://landing.umetrics.com/downloads-simca
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Figure 4.71. DModX Applicability Domain plot of local nitrothiophene dataset 

 

 

 

 

Figure 4.72. DModX Applicability Domain plot of local nitroimidazole dataset 
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Figure 4.73. Applicability domain plot for the global dataset. 

4.7.4. Y-randomization test 

The significance of a developed QSAR model is understood by a model randomisation test, and it 

ensures that the model is not an outcome of a chance correlation (Topliss & Edwards, 1979). During 

the development of a randomized model, many models are generated by reordering or shuffling 

different combination of X- or Y-variables (Y-variable here) and accordingly are called X-

randomization or Y-randomisation. In the present work, we have used 100 permutations for all the 

developed models; however, this can be changed according to the choice of the user. Models which 

are randomly developed with y-variable shuffling should have very poor statistics. The 𝑅𝑦
2 intercept 

should not exceed 0.3 and the 𝑄𝑦
2 intercept should not exceed 0.05. The metrics for the randomised 

models given in Table 4.21. and Supplementary Figures 4.74, 4.75 and 4.76 indicate that the local 

and global models developed are not out of chance correlation and are robust for suitable predictions. 

Table 4.21. Y-Randomization model metrics for the developed local and global models. 

Models 𝑹𝒚
𝟐 𝑸(𝑳𝑶𝑶)𝒚

𝟐  

Local 

Nitrofuran 0.1727 -0.3979 

Nitrothiophene -0.0311 -0.262 

Nitroimidazole -0.0132 -0.248 

Global -0.0305 -0.246 
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Figure 4.74. Y-randomization plot of local nitrothiophene dataset 

 

Figure 4.75. Y-randomization plot of local nitroimidazole dataset 

 

Figure 4.76. Y-randomization plot of global dataset
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4.7.5. True External Prediction using the global model 

The global model can be considered the best model here, owing to the diversity of the nitro compounds used for modeling. Further, to analyse the predictivity 

of the developed global model, we have considered a set of external compounds for prediction (Table 4.22). Predictions for these compounds were further 

verified by the application of “Prediction Reliability Indicator” tool (Roy et al., 2018) available from https://dtclab.webs.com/software-tools. The PRI results 

showed that predictions for all the 10 compounds were ‘Good’ (with Composite Score 3) and all the compounds were inside the AD of the model (Table 

4.22). Based on the insights obtained, it can be inferred that developed global model can be used for the prediction of radiosenstization effectiveness in nitro 

compounds, especially for nitroimidazole derivatives. We have further computed predictions using the global model for another external dataset retrieved 

from the ChEMBL database (https://www.ebi.ac.uk/chembl/) and checked the quality of predictions using the PRI tool. We have reported the results in the 

Supplementary Section (Table 4.23). Of note, the prediction quality was found to be good for all the external compounds. It will be interesting to verify the 

predictions experimentally in the future. 

Table 4.22. Predicting pC1.6 values of a true external dataset using the global model. 

Compound 

ID 
Structure 

Observed 

pC1.6 

Predicted pC1.6 

(Global model) 

Composite 

Score 

Prediction 

Quality 

AD 

status 

1 

 

- 3.879 3 Good In 

2 

 

- 3.879 3 Good In 

https://www.ebi.ac.uk/chembl/
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3 

 

4.05 3.879 3 Good In 

4 

 

2.89 3.879 3 Good In 

5 

 

- 2.574 3 Good In 

6 

 

- 3.525 3 Good In 

7 

 

- 2.574 3 Good In 
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8 

 

- 2.928 3 Good In 

9 

 

- 3.879 3 Good In 

10 

 

- 3.879 3 Good In 
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Table 4.23. Prediction quality of external nitroaromatic dataset retrieved from ChEMBL database. 

Serial 

No 
Structure 

Predicted 

pC1.6 

Composite 

Score 

Prediction 

Quality 

AD 

status 

1 

 

3.525 3 Good In 

2 

 

2.574 3 Good In 

3 

 

2.928 3 Good In 

4 

 

1.256 3 Good In 

5 

 

1.610 3 Good In 

6 

 

2.103 3 Good In 
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7 

 

1.256 3 Good In 

8 

 

2.928 3 Good In 

9 

 

2.928 3 Good In 

10 

 

2.928 3 Good In 

11 

 

2.928 3 Good In 

12 

 

2.928 3 Good In 
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13 

 

2.928 3 Good In 

14 

 

2.928 3 Good In 

15 

 

2.928 3 Good In 

16 

 

2.469 3 Good In 

17 

 

2.928 3 Good In 
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18 

 

2.928 3 Good In 

19 

 

2.928 3 Good In 

20 

 

2.928 3 Good In 

21 

 

2.928 3 Good In 
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22 

 

2.928 3 Good In 

23 

 

2.928 3 Good In 

24 

 

2.928 3 Good In 

25 

 

2.928 3 Good In 

26 

 

2.928 3 Good In 
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27 

 

2.928 3 Good In 

28 

 

2.928 3 Good In 

29 

 

2.928 3 Good In 

30 

 

2.928 3 Good In 
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31 

 

2.574 3 Good In 

32 

 

2.574 3 Good In 

33 

 

3.879 3 Good In 

34 

 

2.574 3 Good In 
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35 

 

2.928 3 Good In 

36 

 

1.610 3 Good In 

37 

 

2.574 3 Good In 

38 

 

2.574 3 Good In 
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39 

 

2.928 3 Good In 

40 

 

3.879 3 Good In 

41 

 

2.928 3 Good In 

42 

 

2.928 3 Good In 

43 

 

2.928 3 Good In 
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44 

 

2.928 3 Good In 

45 

 

2.928 3 Good In 

46 

 

2.928 3 Good In 

47 

 

2.928 3 Good In 
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Chapter 5: Conclusions 

Innovative scientific solutions provide the central strength for meeting the needs of novel 

applications. It is admissibly true that the success of any research is the portrayal of the conclusion 

drawn from the results obtained of the analysis addressing the given problem which can explore the 

revealed and/or unrevealed scientific explanation. This can guide in developing a better understanding 

of the problem analysed and has the potential to contribute ideas of new avenues associated with the 

areas of interest. In the present research several in silico techniques were employed to study the nature 

and chemistry of PET and SPECT imaging. The application of QSARs in the design of these imaging 

agents led us to understand the structural features essential in imaging agent binding essential for the 

diagnosis of various neurodegenerative diseases and cancer. In this research, exploration of PET and 

SPECT imaging of various neurodegenerative diseases like Alzheimer’s disease and Parkinson’s 

disease was enacted, targeting their concerned receptors like amyloid beta, tau protein, adenosine 

(A2AR) receptor, dopamine (D2) and vesicular acetylcholine transporter (VAChT). Studies 1-4 

concern study of the binding affinity of PET or SPECT imaging agents against different 

aforementioned receptors associated with neurodegenerative diseases. Further, the effect of 

nitroaromatic compounds as potential radiosensitizer molecules in the treatment of hypoxia, a 

common pathophysiology of cancer, was also studied. Studies 5-7 explore different structural features 

of nitroaromatics like nitroimidazoles, nitrofurans, nitrothiophenes to study various radiosensitization 

parameters like radiosensitization effectiveness (pC1.6), sensitivity enhancement ratio (SER) and 

survival ratio (SR). 

Further, all the computational models (QSAR models) developed in this work were appropriately 

validated through stringent internal and external validation techniques. These models were also 

subjected to randomization tests to avoid chance correlation. Thus, these models can be efficiently 

used in screening query molecules or databases, predicting the biological activity of newly designed 

PET or SPECT compounds, and last but not the least, for designing new analogues with improved 

activity. Finally, the precise information revealed or knowledge gained from all of the studies that 

were performed in this thesis work is described individually as follows: 

 

5.1. Study 1: Application of multi-layered strategy for variable selection in QSAR modeling 

of PET and SPECT imaging agents as diagnostic agents for Alzheimer’s disease 

The present research used chemometric tools for investigating the binding affinity of PET and SPECT 

against Aβ plaques and tau protein. The three QSAR models developed through DCV method in this 

study give knowledge about the essential structural requirements necessary for improved binding 

affinity against Aβ plaques and tau fibril. Many of the imaging agents used for modeling inhibits 

plaque formation, in addition to just binding to β-amyloid. Thus, these compounds can also be 

considered as multifunctional imaging agents (useful for both binding and inhibition) (Darras & Pang, 

2017). Double Cross Validation proved its efficacy in modeling large dataset compounds previously 

(De & Roy, 2018; Khan et al., 2019). In the present study we have utilized small size datasets (<50 

compounds in two cases) where DCV has proved its competence in searching for optimum 

combination of descriptors for generating models with good predictive ability. Thus, it can be 

concluded that DCV can not only be applied in modeling of large datasets but it is also is suitable for 

modeling smaller dataset compounds. Furthermore, new sets of designed PET and SPECT imaging 

agents with better predicted binding properties are reported in the current report. Further experiments 

might be conducted in future on these potential compounds. 
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5.2. Study 2: Chemometric modeling of PET imaging agents for diagnosis of Parkinson’s 

disease: A QSAR approach 

Parkinson’s disease is a neurodegenerative disease affecting the elderly person around the world. An 

important target for its treatment is blocking adenosine A2A receptor which is co-located with the D2 

receptor and is pharmacologically opposite in motor function. Many studies hint that blocking A2A 

receptor would be a beneficial strategy in the treatment of PD. Thus, this work endeavours exploring 

QSAR analysis to correlate the chemical structures with their biological activity with the aim to filter 

the essential chemical features of an antagonist for selectivity and binding affinity to A2A receptor.  

The computational approach used in this work consists firstly the calculation of the molecular 

descriptors, and secondly, correlating these descriptors with the binding affinity and selectivity using 

different chemometric tools such as Genetic Function Algorithm (GFA), Best Subset Selection (BSS) 

method and Intelligent consensus predictor (ICP) tools. The statistical quality of the models was 

checked using traditional metrics both internally and externally. We have also discussed about the 

contributions of the descriptors in the light of known binding mechanisms such as π-π stacking 

interaction, hydrophobic interaction and hydrogen bonding with the different protein residues present 

in the receptor binding sites. From the insights obtained from such mechanism, we found that 

electronegative atoms and presence of aromatic ring like benzene are favorable for enhancing the 

binding affinity to the A2A receptor.  Further the docking studies supported with the conclusions found 

in the QSAR studies. In conclusion, the study highlights the pharmacophoric features mainly 

responsible for antagonizing adenosine receptors that can be further modified for better binding and 

selectivity to A2A receptor. In case of selectivity also, electronegativity and aromaticity of the 

compounds play essential and influential roles. The simple two-dimensional (2D) descriptors 

appeared in all the models are easier to compute requiring no conformation analysis or energy 

minimization process. Thus, this information would help in the future development and synthesis of 

newer PET tracer targeted towards adenosine receptor. 

 

5.3. Study 3: QSAR modeling of PET imaging agents for the diagnosis of Parkinson’s disease 

targeting Dopamine receptor 

In vivo imaging targeting dopamine receptor is a subject of extensive studies nowadays. Dopamine 

plays a vital role controlling the pathophysiology of Parkinson’s disease. Hence, it can be treated as a 

suitable target in controlling the disease. The present study aims in the development of a 2D QSAR 

model of a group of 34 PET imaging agents having affinity towards dopamine D2 receptor. The 2D 

QSAR model developed is simple and interpretable and provides knowledge about the basic structural 

features required for good dopamine binding. The use of simple two-dimensional descriptors reduces 

the need of time-consuming computational approaches of conformational analysis or energy 

minimization; thus, the developed model may be suitable for the quick screening purposes. 

 

5.4. Study 4: Computational modeling of PET imaging agents against vesicular acetylcholine 

transporter (VAChT) protein binding affinity: Application of 2D-QSAR modeling and 

molecular docking techniques 

The neurotransmitter acetylcholine (ACh) plays a ubiquitous role in cognitive functions including 

learning and memory with widespread innervation in the cortex, subcortical structures and the 

cerebellum. Cholinergic receptors, transporters, or enzymes associated with many neurodegenerative 

diseases, including Alzheimer's disease (AD) and Parkinson's disease (PD), are potential imaging 

targets. In the present study, we have developed 2D quantitative structure-activity relationship (2D-
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QSAR) models for 19 positron emission tomography (PET) imaging agents targeted against 

presynaptic vesicular acetylcholine transporter (VAChT). In our work, we aimed to understand the 

important structural features of the PET imaging agents required for their binding with VAChT. This 

was done by feature selection using Genetic Algorithm followed by Best Subset Selection method and 

developing a Partial Least Squares- based 2D QSAR model using the best feature combination. The 

developed QSAR model showed significant statistical performance and reliability. Using the features 

selected in the 2D-QSAR analysis, we have also performed similarity-based chemical read-across 

predictions and obtained encouraging external validation statistics. From the developed QSAR model, 

it was found that the presence of nitrogen in the PET tracer molecule potentiates the binding affinity 

towards VAChT receptor. This was further confirmed by molecular docking studies where nitrogen in 

piperidine moiety produced attractive charge interaction with Asp A:483 amino acid of VAChT. In 

future this study will help in the prediction of newly developed compounds targeted towards VAChT. 

 

5.5. Study 5: Exploration of nitroimidazoles as radiosensitizers: Application of multi-layered 

feature selection approach in QSAR modeling 

This study targets for the development of fragment based 2D-QSAR models for predicting 

radiosensitization of nitroimidazole derivatives. The simplex descriptors give an insight about the 

fragments and their proper position in the nitroimidazole ring that enhance or decline the 

radiosensitization effectiveness. Also reduction in the large data pool by using multi-layered variable 

selection is shown for better handling of large pool of descriptors and removing chances of 

intercorrelation among them. Further, the newly developed models were used for prediction of eight 

external compounds and their prediction reliability was checked. 

 

5.6. Study 6: QSAR and QSAAR modeling of nitroimidazole sulfonamide radiosensitizers: 

Application of Small Dataset Modelling 

This study aims at developing 2D-QSAR models with the notion to investigate the essential features 

in nitroimidazole sulphonamide analogues to show radiosensitization properties with respect to 

sensitizer enhancement ratio and survival ratio endpoints. The different descriptors obtained give an 

idea about the position of the features and type of chemical groups required to enhance or hinder these 

properties. Moreover, QSAAR modelling helps in correlating two endpoints (SER and logSR) and 

suggests how to extrapolate an endpoint if the experimental information is unavailable. The current 

study emphasizes on the application of ‘Small Dataset Modeller’ software when the dataset is small 

and splitting of dataset is not worthy. Further, the newly developed models were used for prediction 

of 14 compounds and their prediction reliability was checked. These developed QSAR and QSAAR 

models are able to predict newly developed nitroimidazole sulphonamide derivatives with known 

structural features. The complete overview of the work is explained in Figure 5.1. 
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Figure 5.1. Overview of the present work involving the development of QSAR and QSAAR model 

using Small Dataset Modeller. 

 

5.7. Nitroaromatics as hypoxic cell radiosensitizers: A 2D-QSAR approach to explore 

structural features contributing to radiosensitization effectiveness 

The present study targets for the development of 2D-QSAR models for three nitroaromatics datasets 

both locally and globally predicting radiosensitization effectiveness. The local models gave us an idea 

about the structural features required for effective radiosensitization within their own group while the 

global model imparted an insight regarding which type of nitroaromatic compounds are more efficient 

to produce better radiosenstization. The descriptors obtained in the global model clearly implicated 

that nitroimidazoles are better radiosensitizers as compared with nitrofuran or nitrothiazole 

derivatives. Moreover, all the developed local and global models were statistically sound and well 

validated. The global model was further used for the prediction of ten true external set compounds, 

and their prediction reliability was analysed using the PRI tool. 
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Abstract
Non-invasive imaging of amyloid beta (Aβ) and tau fibrils in the brain may support an early and precise diagnosis of Alzheimer’s
disease. Molecular imaging technologies involving radionuclides such as positron emission tomography (PET) and single-
photon emission computed tomography (SPECT) against beta amyloid plaques and tau fibrils are among emerging research
areas in the field of medicinal chemistry. In the current study, we have developed partial least square (PLS) regression-based two-
dimensional quantitative structure-activity relationship (2D-QSAR) models using datasets of 38 PET and 73 SPECT imaging
agents targeted against Aβ protein and 31 imaging agents (both PET and SPECT) targeted against tau protein. Following the
strict Organization for Economic Co-operation and Development (OECD) guidelines, we have strived to select significant
descriptors from the large initial pool of descriptors using multilayered variable selection strategy using the double cross-
validation (DCV) method followed by the best subset selection (BSS) method prior to the development of the final PLS models.
The developed models showed significant statistical performance and reliability. Molecular docking studies have been performed
to understand the molecular interactions between the ligand and receptor, and the results are then correlated with the structural
features obtained from the QSAR models. Furthermore, we have also designed some imaging agents based on the information
provided by the models developed and some of them are predicted to be similar to or more active than the most active imaging
agents present in the original dataset.

Keywords Alzheimer’s disease . Imaging agents . Double cross-validation . QSAR . PLS

Introduction

Alzheimer’s disease (AD) is a progressive neurodegenerative
disorder which affects older individuals producing neurobehav-
ioral linked symptoms. It has been conceived as an active path-
ophysiological process characterized by preclinical, mild

cognitive impairment (MCI), and dementia stages. The neuro-
pathological features of AD constitute the deposition of β-
amyloid (Aβ) protein in the form of extracellular senile
(amyloid) plaques and formation of intracellular neurofibrillary
tangles (tau aggregates), brain atrophy, and cell depletion [1–3].
It is estimated that by 2030, the disease will afflict 63 million
people and, by 2050, 114 million people worldwide [4]. In the
USA, approximately 5.5 million individuals of all ages have
Alzheimer’s disease. Among these, 5.3 million people are above
65 years age and about 20,000 are younger than 65 [5]. Senile
plaques (SPs) and neurofibrillary tangles (NFTs) are important
neuropathological hallmarks in Alzheimer’s disease which are
considered to be specific targets for therapeutic intervention as
well as biomarkers for imaging agents acting in vivo [6, 7]. SPs
are aggregation of amyloid beta (Aβ) protein and peptides of 36–
43 amino acids derived from the amyloid precursor protein
(APP) through cleavage by beta secretase and gamma secretase
[8]. Overproduction of Aβ protein leads to aggregation leading
to formation of senile protein, followed by NFT formations.
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NFTs are accumulation of hyperphosphorylated tau, a neuronal
microtubule-associated protein, forming insoluble fibers (also
known as paired helical filaments) [9, 10]. Severity of NFT de-
position related to neuronal loss leads to severe cognitive impair-
ment [11, 12]. The development of biological markers such as
PETand SPECT imaging agents are capable of making detection
and quantification of fibrillary Aβ in vivo [13]. This approach
acts as a very useful method in early diagnosis of AD and also to
identify preclinical effectiveness of newer drug candidates [13].

Recent drug discovery technologies have focused on de-
veloping radiotracer imaging agents for imaging beta amyloid
and tau pathology in the human brain [13–20]. Several trials
have been made to visualize changes in AD pathologies in
living brain involving distribution of intravenously adminis-
tered radiotracers bound to the SPs and NFTs. A good Aβ
imaging agent should have some basic properties including
the following: (i) prominent penetration ability through
blood-brain barrier (BBB), (ii) selective binding to Aβ
plaques, and (iii) it should produce prominent and distinctive
signals between plaques and non-plaques [21]. For tau bind-
ing, NFT-specific imaging probes need to be lipophilic to
cross the blood-brain barrier and neuronal membranes, and
they should also have a high binding affinity to NFTs with
minimal non-specific binding [22, 23]. Positron emission to-
mography (PET) and single-photon emission computed to-
mography (SPECT) are non-invasive methodologies which
makes use of the dynamic distribution of radiotracer to quan-
tify biological processes.

Quantitative structure-activity relationships (QSAR) have
become a recognized tool in the field of molecular modeling.
They have found applications in the prediction of biological
activity and lately in the prediction of the absorption, distribu-
tion, metabolism, excretion, and toxicological (ADMET)
properties of organic drug-like compounds [24–26]. The large
number of candidate molecules that are considered in the drug
discovery pipeline and the high failure rate at the later stages
of drug development make the computational approaches in-
evitable for the early predictions of pharmacokinetic and phar-
macodynamics end points, thus facilitating the screening pro-
cess and reducing the cost and time of high end experiments
for unsuccessful compounds [27]. Monte Carlo method is one
of the promising methods in QSAR which uses optimal mo-
lecular descriptors as a tool to predict different end points [28].
The method has been used widely in predicting and under-
standing the major biochemical features associated with
Alzheimer’s disease [29, 30].

Descriptor selection for QSAR model development plays
an essential role for unbiased prediction of the response.
Feature selection by the utilization of multilayered variable
selection strategy has been proven to be an effective method
in model development where the pool of descriptors is re-
duced to a small number which can be statistically handled.
Further reduction in the descriptor pool through feature

selection helps to obviate the chances of intercorrelation
among the descriptors. Double cross-validation (DCV) [31]
is a method that involves two nested loops, constructed from
the training set, referred to as the calibration set and the vali-
dation set for model building and model selection respective-
ly, while the test set is solely used for model assessment. Thus,
it precludes any bias introduced in variable selection in case of
usage of a single training set of fixed composition. The present
study deals with 2D-QSAR studies in order to determine the
chemical features contributing to the binding affinity of the
imaging agents against beta amyloid (Aβ) plaques and tau
protein aggregation. Three small datasets (two acting against
Aβ and one against tau) with experimental binding affinity
(Ki) as the response variable were used for this computational
study. The total Aβ dataset consists of 111 compounds with
38 PET and 73 SPECT imaging agents modeled individually,
and the tau dataset consists of 31 compounds. The data were
compiled from various literatures as cited in “Materials and
methods.” DCV was utilized in the feature selection while
modeling the small datasets starting with a large initial number
of descriptors. QSARmodel development using the DCV tool
available at http://teqip.jdvu.ac.in/QSAR_Tools/ helps in
removing any bias in descriptor selection from a fixed
composition of a training set and often provides an optimum
solution in terms of predictivity. The developed models are
intended to provide statistically robust predictions for the
binding affinity of the imaging agents.

Materials and methods

The dataset

The experimental binding affinity (Ki) data for 38 PET [1, 16,
32–36] and 73 SPECT imaging agents [15, 35, 37–44] against
beta amyloid (Aβ) plaques and 31 (25 PET compounds and 6
SPECTcompounds) imaging agents [6, 13, 44–50] against tau
protein were obtained from different literatures. Due to limited
number of data available for tau protein, the PET and SPECT
data were combined to form a single dataset. In the present
study, the binding affinity values for both the PETand SPECT
dataset compounds expressed as Ki (nM) were converted to
negative logarithm of Ki (pKi) values. All the structures for
both the datasets were drawn in MarvinSketch software (ver-
sion 14.10.27) [51] with proper aromatization and hydrogen
bond addition. The dataset is composed of various classes of
heterogeneous molecula r s t ructures as g iven in
Supplementary Materials along with their pKi values.

Molecular descriptors

The molecular descriptor is the result of a logic and mathe-
matical procedure which transforms chemical information
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encoded within a symbolic representation of a molecule into a
useful number. QSARmodels were developed with a selected
class of molecular descriptors (two-dimensional) comprising
E-state indices, connectivity, constitutional, functional, 2D at-
om pairs, ring, atom centered fragments and molecular prop-
erty descriptors, calculated using Dragon 7 software [52].
Intercorrelated descriptors (intercorrelation values larger than
0.9) were removed from the descriptor pool to reduce the size
of the descriptor matrix. Finally, a pool of 335 descriptors was
obtained for PET imaging agents and a pool of 529 descriptors
was obtained for SPECT imaging agents targeted against Aβ
protein. For the tau dataset, a reduced pool of 263 descriptors
from 418 descriptors was employed for model development.
A descriptor pool of 633 descriptors was obtained for the Aβ
dataset. In order to reduce the redundant and incompetent
data, intercorrelated descriptors (correlation value larger than
0.9) were removed from the descriptor pool, and finally, we
took 539 descriptors for modeling. For the tau dataset, a re-
duced pool of 263 descriptors from 418 descriptors was
employed for model development.

Dataset splitting

The main objective in QSAR study is to obtain a well-
validated QSARmodel which is possible with proper division
or splitting of the dataset into training and test set. Ideally, the
division must be executed in such a way so that points
representing both training and test set are well distributed
within the whole descriptor space occupied by the entire
dataset. Rational data division helps in providing an unbiased
external validation with uniform distribution of compounds
into training and test sets [53]. One of the extensively used
methods is the Euclidean distance–based division [54], which
was used for division of the Aβ imaging dataset (for both PET
and SPECT datasets) into training (~ 75%) and a test set (~
25%). The combined PETand SPECT dataset targeted against
the tau protein was divided into a training set (~ 70%) and a
test set (~ 30%) based on k-medoids division method [55].
The k-medoids algorithm is a local heuristic method that runs
just like k-means clustering when updating the medoids. This
method tends to select k most middle objects as initial
medoids. The algorithm involves calculation of the distance
matrix once and uses it for finding new medoids at every
iterative step.

Model development

A critical evaluation procedure was carried out in order to
have the best model with good statistical significance for both
internal and external validation metrics. During the develop-
ment of models for individual subsets, i.e., for PET and
SPECT imaging agents targeted against Aβ, we have used
stepwise multiple linear regression (S-MLR) [56, 57] method

implemented in double cross-validation (DCV) tool (version
1.2) [31]. Finally, partial least squares (PLS) regression [56,
58] was used to develop the models. In case of the tau dataset,
a descriptor pool 26 descriptors was selected using genetic
algorithm (GA) [56] modeling implemented in double cross-
validation (DCV) tool (version 1.2). Then, the final model was
generated using PLS regression method using descriptors se-
lected from best subset selection (BSS).

In both the cases, the double cross-validation (DCV)
method helped in the generation of the most statistically
significant and robust models. DCV aids in the genera-
tion and selection of models to produce a better predic-
tive model. DCV is a method where the training set
compounds are further divided into “n” calibration and
validation sets and can result in diverse compositions of
the modeling set, thus removing any bias in descriptor
selection. Additionally, a model with the lowest predic-
tion errors in the validation set is selected, thus provid-
ing an optimum solution in terms of predictivity in most
cases. The tool comprises two nested cross-validation
loops: the internal and external cross-validation loops.
In the external loop, the compounds in the dataset are
divided into training set compounds and test set com-
pounds. The training set compounds are used in the
internal loop for the purpose of model development
and model selection, and the test set is used exclusively
for checking model predictivity. In the internal loop, the
training set is further split into calibration and validation
sets repetitively by employing the k-fold cross-validation
technique (in this study, k = 10) [59] and producing k
iterations to construct calibration and validation sets.
At the end, the best models were selected based on
various validation metrics.

Statistical validation metrics

In the current study, we have utilized multiple approaches for
assessment of model quality for measurement of the fitness,
stability, robustness, and predictivity of the developed models.
The validation was done using both internal and external val-
idation metrics [60]. The fitting potential of the model is
established by the determination coefficient (R2), whereas in-
ternal validation dealing with the predictive ability of the mod-
el based on training set compounds is usually established by a

cross-validated squared correlation coefficient, Q2
LOO (leave-

one-out or LOO). However, Q2 is not the ultimate quality
measuring metric to determine the performance of the model
for a new set of compounds. Thus, for new external com-
pounds (or test compounds), various external validation met-

rics are used such as Q2
F1 and Q2

F2 [61, 62]. Additionally, r
2
m

metrics [63], root mean square error (RMSE), and mean ab-
solute error (MAE) are also calculated [64].
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Molecular docking studies

In the present work, we have implemented molecular
docking analysis to understand the intermolecular inter-
actions occurring between the PET and SPECT imaging
agents and protein beta amyloid and tau proteins sepa-
rately. The protein structures in the present case are
retrieved from the Protein Data Bank with PDB ID:
2LMN [65] for Aβ protein and PDB ID: 6FAU [66]
for tau protein. Docking was performed in CDOCKER
module of receptor-ligand interaction implemented in
BIOVIA Discovery Studio 2018 [67, 68].

The crystal structure of the beta amyloid protein does not
contain any bound ligand; therefore, the active site was de-
fined in the BIOVIA Discovery Studio platform in receptor-
ligand interaction section using the option “define site from
receptor cavities” before docking.

In case of tau, the X-ray crystal structure of the protein
consists of two chains A and C and four bound ligands
(two peptide residues, Ace-Arg-Thr-Pro-Sep-Leu-Pro-Gly
in chain A, Thr-Pro-Sep-Leu-Pro-Gly in chain C and two
i n s t a n c e s o f D 3W ( ( 2 ~ { R } ) - 2 - [ ( ~ { R } ) - ( 2 -
methoxyphenyl)-phenyl-methyl]pyrrolidine) one in each
chain. Due to structural similarity between the chain struc-
tures, we have used only one chain (chain A) for our
docking purpose. Before docking the target ligands, the
protein was prepared by removing the duplicate amino acid
conformers, addition of hydrogen, and generation of
docking site. The active site was defined in the BIOVIA
Discovery Studio platform from the ligand binding domain
of the bound peptide residue and D3W by selecting them
and generating site “from current selection” program in
receptor-ligand interaction section of the software. The
bound ligands were then removed for new molecule
docking purpose.

The target ligands (imaging agents) were subjected to li-
gand preparation to obtain a series of ligand conformers in
both cases using the small molecules module in Discovery
Studio. Each of these conformers was used in the
CDOCKER module involving CHARMm interaction energy
for molecular docking [68]. The ligand poses were ranked
using the CDOCKER interaction energy parameters (kJ/
mol), and the top scoring (most negative, thus favorable to
binding) poses are kept. The best pose obtained was further
analyzed by considering intermolecular polar and non-polar
interactions.

Results and discussions

In the present study, PET and SPECT imaging agent datasets
for both Aβ plaques and tau fibrils were modeled for their
binding affinity using the PLS regression method. For the

Aβ dataset, the models for the individual PET and SPECT
datasets were developed using PLS regression method after
stepwise multiple linear regression (S-MLR) method. In case
of the tau dataset, the final descriptors for the PLS model were
obtained from best subset selection (BSS) which was carried
out on a pool of descriptors obtained from double cross-
validation-genetic algorithm (DCV-GA) method of model de-
velopment. The developed models are statistically robust and
predictive to be used for data gap filling as suggested by the
obtained values of the different validation metrics as given
later.

Descriptor interpretation from QSAR models

Modeling of PET imaging agents against Aβ plaques

The PLS model 1 having 4 latent variable (LV) shown in
Table 1 gives acceptable values of the determination coeffi-
cient R2 (0.766) and cross-validated determination coefficient

(Q2
LOO =0.600). The predictivity of the model was analyzed by

predictive r2 or r2pred ¼ 0:534
� �

or Q2
F1 which shows accept-

able predictivity for the test set compounds. The experimental
and predicted pKi values for model 1 are given in the
Supplementary Materials. The scatter plot of observed versus
predicted pKi values is given in Fig. 1a.

The descriptor TPSA(Tot) (a molecular property related
descriptor) representing the topological polar surface area
using N, O, S, and P polar contributions shows a negative
correlation to the binding affinity of PET imaging agents.
The TPSA descriptor shows the importance of interaction of
the O-, N-, S-, and P-centered fragments towards beta amyloid
plaques (Fig. 2). For example, compounds like A-P-30
(TPSA(Tot) = 122.79), A-P-29 (TPSA(Tot) = 104.33) and A-
P-52 (TPSA(Tot) = 90.94) having more number of O-, N-, S-,
and P-centered fragments have low pKi values (3.20, 3.91 and
3.19 respectively). On the other hand, compounds likeA-P-63
(TPSA(Tot) = 36.61), A-P-31 (TPSA(Tot) = 32.26), and A-P-
21 (TPSA(Tot) = 30.49) having lower number of aforemen-
tioned fragments have high pKi values (4.55, 4.62, and 4.54
respectively). From this observation, we can conclude that
hydrophobicity enhances the binding of PET imaging agents
to amyloid plaques.

The descriptor T(O..S), a 2D atom pair descriptor, denotes
the sum of topological distances between oxygen and sulfur.
This descriptor has a positive contribution to the binding af-
finity of the imaging agents, thus with an increase in the total
sum of topological distances between oxygen and sulfur
atoms, the binding affinity will increase and vice versa (Fig.
2). In compounds like A-P-1, A-P-51, A-P-48, and A-P-49,
the high values for T(O..S) (T(O..S) = 4) contribute to higher
pKi values (5.07, 4.36, 4.31, and 4.72 respectively), whereas
in compounds like A-P-43, A-P-30, and A-P-52, the
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descriptor value is low (T(O..S) = 0 for all), resulting in low
pKi values (3.43, 3.20, and 3.19 respectively).

The descriptor B10[C-C], another 2D atom pair descriptor,
denotes the presence or absence of C-C at topological distance
10. The positive regression coefficient of this parameter sug-
gested that the presence of such fragment at the topological
distance 10 enhances the binding affinity (Fig. 2) as shown in
compounds like A-P-1, A-P-51, A-P-48, and A-P-49. On the
other hand, compounds like A-P-52, A-P-43, and A-P-59
show poor binding affinity due to the absence of such frag-
ments. Here, size (the distance between C and C atoms at 10
reflects the size of the molecules) plays an important role for
the binding affinity.

The descriptor nArX (functional group count descriptor)
represents the number of halogen (X) on the aromatic ring
contributing positively towards the binding affinity of the
PET imaging agents (Fig. 2). In compounds like A-P-8, A-
P-56, andA-P-57, the presence of one halogen on the aromat-
ic ring contributes for the high binding affinity (pKi = 4.64,
4.77, and 4.56 respectively), whereas in compounds likeA-P-
43, A-P-52, and A-P-59, the absence of halogen group on the
aromatic ring reduces the pKi value (3.43, 3.19, and 3.94
respectively).

The descriptor nHDon (functional group count descriptor)
denotes the number of donor atoms for H bonds (N and O).
The descriptor shows a positive contribution towards binding
affinity (pKi) as shown in compounds like A-P-1 (Fig. 2), A-
P-8, A-P-31, and A-P-58, all having two hydrogen bond do-
nor sites and hence having higher pKi values (5.07, 4.64, 4.62,
and 4.64 respectively). On the other hand, in compounds like
A-P-30 (nHDon = 1) and A-P-62 (nHDon = 0) (Fig. 2), the
pKi values are low (3.20 and 3.92 respectively).

Modeling SPECT imaging agents against Aβ plaques

The PLS model 2 with 3 LVs (in Table 1) could describe
77.1% of the variance (adjusted determination coefficient).
The leave one out (LOO) cross-validated determination coef-
ficient (Q2 = 0.758) above the critical value of greater than 0.5
suggests the statistical reliability of the model. The experi-
mental and predicted pKi values for model 2 are given in the
Supplementary Materials. The scatter plot of observed versus
predicted pKi values are given in Fig. 1b.

The descriptor SAacc, a molecular property type descrip-
tor, denotes the surface area of acceptor atoms from P_VSA-
like descriptors. It shows a positive contribution to the binding
affinity of SPECT imaging agents as shown in Fig. 3. The
positive regression coefficient indicates that with an increase
in the descriptor value, the binding affinity will increase as
seen in compounds like A-S-54, A-S-5, and A-S-35 and vice
versa as seen in compounds likeA-S-73,A-S-76, andA-S-85.
Thus, the presence of hydrogen bond donor atoms is benefi-
cial for good binding to beta amyloid plaques.Ta
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The descriptor F05[C-C] (a 2D atom pair descriptor) de-
picts the frequency of C-C at the topological distance 5, and it
has a negative contribution towards the binding affinity pKi.
This indicates that with an increase in the descriptor value
(which is an indicator of size and shape), the pKi value will
decrease and vice versa as shown in Fig. 3. In compounds like
A-S-5, A-S-65, A-S-64, and A-S-63, the values for the

descriptors are high, thus making the pKi values low (3.23,
3.52, 3.07, and 2.21 respectively), whereas in compounds like
A-S-6, A-S-15, and A-S-16 (having low F05[C-C] values),
the pKi values are high (4.74, 4.53, and 4.63).

The descriptor F09[C-F] (a 2D atom pair descriptor) de-
notes the frequency of C-F at the topological distance 9 and
shows a negative correlation with the binding affinity. This

Fig. 2 Descriptor contributions to the binding affinity with respect to model 1 (PET dataset against beta amyloid)

Fig. 1 Scatter plots of observed versus predicted pKi values (Amyloid beta data set)
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descriptor indicates both presence of a fluorine atom and size
of the compound. A higher occurrence of C-F at topological
distance 9 will decrease the binding affinity as observed in
compounds A-S-41 (pKi = 3.42), A-S-47 (pKi = 3.38), and
A-S-63 (pKi = 2.21), whereas in compounds like A-S-52, A-
S-54, A-S-34, and A-S-33 with the absence of such groups,
the binding affinity is high (5.77, 5.96, 4.98, and 4.89 respec-
tively) (shown in Fig. 3).

The descriptor nR10, a ring descriptor, indicates the num-
ber of 10-membered rings present in the compounds (here 4H-
1-benzopyran ring), and the descriptor provides a negative
contribution to the binding affinity. Compounds like A-S-17,
A-S-18, and A-S-20 each containing one 10-membered ring
have a low binding affinity value (pKi = 3.68, 3.58, and 2.66
respectively), whereas in compounds like A-S-52, A-S-54,
andA-S-34, the absence of any 10-membered ring contributes
to higher values of the binding affinity (shown in Fig. 3).

The descriptor F03[C-I] (a 2D atom pair descriptor) repre-
sents the frequency of C-I at the topological distance 3 has a
positive contribution towards the binding affinity. Thus, with
an increase in the value for this descriptor, the pKi value will
increase as seen in compounds A-S-52, A-S-33, and A-S-34

(5.77, 4.89, and 4.98 respectively), whereas with a decrease in
the value of F03[C-I], the pKi value will also decrease as seen
in A-S-76, A-S-78, and A-S-85 (2.55, 2.85, and 2.70 respec-
tively) (Fig. 3).

Modeling PET and SPECT imaging agents against tau protein

The PLS model 3 with 3 latent variables (LVs) evolved as the
best model, and it could show good statistical robustness and
predictivity. Acceptable values for determination coefficient
R2 (0.910) and cross-validated determination coefficient

(Q2
LOO = 0.899) were obtained. The predictivity of the model

was analyzed by predictive r2 or r2pred ¼ 0:865
� �

or Q2
F1

which shows good predictivity for the test set compounds.
The scatter plot of observed versus predicted pKi values is
given in Fig. 4.

The descriptor with the highest contribution,D/Dtr09 (i.e.,
distance/detour ring of order 9), is a ring descriptor which is
based on operations made on distance or detour matrix D/Δ.
The detour matrix is square symmetric matrix that contains the
ratios of the lengths of the shortest to the longest path between

Fig. 3 Descriptor contributions to the binding affinity with respect to model 2 (SPECT dataset against beta amyloid)
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any pair of vertices. The term D/Δ is calculated by the fol-
lowing:

D=Δ ¼ ∑
A

i¼1
∑
A

j¼1
D=Δð Þi j

Here, Δ is the detour distance [69, 70]. This descriptor
shows a positive contribution which indicates its positive in-
fluence on the binding affinity of the imaging agents as ob-
served in compounds like T-P-3 (D/Dtr09 = 112.603), T-P-1
(D/Dtr09 = 96.788), and T-P-30 (D/Dtr09 = 87.895) having
higher binding affinities (3.96, 3.92, and 4.32 respectively).
On the other hand, compounds like T-S-25 (pKi = 1.31), T-P-
9 (pKi = 1.58), and T-S-26 (pKi = 1.81) have low pKi values
corresponding to low values for the descriptor (D/Dtr09 = 0
for all three compounds). Figure 5 shows how the descriptor
D/Dtr09 contributes towards the binding affinity of the imag-
ing agents.

The next important descriptor SaaCH, an E-state de-
scriptor, denotes the sum of E-state of atom type aaCH
where aaCH represents –CH groups in benzene nucleus.
The descriptor shows a positive contribution to the binding
affinity suggesting that the presence of such groups would
increase the binding affinity as seen in compounds like T-P-
5 (SaaCH = 17.67, pKi = 3.11) and T-P-1 (SaaCH = 16.71,
pKi = 3.92), while in compounds like T-S-25 (SaaCH =
11.67, pKi = 1.31) and T-S-26 (SaaCH = 11.59, pKi =
1.81), the occurrence of such fragment is low resulting in
less binding affinity (Fig. 5).

The third descriptor SssCH2 is also an E-state descriptor,
signifying the sum of E-state of atom type ssCH2 (–CH2–),
which has a negative regression coefficient. This indicates
that with an increasing descriptor value, the binding affinity

will decrease as seen in compounds T-P-19 (SssCH2 =
0.78, pKi = 2.01) and T-S-25 (SssCH2 = 0.65, pKi = 1.31)
(in Fig. 5). The opposite occurs when the descriptor value is
less, i.e., the binding affinity becomes higher as observed in
compounds like T-P-2 (SssCH2 = − 0.48, pKi = 3.19) and
T-P-5 (SssCH2 = − 0.88, pKi = 3.11) (in Fig. 5).

The least important descriptor is B08[N-F], a 2D at-
om pair descriptor, which denotes the presence or ab-
sence of N-F at the topological distance 8. The negative
regression coefficient of this parameter suggests that the
presence of such fragment at the topological distance 8
is detrimental to the binding affinity as shown in com-
pounds like T-P-8 (pKi = 2.23) and T-P-18 (pKi = 1.85).
On the other hand, compounds like T-S-28, T-S-29, and
T-S-30 show good binding affinity due to the absence of
such fragments. Figure 5 shows the contribution of
B08[N-F] descriptor.

Interpretation of PLS plots

Variable importance plot

The variable importance plot (VIP) [71] signifies the order of
contribution of each descriptor. The most and least important
descriptors can be identified using this plot. A variable with
VIP score > 1 indicates the descriptor’s higher statistical sig-
nificance as compared to the one with a lower VIP value. The
descriptors from higher to lower contribution for all the three
models are given in Fig. 6.

Regression coefficient plot

The regression coefficient plot [58] (Fig. S1) gives infor-
mation about the positive or negative contribution of de-
scriptors towards the activity of the compounds. In case of
model 1 for the PET dataset against Aβ fibrils, the descrip-
tors like T(O..S), B10[C-C], nArX and nHDon having a
positive regression coefficient signify that with an increase
in the descriptor value the binding affinity increases, where-
as descriptor having negative coefficients like TPSA(Tot)
decreases the binding affinity with their increasing numer-
ical values. In case of model 2 for the SPECT dataset
against Aβ fibrils, SAacc and F03[C-I] descriptors have
positive contributions (positive regression coefficients),
whereas other three descriptors (F05[C-C], F09[C-F] and
nR10) have negative regression coefficients. For model 3,
i.e., in case of tau protein dataset, it was found that descrip-
tors D/Dtr09 and SaaCH have a positive regression coeffi-
cient and other two descriptors like SssCH2 and B08[N-F]
have negative coefficients thereby decreasing pKi values
significantly.

Fig. 4 Scatter plot of observed versus predicted pKi values (Tau data set)
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Score plot

The distribution of the compounds in the latent variable space as
defined by the scores is expressed in a score plot (Fig. S2) [72].
From the plot, one can conclude that compounds that are situated
near each other have similar characteristics or properties, whereas
compounds which are far from each other have dissimilar prop-
ertieswith respect to their binding affinity. Compoundswhich are
outside the ellipse in the plot are outliers. The score plots for the
derived models are shown in Fig. S5.

Loading plot

The relationship between the X variables and Yvariables can
be understood by the loading plot (Fig. 7) [58]. The loading

plot was developed using the first two PLS components in all
the three cases. The influence of different variables on the
model can be understood from the loading plot. Descriptors
that are grouped together have similar meanings and similar
effects on the response. Descriptors with different meanings
are situated at a considerable distance from each other. Any
descriptor situated far from the plot origin is considered to
have a greater impact on the response.

Applicability domain

The applicability domain (AD) provides a theoretical region in
chemical space defined by the respective model descriptors
and responses in which the predictions are reliable [73]. The
AD assessment of the proposed model for the imaging agents

Fig. 5 Descriptor contributions to the binding affinity with respect to model 3 (PET and SPECT dataset against tau protein)

Fig. 6 Variable importance plot (VIP) of the three PLS models
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were performed according to the DModX (distance to model
in the X-space) approach using SIMCA-P [74] software.
Figures S3, S4, and S5 in the Supplementary Materials show
the AD plots of the three models.

Y-randomization

The statistical significance of the model is analyzed by a ran-
domization plot (Fig. S6). The randomization plot authenti-
cates that the model is not the result of any chance correlation
[75]. The randomization process provides a number of models
by shuffling different combinations of X or Y variables (here
Yvariable only) based on the fit of the reordered model. Here
we have used 100 permutations for randommodel generation,
though the number of permutations can be changed. To avoid
chance correlation, the basic statistics of the randomization
models (Q2 and R2) should be poor and not within the range
of those for acceptable regression models (RY

2 intercept
should not exceed 0.3 and QY

2 intercept should not exceed
0.05) [75]. The randomization plots given in Fig. S8 show that
the developed models are non-random and robust and are
suitable for prediction of the binding affinity of the imaging
agents within the AD of the model.

Molecular docking

Molecular docking studies yield critical information related to
the orientation of the imaging agents at the binding zone of the
target protein and the information about the intermolecular
interaction between protein and ligands at molecular level.
The aim in the present study was to understand the

interactions occurring between the two proteins and different
PET and SPECT imaging agents and correlate the observa-
tions found with the QSAR results. It was found that hydrogen
bonding and π bonding interactions were predominant. The
ligand-receptor interaction analysis suggests that the imaging
agents interact with both polar and non-polar amino acids.

Molecular docking for selected PET imaging agents
against Aβ plaques

In cases of compounds A-P-2 and A-P-56 which have higher
binding affinity (pKi = 5.15 and 4.77 respectively), the inter-
action forces include hydrogen bonds (carbon-hydrogen
bonds [76], conventional hydrogen bonds and π-donor hydro-
gen bonds), π interactions (π-sulfur bond, π-π T shaped bond
and π-alkyl bonds), and unfavorable acceptor-acceptor bond.
The number of interacting residues is higher in case of these
compounds thus supporting their high values of binding affin-
ity. The amino acid residues interacting with compoundA-P-2
are Val D:39, His B:13, and Val D:36. Figure 8 shows the
interactions obtained for the most stable pose where it is found
that Val D:39 and His B:13 show π-alkyl [77, 78] and π-π T
[79] shaped interactions respectively with the ligand due to the
presence of the aromatic nuclei. Also sulfur in the thiazole
nucleus interacts with the aromatic nucleus (thiazole moiety)
of histidine making π-sulfur interaction [80]. On the other
hand, Val D:36 makes carbon-hydrogen bond with the ligand.
In compound A-P-56, the interacting amino acids include Val
A:12, His B:13, Val D:36, and Val D:39. In Fig. 8, the different
interactions are shown. Hydrogen bonds like carbon-
hydrogen bonds and π-donor hydrogen bonds are found with

Fig. 7 Loading plots of the relationship between the X variables and Y variables
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Val D:36 and His B:13 respectively. The alkyl part of Val A:12
interacts with Bromine and other π bonds are formed with Val
D:39 and His B:13 residues.

PETcompounds likeA-P-52 andA-P-50 having low bind-
ing affinity (pKi = 3.19 and 3.34) show similar kind of inter-
actions (hydrogen and π bonds) as in case of higher affinity
compounds, but the number of interacting amino acid residues
is much less as shown in Fig. 8. Val D:39 was found to interact
with both the ligands forming π-alkyl interactions. In

compound A-P-52, the nitrogen of cyano group forms hydro-
gen bond with Val E:36, whereas in compound A-P-50, His
B:13 shows π interactions (π-donor Hydrogen and π-π inter-
actions) with the ligand. The docking sites for both high and
low binding affinity PET imaging agents targeted against Aβ
are given in Table 2.

Relation with QSAR models In the docking study, it is ob-
served that formation of hydrogen bonds between the ligands

Fig. 8 Molecular interactions between high / low active PET imaging agents and Aβ protein
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and receptor plays a vital role in binding. This observation
supports the occurrence of TPSA(Tot) (total polar surface
area using N, S, O, and P polar contributions) and nHDon

(number of donor atoms) descriptors in the QSAR models.
Furthermore, formation of π-sulfur bonds can be correlated
with the T(O..S) descriptor, where the presence of sulfur

Table 2 The docking site, interacting residues, and different types of binding interaction occurring between the imaging agents and the target protein
(Aβ or tau)

Dataset Imaging
agents

Compound
ID

pKi Docking site Interacting amino acids Binding interactions

Beta
amyloid

PET A-P-2 5.15 Val D:39, Gln B:13, Leu A:17, His
B:13, Leu B:17, Val E:36, Leu
C:17, Gly E:38, Val E:39, Val A:12,
His A:13.

Val D:39, His B:13,Val
D:36

Carbon hydrogen bond,
unfavorable
acceptor-acceptor, π-donor
hydrogen, π-sulfur, π- π
T-shaped, π-alkyl and van der
Waals

A-P-56 4.77 Val A:12, His B:13, Val E:39, Gly
E:38, Leu B:17, Val E:36, Gly E:37,
Val D:36, Gly D:38, Gln B:15, Val
D:39, His A:13.

Val A:12, His B:13, Val
D:36, Val D:39

Carbon hydrogen bond, π-donor
hydrogen, π-sulfur, alkyl,
π-alkyl and van der Waals

A-P-52 3.19 Val E:36, Gly E:38, Gln B:15, His
B:13, Val D:39, Gln A:15, Leu
A:17, Gly D:38, Val D:36

Val E:36, Val D:39 Carbon hydrogen bond, π-alkyl
and van der Waals

A-P-50 3.34 Val D:39, His B:13, Gly E:38, Leu
C:17, Val E:36, Leu B:17, Leu
A:17, Gln B:15, Gly D:38

Val D:39, His B:13 Carbon hydrogen bond, π-π
T-shaped, π-alkyl and van der
Waals

SPECT A-S-53 6.0 Gly J29, Ala J30, Ile J31, His B13, Gln
B15, Gly D38, Leu A17, Gly D37,
Gly C38, Gly C37, Val C36, Val
D36, Leu B17, Val E36, Val D39,
Val E39, Gly E38, Ile K31, Gly
E37, Val D40, Ala L30, Gly K29
Ala K30

Gly J:29, His B:13, Gly
D:38, Leu A:17, Gly
D:37, Gly C:37, Val
D:39, Val E:39, Ile
K:31, Val D:40

Conventional hydrogen bond,
carbon hydrogen bond,
π-donor hydrogen bond,
π-sigma, π-alkyl and van der
Waals

A-S-52 5.77 Ile K31, Gly E38, Val D39, Gly D38,
Gln C15, Val C39, Gly C38, Val
D36, Leu A17, Gly D37, Gln B15,
Lys B16, Val D40, Gly E37, Val
E39, His B13, Ala L30, Gly J29,
Gly K29, Ala K30

Ile K:31, Val D:39, Val
D:40, Val E:39, His
B:13, Ala L:30, Gly
J:29, Gly K:29

Carbon hydrogen bond, π-donor
hydrogen bond, alkyl, π-alkyl
and van der Waals

A-S-55 2.18 Ile I:31, Ile J:31, Gly C:38, Gly C:37,
Gly D:38, Gly D:37, Leu A:17, Leu
C:17, Gln C:16, Val E:39, Gly E:38,
Gln B:15, Val D:39, Val C:39, Val
D:40, Val C:40, Gly J:29, Gly I:29

Val D:39, Val D:40, Gly
I:29

Carbon hydrogen bond, alkyl,
π-alkyl and van der Waals

A-S-20 2.66 Val A:12, Val D:39, Leu A:17, Gly
D:38, Leu C:17, Val D:36, Val E:36,
Gly E:37, Gly E:38, Leu B:17, Gln
B:15, His B:13

Val D:39, Val D:36, Val
E:36, His B:13

Conventional hydrogen bond,
carbon hydrogen bond,
π-alkyl and van der Waals

Tau
protein

PET and
SPECT
(combined)

T-P-2 4.319 Trp A:230, Asn A:226, Leu A:174,
Lys A:122, Phe A:119, Asn A:42,
Ser A:45, Lys A:49, Val A:178, Leu
A:229

Trp A:230, Asn A:226,
Leu A:174, Val A:178,
Leu A:229

Conventional hydrogen bond,
halogen (Fluorine), alkyl,
π-alkyl, water hydrogen bond
and van der Waals

T-S-29 3.959 Leu A:229, Val A:178, Leu A:174,
Leu A:222, Ile A:219, Lys A:122,
Asn A:175

Leu A:229, Val A:178,
Leu A:174, Leu A:222,
Asn A:175

Conventional hydrogen bonds,
alkyl, π-alkyl, water
hydrogen bond and van der
Waals

T-P-10 1.311 Lys A:122, Gly A:171, Asn A:175,
Leu A:174, Glu A:182, Asn A:226,
Val A:178

Leu A:174, Val A:178 π-alkyl, water hydrogen bond
and van der Waals

T-P-7 1.957 Leu A:174, Val A:178, Arg A:129,
Asn A:175, Ser A:45, Val A:46,
Asn A:42, Phe A:119, Lys A:49,
Leu A:222, Asn A:226

Leu A:174, Val A:178 π-alkyl, water hydrogen bond
and van der Waals
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atoms in the molecules is essential. Val A12 residue forms
hydrophobic interaction with compound A-P-56 due to the
presence of bromine (halogen) which corroborates with the
nArX descriptor proving that the presence of halogen groups
is beneficial for binding.

Molecular docking for selected SPECT imaging agents
against Aβ plaques

In compounds like A-S-53 and A-S-52 having higher binding
affinity (pKi = 6.0 and 5.77 respectively), interaction forces
include hydrogen bonding (carbon-hydrogen bonding, con-
ventional hydrogen bonding and π-donor hydrogen bonds),
π interactions (like π-alkyl, π-sigma interactions, π-lone pair

interactions and amide-π interactions), and alkyl interactions.
The amino acid residues interacting with compound A-S-53
are Gly J:29, His B:13, Gly D:38, Leu A:17, Gly D:37, Gly
C:37, Val D:39, Val E:39, Ile K:31, and Val D:40. In Fig. 9, we
can see the interactions for the most stable pose, where Val
D:40, Ile K:31, Val D:39, and Leu A:17 make π-alkyl [77, 78]
interactions with the ligand due to the presence of unsaturation
in the ligand moiety. Gly D:38 makes π-sigma interaction
with the ligand. Hydrogen bond interactions are observedwith
Gly J:29, Val D:39, Gly D:37, and Gly C:37. In compoundA-
S-52, hydrogen bond interaction such as carbon hydrogen
bonds is observed with Gly K:29, Gly J:29 and Ala L:30
whereas Val D:39 makes π-donor hydrogen bond interaction.
π-Alkyl interaction is observed with His B:13, Val D:40, and

Fig. 9 Molecular interactions between high / low active SPECT imaging agents and Aβ protein
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Ile K:31. The interacting amino acid residues are Ile K:31, Val
D:39, Val D:40, Val E:39, His B:13, Ala L:30, Gly J:29, and
Gly K:29.

In compounds like A-S-55 and A-S-20 having low binding
affinity (pKi = 2.18 and 2.66 respectively), similar kinds of inter-
actions are observed like hydrogen bond and π interactions but
the number of interacting residues is much less (Fig. 9). The
docking sites for both high and low binding affinity SPECT
imaging agents targeted against Aβ are given in Table 2.

Relation with QSAR models From the docking study, it is ob-
served that hydrogen bonding formation between the protein

receptor and ligand molecule plays an important role in bind-
ing affinity of the later. This observation corroborates with the
SAacc (denotes the surface area of acceptor atoms) descriptor
occurred in the QSAR model.

Molecular docking for selected PET and SPECT imaging
agents against tau protein

The tau protein (PDB ID: 6FAU) was docked with higher and
lower active imaging agents in order to study their binding
pattern and the molecular interactions occurring between
them. In compounds like T-P-2 and T-S-29 with high binding

Fig. 10 Molecular interactions between high / low active PET or SPECT imaging agents and tau protein
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affinities (pKi = 4.319 and 3.959 respectively), higher number
of hydrogen bonding interactions and π interactions has been
observed. Compound T-P-2 makes interaction with Trp
A:230, Asn A:226, Leu A:174, Val A:178, and Leu A:229
amino acid residues (Fig. 10). The stable pose makes π-
alkyl interaction with Val A:178 and Leu A:174. The fluorine
atom makes alkyl interaction with Leu A:229 and Val A:178
and halogen interaction with Asn A:226. The amino acid res-
idues interacting with compound T-S-29 are Leu A:229, Val
A:178, Leu A:174, and Leu A:222. From Fig. 10, it is seen
that π interaction is the predominant binding mode with the
protein (as observed with Val A:178, Leu A:174 and Leu
A:222). Other interactions noticed are alkyl interaction and
various hydrogen-bonding interactions. Low affinity com-
pounds includeT-P-7 and T-P-10 (pKi = 1.311 and 1.957)
which showed less number of interactions in comparison to
higher affinity compounds (in Fig. 10). Two π-alkyl interac-
tions are observed for both the compounds, with Leu A:174
and Val A:178 in both the cases. The docking sites for both
high and low binding affinity PETand SPECT imaging agents
targeted against tau protein are given in Table 2.

Relation with QSAR models In the docking study, it is ob-
served that π interactions play a vital role in ligand-receptor
binding. This observation supports the occurrence ofD/Dtr09
(distance/detour ring of order 9) descriptor which is a ring
descriptor. Increased number of aromatic nuclei will increase
the value of this descriptor thereby increasing the binding
affinity, also paving way for more π interactions. Also, π
interactions corroborate with SaaCH descriptor, where
aaCH represents –CH groups in an aromatic nucleus. From
the observations, it is concluded that aromaticity is a major
feature regulating the binding affinity of PET and SPECT
imaging agents.

QSAR modeling and molecular docking studies
for newly designed PET and SPECT imaging agents

A set of 12 imaging agents (6 each for both PET and SPECT)
was designed for, and their QSAR prediction and docking
studies were performed to understand the binding properties
towards Aβ plaques. Also, another 6 imaging agents (PETand
SPECT combined) targeting tau protein were designed for
QSAR model prediction and molecular binding. From the
QSAR analysis, it was found that all the compounds designed
for both Aβ and tau protein gave good predicted binding
affinity (Table S1 in Supplementary Materials) and also falls
under the model applicability domain as calculated by
DModX method. The docking interactions as given in
Supplementary Materials (Figs. S7, S8, and S9) also support
the observations found for the actual dataset compounds.
Similar interactions are observed in case of the newly

designed compounds, thus ensuring the validity of the new
design.

Conclusion

The present research used chemometric tools for investigating
the binding affinity of PET and SPECT against Aβ plaques
and tau protein. The three QSAR models developed through
DCV method in this study give knowledge about the essential
structural requirements necessary for improved binding affin-
ity against Aβ plaques and tau fibril. Many of the imaging
agents used for modeling inhibit plaque formation, in addition
to just binding to β-amyloid. Thus, these compounds can also
be considered as multifunctional imaging agents (useful for
both binding and inhibition) [81]. Double cross-validation
proved its efficacy in modeling large dataset compounds pre-
viously [82, 83]. In the present study, we have utilized small
size datasets (< 50 compounds in two cases) where DCV has
proved its competence in searching for optimum combination
of descriptors for generatingmodels with good predictive abil-
ity. Thus, it can be concluded that DCV can not only be ap-
plied in modeling of large datasets but it also is suitable for
modeling smaller dataset compounds. Furthermore, new sets
of designed PET and SPECT imaging agents with better pre-
dicted binding properties are reported in the current report.
Further experiments might be conducted in the future on these
potential compounds.
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Abstract
Recently, adenosine A2A receptor antagonists have been identified as an interesting drug target for the treatment of Parkinson’s
disease (PD). Radiolabelled molecular imaging technologies such as positron emission tomography (PET) have emerged in the
research field of medicinal chemistry as a diagnostic tool for PD. In the current study, we have performed quantitative structure–
activity relationship (QSAR) analysis of 35 xanthine ligand PET tracers as A2AR (adenosine receptors) antagonists in order to
determine their structural features required to have binding affinity and selectivity towards A2AR. The division of the dataset into
training and test sets was done using a randommethod, while the feature selection for the binding affinity was done using Genetic
Algorithm (GA). The best model with five descriptors was obtained using the spline option in the GA run. QSAR models with
four descriptors were also developed for A2AR selectivity, where significant descriptors were selected from the large pool of
descriptors using stepwise regression method followed by Best Subset Selection (BSS) method. Furthermore, to improve the
quality of the external predictions, we used the “Intelligent Consensus Predictor” tool (http://teqip.jdvu.ac.in/QSAR_Tools/
DTCLab/). Both the models showed robustness in terms of statistical parameters. Molecular docking studies have been
carried out to understand the molecular interactions between the ligand and receptor, and the results are then correlated with
the structural features obtained from the QSAR models. Furthermore, the information derived from the newly found descriptors
gives an insight for the development of new candidate PET tracers for the use in PD.

Keywords Parkinson disease (PD) . Positron emission tomography (PET) . QSAR

Introduction

Parkinson’s disease (PD) is a progressive neurodegenerative
disorder of the central nervous system characterized by mus-
cle rigidity, bradykinesia, and tremor. The disease affects
older people, and it is known that 2–3% of the population ≥
65 years of age are more prone towards this disease [1]. It is
also associated with loss of dopaminergic neurons in the

substantia nigra, lewy body generation, and abnormal cluster-
ing of α-synuclein protein, which is directly connected to
expectancy of long life. Hence, effective research for neuro-
degenerative disease treatment is one of the vital clinical needs
of today’s life. The current therapy of PD includes restoration
of dopamine with levodopa in the striatum of the brain.
However, to maintain the therapeutic level, the dosage has
to be increased which does not prevent the underlying neuro-
nal loss [2, 3]. On the other hand, such long-term treatment in
addition may cause adverse effects which include levodopa-
induced dyskinesia and behavioral disturbances in the individ-
uals [4, 5].

Adenosine enzyme inhibitors can be considered an alterna-
tive medication in the treatment of PD having less degree of
adverse effects. Adenosine is an endogenous modulator of
different physiological functions in the peripheral tissues in
addition to the central nervous system (CNS). It is a purine
nucleoside having four varieties of subtypes consisting of A1,
A2A, A2B, and A3. A2A receptors are highly expressed in stri-
atum (dopamine-rich areas of the CNS) where it is almost co-
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located with dopamine D2 receptor on GABAergic
striatopallidal neurons [6]. A2A antagonistically interferes
with the D2 receptor and as a result decreases the affinity of
the D2 receptor for dopamine upon stimulation and show op-
posite effect on motor function [7]. Thus, adenosine A2A re-
ceptor blockademay showmotoric improvement as proven by
many animal models [8–11].

Positron emission tomography (PET) [12] and single-
photon emission computed tomography (SPECT) [13] are
non-invasive methodologies which make use of the dynamic
distribution of the radiotracers and provide 3D map of the
brain quantifying the biological processes. These imaging
agents help in the detection and quantification of dopamine
and adenosine receptors in the brain thereby creating a path for
early detection of the disease. PET studies are superior to
SPECT in terms of accurate results and in determining the
temporal measurements of radioactivity with their regional
distributions. Agonists and antagonists containing positron-
emitting radioisotopes can be introduced in vivo to get 3D
image of the receptors which have been helpful in CNS diag-
nosis. The PET tracers can be used as in vivo–imaging agents
in order to improve the pharmacokinetics, physicochemical
properties, and mapping of the receptor as per interest. As
search of new compounds with desired activity is time-
consuming and expensive, pharmaceutical companies have a
great interest upon theoretical approaches to design com-
pounds with desired activity.

Quantitative structure–activity relationships (QSAR) have
gained a lot of attention in molecular modeling field and are
beneficial due to less involvement of human resource and
cost-effectiveness [14, 15]. It attempts to develop a correlation
between the chemical structures with a well-defined activity.
It expresses chemical structures and physiological property in
the numerical form and develops a mathematical correlation
between them. Furthermore, this relationship can be used to
predict the biological response of other existing chemical
structures. QSAR-based studies have shown useful applica-
tions in drug discovery, molecular modeling, pharmaceutical
toxicity modeling, pharmacokinetics/toxicokinetics, data min-
ing, environmental toxicity (ecotoxicity), chemical or drug
property modeling, food science, agricultural sciences, pesti-
cide toxicity, fragrance, nanoscience (Nano-QSAR), and
many other fields [16–24]. QSAR is also used to predict the
absorption, distribution, metabolism, excretion, and toxico-
logical (ADMET) of drug like compounds [25, 26]. QSAR
has widespread applications in drug design, medicinal chem-
istry, and predictive toxicology. It has also become an effec-
tive tool in understanding and determining the major bio-
chemical features associated with the Parkinson’s disease
[27, 28].

In the present study, we have tried to develop QSAR
models with PET tracers of xanthine ligands as A2AR (aden-
osine receptors) antagonist using only 2D descriptors to

explore the structural features required for binding affinity
towards A2AR and selectivity of the tracers between A2B and
A2A receptors.

Materials and methods

Dataset

The experimental binding affinity and selectivity data of 35
xanthine ligand–based PET tracers were taken from a previ-
ously published literature [29] and applied for QSAR model-
ing to determine the essential structural features needed for
binding affinity and explore the structural requirements nec-
essary to be present in the antagonists for selectivity towards
A2A adenosine receptors. The experimental values of selectiv-
ity and binding affinity (Ki) ranged from 0.1–20 nM and
7.84–16,500 nM respectively, and the details are provided in
Supplementary Material I (Table S1). The experimental
values were converted into negative logarithm scale during
modeling and were used as independent values. No com-
pounds with binding affinity data were removed during
modeling but some compounds (14, 32, 33, and 34) with no
experimental selectivity values were eliminated duringmodel-
ing. Here, the binding affinity and selectivity were separately
used as endpoints or independent variables in modeling. The
compounds for both the dataset were represented in the
MarvinSketch software [30] with proper aromatization and
addition of hydrogen bond as necessary.

Fig. 1 Observed vs predicted A2AR binding affinity scatter plot
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Molecular descriptors

In the present study, QSAR models were developed using a
selected class of two-dimensional molecular descriptors in-
volving E-state indices, connectivity, constitutional, function-
al, 2D atom pairs, ring, atom-centered fragments, molecular
property descriptors, and extended topochemical atom (ETA)
indices. The ETA descriptors were calculated using the
PaDel-Descriptor software [31], whereas the non-ETA de-
scriptors were calculated using the Dragon 7 software [32].
Intercorrelated (|r| > .95), constant (variance < 0.0001), and
other incompetent and redundant data was removed using an
in-house software available at http://dtclab.webs.com/
software-tools before model development.

Dataset division

Dataset division is a crucial part of QSAR modeling in order
to develop a properly validated and robust model. Rational
data division ensures an unbiased external validation along
with uniform data distribution [33]. The division of the dataset
into training set (~ 70%) and test set (~ 30%) was performed
employing random dataset divisionmethod [34] for both bind-
ing affinity and selectivity end points. The training set was
used for model development, and the test set was used for
model validation.

Variable selection and model development

Prior to model development, we have performed variable se-
lection strategies such as Genetic Algorithm (GA) [35, 36]
and stepwise regression [35, 37] for binding affinity and se-
lectivity, respectively, to extract the important and influential
descriptors and created a reduced pool of descriptors. After
obtaining the important descriptors, we went for model devel-
opment. The best model with five descriptors was obtained
using the spline option in the GA run on Discovery Studio
version 4.1 for the binding affinity. On the other hand, for
A2AR selectivity, four models with four descriptors were se-
lected from the Best Subset Selection (BSS) method based on
MAE criteria [38]. Furthermore, to improve the quality of the
external prediction via “intelligent” selection of multiple
models, we have applied an “Intelligent consensus predictor”
tool [39] developed in our laboratory [40].

Statistical validation metrics

The statistical quality of the models developed in the present
study was rigorously examined using multiple approaches to
check the robustness and predictivity of the developed
models. All the models were validated both externally and
internally. Various parameters like determination coefficient
R2, explained variance R2a, variance ratio (F), and standard

error of estimate (s) were computed. Internal predictivity pa-
rameters such as predicted residual sum of squares (PRESS)
and leave-one-out cross-validated correlation coefficient
(Q2

LOO) were also calculated along with external predictivity

parameters like R2
pred or Q2

F1, Q
2
F2, and concordance correla-

tion coefficient (CCC) [41]. It has been reported that consen-
sus models are better in performance in comparison with an
individual model [41]. Therefore, we have also performed
“Intelligent Consensus Prediction (ICP)” using multiple
models to see whether the quality of predictions can be in-
creased through an intelligent selection.

Applicability domain

Applicability domain (AD) [42] is a theoretical region in
the chemical space developed based on modeled descrip-
tors and modeled response of the training set, where the
developed model could make predictions basing on some
logical reliability. Here, we have checked AD using stan-
dardization approach using the tool developed in our lab-
oratory [40].

Molecular docking

Molecular docking analysis has been implemented in the pres-
ent work that helps in understanding the intermolecular inter-
actions taking place between the PET tracer antagonists and
the A2A receptor. The protein structure for adenosine A2A

receptor is retrieved from the protein data bank with PDB
ID:3UZA [43]. The X-ray crystal structure of the protein con-
sists of a bound ligand T4G commonly known as 6-(2,6-
dimethylpyridin-4-yl)-5-phenyl-1,2,4-triazin-3-amine (for-
mula: C16H15N5). Before docking the target PET tracers, pro-
tein preparation was done by cleaning the protein for any
missing residues, explicit hydrogen addition, and generation
of the docking site. The generation of active docking site was
done in the BIOVIA Discovery Studio platform from the
ligand-binding domain of the bound ligand T4G by the selec-
tion of the ligand and generating the site “from current selec-
tion” program in receptor-ligand interaction module of the
software. After the generation of the active ligand-binding
domain, the bound ligand was removed for new molecule
docking. For ligand preparation, the PET tracers were put
through small molecule module in the Discovery Studio plat-
form where a series of ligand conformers were generated.
Each of these generated conformers was then used in the
CDOCKER module energy for molecular docking involving
CHARMm interaction [44]. The CDOCKER interaction en-
ergy parameter (kJ/mol) was checked for all the receptor li-
gand complexes, and the top scoring (most negative, thus
favorable to binding) poses were kept.
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Results and discussion

Based on the binding affinity and selectivity endpoints of 35
xanthine PET tracer antagonists of adenosine A2A receptor,
we have developed one model for the binding affinity (Q2 =
0.85, R2 = 0.90, Q2

F1 = 0.80) and 4 models (Q2 = 0.80–0.87,
R2 = 0.87–0.91, Q2

F1 = 0.84–0.85) for selectivity. All the
models were externally and internally validated which showed
model robustness and good predictivity in terms of the statis-
tical results.We have also checked the rm

2 parameters for both

internal sets (r2m looð Þ;Δr2m looð Þ ) and external sets (r2m testð Þ and

Δr2m testð Þ ), and the statistical results were above the critical

point justifying the reliability of the models. To improve the
quality of the external prediction for selectivity, we also per-
formed “Intelligent Consensus Prediction” of the multiple
MLR models using the ICP tool [39], and found that the con-
sensus predictions were better than the individual MLR
model–derived predictions. The winner model was consensus
model 0 (CM0).

Modeling binding affinity of PET tracers towards
adenosine (A2A) receptor

The model for binding affinity consists of five descrip-
tors: C-025, F09 [N-O], nBnz, NRS, and nCIR which
significantly influence the binding of the antagonists to
the adenosine (A2A) receptor. The 5 descriptor MLR

model (Eq. 1) developed using Genetic Function
Algorithm (GFA) could predict 85.0% variance of the
training set and 80.0% of the test set. The values of all
descriptors appearing in the model for training and test
set compounds are given in Supplementary Material II
(Excel file) and the scatter plot of the observed vs. pre-
dicted binding affinity is shown in Fig. 1.

pKi A2ARð Þ ¼ −0:849 �0:2167ð Þ
−0:36271 �0:06190ð Þ C−025
þ 0:17693 �0:05895ð ÞF09 N−O½ �
−0:52109 �0:07616ð ÞNRS

þ 0:81699 �0:09908ð ÞnBnz
þ 0:3024 �0:03363ð ÞnCIR

ntraining ¼ 25;R2 ¼ 0:901;R2
adj ¼ 0:875;Q2 ¼ 0:850; S

¼ 0:170027; F ¼ 34:62; PRESS

¼ 0:833306; r2m LOOð Þ ¼ 0:790;Δr2m LOOð Þ

¼ 0:072;MAE−based criteria ¼ Moderate

ntest ¼ 10;Q2
F1 ¼ 0:80;Q2

F2 ¼ 0:681; r2m testð Þ

¼ 0:54;Δr2m testð Þ ¼ 0:23;MAE−based criteria ¼ Good

Table 1 Definition and
contribution of all the descriptors
obtained from the MLR models
(models developed by using
binding affinity)

Sl.
no.

Name of
descriptors

Descriptor type Contribution Discussion Probable mechanism
of binding

1 C-025 Atom-centered
fragment
descriptor

−ve C-025 can be depicted as
R--CR--R, where ‘R’ can
be any group linked to
carbon and ‘--’ is any
aromatic bond. It is the
number of fragments in
which a C (sp2) aromatic
atom is bound to three
carbon atoms, two of them
by an “aromatic bond”
and the third by a simple
single bond

Flexibility which
helps in
accommodating
the antagonist well
in the receptor
pocket

2 nBnz Ring descriptor +ve Indicates number of
benzene-like rings

π-π Stacking
interaction

3 F09 [N-O] 2D atom pair
descriptor

+ve Frequency of N-O fragment
at the topological distance
9

Hydrogen bonding

4 NRS Ring descriptor −ve A ring descriptor indicates
number of ring systems
within a molecule

-

5 nCIR Ring descriptor +ve Number of circuits, i.e.,
larger loops around two or
more rings in a molecule

Hydrophobic
interaction/π-π
stacking interac-
tion
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Essential features required for binding and receptor interac-
tion The descriptors obtained in the QSAR model
(Table 1) give an insight regarding the mechanism of interac-
tion occurring during binding of the xanthine PET tracer an-
tagonists to adenosine A2A receptor. Unsaturation and aroma-
ticity play a dominating role in regulating the receptor binding
affinity which is evident from the occurrence of descriptors
such asC-025, nBnz,NRS, and nCIR. Descriptors like nBnz
and nCIR have positive influences on the adenosine A2A re-
ceptor binding (Fig. 2). But on the other hand, descriptors like
C-025 and NRS have negative effects on the binding affinity
of the PET tracers (Fig. 3). The occurrence of these similar
types of descriptors with opposite influence is contradictory
and leads to a conclusion that aromaticity provided by ben-
zene nucleus (as seen in compounds like A-32 and A-23) is
more important for binding. On the other hand, the presence of
heterocyclic aromatic rings and fused-ring systems decrease
the overall binding affinity of the radiotracer molecule (found
in compounds A-1, A-2, and A-20).

The 2D atom pair descriptor F09 [N-O] gives information
about the electronegativity of the compounds, and the positive
coefficient of the descriptor suggests that higher occurrence of
nitrogen and oxygen at topological distance 9 would enhance
binding affinity of the compounds as seen in compounds A-4
and A-32. It is found that the presence of electronegative
atoms in the compounds or chemical structures can influence
the binding to the receptor through hydrogen bonding [45].

Molecular docking Molecular docking helped in understand-
ing the optimized conformation of the complex between the
imaging agent and A2A receptor and gave evidences related to
the orientation of the imaging agents at the binding zone of the
receptor. The major goal was to understand the molecular
interactions taking place during radiotracer binding and corre-
late these findings with QSAR analysis. The docking analysis
showed the predominance of different types of π bonding
interactions and hydrogen-bonding interactions. In higher ac-
tive compounds (Fig. 4) likeA-4,A-8, andA-25 (pA2AR(BA)
= 0.699, 1.000, and 0.398 respectively), the interaction forces
include mainly hydrogen-bonding interactions (conventional
hydrogen bond and carbon-hydrogen bond interaction), π in-
teractions (π-cation, π-donor hydrogen, π-π stacked, π-π T-

shaped, and π-alkyl). Other interactions include halogen and
alkyl interaction in compound A-4 and salt bridge formation
in compoundA-8. Higher number of interacting residues sup-
ports the fact that these compounds have higher binding affin-
ity. Compounds having binding affinity in the medium range
(Fig. 5) like compound numbers A-14 and A-27 (pA2AR(BA)
= − 0.301 and − 0.255 respectively) make less number of
interactions with the adenosine receptor, but the type of inter-
actions remains similar, i.e., π interactions and hydrogen-
bonding interactions. The lowest active compounds (Fig.
5) like compound numbers A-20 and A-35 (pA2AR(BA) = −
1.301and − 1.204 respectively) show the least number of in-
teractions. All the details of binding including interacting res-
idues and type of binding interactions are given in Table 2.

Relationship with QSAR models The docking study shows
different types of π interactions occurring between the PET
radiotracer molecules and adenosine A2A receptor. This ob-
servation supports the occurrence of nBnz and nCIR descrip-
tors obtained in the QSAR models. The presence of aromatic
rings like benzene can enhance binding with the receptor
through aromatic π-π stacking interaction with the phenyl/
imidazole residue of the receptor [46]. The interaction of these
antagonists through π-π stacking interaction eventually
blocks the receptor in the indirect pathway thus blocking the
activity of GABA-mediated influence in the globus pallidus
pars externa (GPe). This helps the PD patients to gain the
motor function again by regaining the balance between direct
and indirect pathway. Nitrogen and oxygen are capable of
hydrogen bond formation and various types of hydrogen
bonding as observed in both higher active and lower active
compounds, and this can be also correlated to the F09[N-O]
descriptor which gives an idea about the electronegativity of
the molecule.

Modeling selectivity of PET tracers towards adenosine
(A2A) receptor

In the current work, we have developed four MLR models to
understand the selectivity of the PET tracer molecules towards
adenosine A2A receptor. A single QSAR model may not be
efficient enough for the prediction of activity since the prop-
erty of molecules cannot be understood by a limited number of

Fig. 2 Features increasing the
binding affinity (pKi) value
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features. The use of multiple models for prediction using con-
sensus approach helps in reducing model uncertainty by en-
hancing the prediction quality of the external set and also in
reducing the prediction errors [38]. The four MLR models are
given below:

Model 1

logA2AR Selð Þ ¼ 0:5875 �0:4130ð Þ
þ 0:4643 �0:1574ð Þ C−027
−0:8679 �0:1797ð ÞC−040
þ 0:7245 �0:1006ð ÞF09 N−O½ �
þ 0:8382 �0:01749ð ÞETA Beta s

ntraining ¼ 21;R2 ¼ 0:915;R2
adj ¼ 0:893;Q2 ¼ 0:867; S

¼ 0:234982; F ¼ 42:88;

PRESS ¼ 1:37546; r2m LOOð Þ ¼ 0:81227;Δr2m LOOð Þ

¼ 0:07373;MAE−based criteria ¼ Moderate

ntest ¼ 10;Q2
F1 ¼ 0:84;Q2

F2 ¼ 0:81; r2m testð Þ

¼ 0:7682;Δr2m testð Þ ¼ 0:11949;MAE−based criteria

¼ Good

Model 2

logA2AR Selð Þ ¼ 0:36359 �0:43605ð Þ−0:76227 �0:18863ð ÞC
−040−0:05224 �0:02421ð ÞT F::Clð Þ
þ 0:71046 �0:11057ð ÞF09 N−O½ �
þ 0:09777 �0:01808ð ÞETA Beta s

ntraining ¼ 21;R2 ¼ 0:90;R2
adj ¼ 0:87;Q2 ¼ 0:82; S

¼ 0:274853; F ¼ 35:21;

PRESS ¼ 1:05627; r2m LOOð Þ ¼ 0:7526;Δr2m LOOð Þ

¼ 0:05874;MAE−based criteria ¼ Moderate

Fig. 4 Docking interactions for compounds having higher binding affinity (pKi)

Fig. 3 Features decreasing the
binding affinity (pKi) value
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ntest ¼ 10;Q2
F1 ¼ 0:84;Q2

F2 ¼ 0:82; r2m testð Þ

¼ 0:7737;Δr2m testð Þ ¼ 0:04197;MAE−based criteria

¼ Good

Model 3

logA2AR Selð Þ ¼ 0:9642 �0:4535ð Þ
þ 0:31245 �0:08846ð Þ nCIC
þ 0:4848 �0:1856ð ÞC−027
−0:9394 �0:2114ð ÞC−040
þ 0:6662 �0:1184ð ÞF09 N−O½ �

ntraining ¼ 21;R2 ¼ 0:883 R2
adj ¼ 0:854; S ¼ 0:274853; F

¼ 30:27;

PRESS ¼ 1:72765;Q2 ¼ 0:833; r2m LOOð Þ
¼ 0:76;Δr2m LOOð Þ ¼ 0:12;MAE−based criteria

¼ Moderate;

ntest ¼ 10;Q2
F1 ¼ 0:84;Q2

F2 ¼ 0:82; r2m testð Þ
¼ 0:77;Δr2m testð Þ ¼ 0:13;MAE−based criteria

¼ Good

Model 4

logA2AR Selð Þ
¼ 1:3245 �0:2988ð Þ−0:6702 �0:2119ð Þ C−040

þ 0:10445 �0:04427ð ÞSssN
þ 0:05519 �0:01932ð ÞF07 C−C½ �
þ 0:5954 �0:1263ð ÞF09 N−O½ �

ntraining ¼ 21;R2 ¼ 0:872 R2
adj ¼ 0:84; S ¼ 0:287861; F

¼ 27:24;

PRESS ¼ 2:09555;Q2 ¼ 0:827; r2m LOOð Þ ¼ 0:717;Δr2m LOOð Þ

¼ 0:131;MAE−based criteria ¼ Moderate;

ntest ¼ 10;Q2
F1 ¼ 0:85;Q2

F2 ¼ 0:83; r2m testð Þ ¼ 0:78;Δr2m testð Þ

¼ 0:07;MAE−based criteria ¼ Good

The significant descriptors obtained from the four MLR
models (M1–M4) contributing to A2A receptor selectivity
are C-040, C-027, F09 [N-O], ETA_Beta_s, nCIC, T (F..Cl),
SsssN, and F07[C-C]. All the descriptors positively contribute
to the A2A receptor selectivity, except C-040, as identified
from the regression coefficients of the descriptors and sum-
marized in Table 3. We have also checked the applicability
domain of the developed MLR models. The models showed
good predictive ability as per the statistical results. The details
of the descriptors, their contribution, and frequency of appear-
ance in all the four models are explained elaborately in

Fig. 5 Docking interactions for compounds having medium (A-14) and low (A-35) binding affinity (pKi)
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Table 3. The values of all descriptors appearing in the models
for training and test set compounds are given in the
Supplementary Material II (Excel file) and the scatter plots
of the observed vs. predicted selectivity values are given in
Figure 6.

Mechanistic interpretation All the descriptors obtained in the
four models and their frequency give an idea about their im-
portance in modeling the selectivity of the PET tracers to-
wards adenosine A2A receptor. The descriptors like C-027,
F09[N-O], SsssN, T(F..Cl), and ETA_Beta_s appearing in
the models give information about the electronic feature of
the compounds and are essential when the selectivity of recep-
tor is considered (Fig. 7). Electronegativity is a chemical prop-
erty that describes the tendency of an atom to draw electron
towards itself. If a compound contains higher number of elec-
tronegative atoms in its structure, then the selectivity of the
A2A receptor for that compound also increases.

The presence of atom-centered fragments like C-027 (R–
CH–X) in compounds like A-23 and A-25 increase the antag-
onist selectivity of the PET compounds. Since ‘X’ represents
any electronegative atom like O, N, S, P, Se, and halogens, the
presence of heteroatoms increases the selectivity of the com-
pounds towards A2A receptor. The descriptor F09[N-O] ex-
plains the frequency of presence of nitrogen and oxygen at
the topological distance 9, and its positive regression coeffi-
cient indicates its influential activity on the antagonistic be-
havior of the imaging agents (as seen in compounds A-4 and
A-27). Another similar kind of descriptor is T (F..Cl),
explaining the information about sum of topological distances

between F and Cl atoms in the chemical structure. These de-
scriptors give information about the electronegative atoms,
i.e., nitrogen and oxygen in F09[N-O] and fluorine and chlo-
rine in T(F..Cl). ETA_Beta_s (Σβs) is an extended
topochemical atom (ETA) descriptor, which can be represent-
ed as sum of βs values of all non-hydrogen vertices divided by
2. The term ′βs′ can be denoted as

∑βs ¼ ∑xσ

Here, x represents contribution of sigma bonds and σ sig-
nifies parameters related to sigma bonds. During the computa-
tion of β values, the sigma bond value for two similar types of
electronegative atoms should be considered 0.5, and dissimilar
electronegative atoms should be considered 0.75. This suggests
that compounds bearing dissimilar heteroatoms will have great-
er selectivity to A2A receptor as seen in compoundsA-25,A-23,
and A-4. Sigma bonds connected with different heteroatoms
will have higher descriptor values indicating that the presence
of dissimilar heteroatoms is more favorable for selectivity than
similar heteroatoms. E-state descriptor SsssN (> N—) encodes
the intrinsic electronic state of the nitrogen atom as perturbed by
the electronic influence of other molecules with the context of
topological character within the molecule. The electronegative
contribution of nitrogen is well-depicted in this descriptor, and
the positive regression coefficient shows that an increase in the
number of tertiary nitrogen benefits in receptor selectivity as
seen in compounds A-30 and A-4.

Other descriptors which significantly contribute to A2A re-
ceptor selectivity are nCIC, F07[C-C], and C-040. These

Table 2 Details of interacting residues and different types of binding interaction occurring between the PET imaging agents and the target protein
(adenosine A2A receptor)

Compound
no.

Activity Binding
affinity
[pA2AR(BA)]

Interacting residues Binding interactions

A-4_6 High 0.699 Ala A:88, Val A:186, Leu A:85, Asn A:181, His
A:250, Asn A:253, Phe A:168, Ser A:67, Met
A:270, Leu A:267, Ile A:274, Ala A:63, Ile A:66,
Leu A:249, Met A:177, Trp A:246

Conventional hydrogen bond, carbon hydrogen bond,
halogen (fluorine), π-cation, π-donor hydrogen
bond, π-π stacked, π-π T-shaped, alkyl, π-alkyl

A-8 High 1.000 Met A:270, Asn A:253, Leu A:249, Phe A:168, Ala
A:81, Ile A:66, Glu A:169

Conventional hydrogen bond, carbon hydrogen bond,
π-π stacked, π-alkyl, salt bridge

A-25 High 0.398 Leu A:267, Tyr A:271, Ile A:274, Asn A:181, Gln
A:89, Leu A:85, Leu A:249, Val A:84, Ser A:67,
Glu A:169

Conventional hydrogen bond, carbon hydrogen bond,
π-sigma, π-π T-shaped, π-alkyl

A-14 Medium − 0.301 Val A:84, Leu A:249, Met A;270, Ile A:274, Ile A:66,
Tyr A;271, Phe A:168

π-sulfur, π-π T-shaped, π-π stacked, amide-π stacked,
π-alkyl

A-27 Medium − 0.255 Asn A:253, Ser A:67, Ile A:274, Leu A:167, Glu
A:169, Ala A:63, Ile A:66, Leu A:249, Val A:84

Conventional hydrogen bond, carbon hydrogen bond,
π-anion, π-alkyl

A-20 Low − 1.301 Val A:84, Leu A:249, Leu A:267, Tyr A:271, Ser
A:67, Ile A:274, Asn A:253

Conventional hydrogen bond, π-π T-shaped, π-
sigmsa, π-alkyl, alkyl

A-35 Low − 1.204 Val A:84, Ala A:277, Leu A:249, Ile A:274, Met
A:270, Glu A:169

π-alkyl, alkyl, π-anion
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descriptors give information about the number of rings pres-
ent, type of bonds, and size of the antagonists showing selec-
tivity towards the receptor. The number of rings (cyclomatic
number) in the structure is indicated by nCIC descriptor. The
positive regression coefficient of the descriptor suggests that
the presence of high number of rings increases the selectivity
towards the A2A receptor as observed in compoundsA-25 and
A-4. F07[C-C], a 2D atom pair stands for frequency of C–C
fragment at the topological distance 7. It provides information
about the size (chain length) of the molecule. This means that
with an increase in the number of this fragment, i.e., carbon
chain, the selectivity towards the A2A receptor increases (as
in compounds A-4 and A-25). The atom-centered fragment
descriptor, C-040 (Table 3) gives information about the num-
ber of carbon atoms that are attached to heteroatoms by single/
double or triple bonds in the straight chain length. The nega-
tive regression coefficient suggests that an increase in the
number of such fragments decreases the selectivity of the
compound towards the A2A receptor as seen in compounds

A-6,A-7, andA-35. As this fragment suggests high number of
double and triple bonds attached with the carbon, it can be
concluded that unsaturation in the straight chain of the antag-
onists is unfavorable for the receptor selectivity.

Intelligent consensus predictions For further refinement of the
predictions obtained from the individual models, we have ap-
plied intelligent consensus modeling methods. Consensus
modeling helps in enhancing the prediction performance of
the models and also reduces the test set errors. It was observed
that consensus prediction of the test set compounds (Table 4)
is better in terms of both MAE-based criteria and predicted R2

parameter. Four different consensus approaches were used
employing “Intelligent Consensus Prediction” tool [39]:
CM0 (simple average of predictions), CM1 (average of pre-
dictions from the ‘qualified’ individual models), CM2
(weighted average predictions (WAPs) from ‘qualified’ indi-
vidual models), and CM3 (best selection of predictions
(compound-wise) from ‘qualified’ individual models). From

Fig. 6 Observed vs predicted A2AR selectivity plots for all four MLR models
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the four consensus model obtained, CM0 was found to be the
best.

Applicability domain Applicability domain (AD) is an im-
portant tool for reliable application of QSAR models. It
can be considered a “theoretical region in chemical space
defined by the respective model descriptors and responses
in which the predictions are reliable” [42, 47]. We have
checked the AD of all the models using standardization
approach [48] to check whether any molecule in the test
set lies outside the AD of a model. From the domain of

applicability analysis, it was found that there were no test
set compounds outside the AD, and no compound in the
training set came as an outlier (see Supplementary II
Excel file).

Comparison with a previously published modelA direct com-
parison between the current and a previously published model
[29] is infeasible due to the differences in the composition of
training and test sets. However, the current model can be con-
sidered more advantageous since it has been developed using
simple and easily interpretable two-dimensional descriptors

Table 3 Definition, frequency, and contribution of all the descriptors obtained from the MLR models

Sl.
no.

Name of
descriptors

Type of
descriptor

Contribution Discussion Frequency of
descriptors

1 C-027 Atom-centered
fragment

+ve Counts for certain structural fragment (R--CH--X) in the antagonist, where ‘R’ can be
any group linked to carbon and ‘--’ is any aromatic bond. X can be any
electronegative atom (O, N, S, P, Se, halogens)

3

2 ETA_
Beta_s

ETA indices +ve Sum of all sigma bond contributions considering non-hydrogen vertices divided by 2.
The descriptor deals with the presence of dissimilar heteroatoms.

1

3 F09 [N-O] 2D atom pairs +ve Frequency of the N-O fragment at the topological distance 9 4

4 SsssN Atom-type
E-state indi-

ces

+ve E-state of sssN which encodes the intrinsic electronic state of the nitrogen atom as
perturbed by the electronic influence of other molecules with the context of
topological character within the molecule. SsssN is the atom-type E-state of all
tertiary nitrogen in molecules.

1

5 nCIC Ring
descriptors

+ve Number of rings (cyclomatic number) present in the antagonist 2

6 C-040 Atom-centered
fragment

−ve Represented as R-C(=X)-X/R-C#X/X = C = X fragments where number of carbon
atoms are attached to heteroatoms by single/double or triple bonds

4

7 F07[C-C] 2D atom pairs +ve Frequency of C-C at topological distance 7 1

Fig. 7 Features affecting the adenosine A2A selectivity
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which does not require any conformational analysis or energy
minimization before their calculation.

Conclusion

Parkinson’s disease is a neurodegenerative disease affecting
the elderly person around the world. An important target for
its treatment is blocking adenosine A2A receptor which is co-
located with the D2 receptor and is pharmacologically oppo-
site in motor function. Many studies hint that blocking A2A

receptor would be a beneficial strategy in the treatment of PD.
Thus, this work endeavors exploring QSAR analysis to corre-
late the chemical structures with their biological activity with
the aim to filter the essential chemical features of an antagonist
for selectivity and binding affinity to A2A receptor. The com-
putational approach used in this work consists firstly the cal-
culation of the molecular descriptors, and secondly, correlat-
ing these descriptors with the binding affinity and selectivity
using different chemometric tools such as Genetic Function
Algorithm (GFA), Best Subset Selection (BSS) method, and
Intelligent consensus predictor (ICP) tools. The statistical
quality of the models was checked using traditional metrics
both internally and externally. We have also discussed about
the contributions of the descriptors in the light of known bind-
ing mechanisms such as π-π stacking interaction, hydropho-
bic interaction, and hydrogen bonding with the different pro-
tein residues present in the receptor binding sites. From the
insights obtained from such mechanism, we found that elec-
tronegative atoms and presence of aromatic ring like benzene
are favorable for enhancing the binding affinity to the A2A

receptor. Furthermore, the docking studies supported the con-
clusions derived from the QSAR studies. In conclusion, the
study highlights the pharmacophoric features mainly respon-
sible for antagonizing adenosine receptors that can be further

modified for better binding and selectivity to A2A receptor. In
case of selectivity also, electronegativity and aromaticity of
the compounds play essential and influential roles. The simple
two-dimensional (2D) descriptors appearing in all the models
are easier to compute requiring no conformation analysis or
energy minimization process. Thus, this information would
help in the future development and synthesis of newer PET
tracer targeted towards adenosine receptor.
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Abstract
Dopamine (D2) receptor has emerged as a potent drug target for the diagnosis and treatment of Parkinson’s disease (PD). 
Radiolabelled imaging such as positron emission tomography (PET) has been recognized as an important tool in medicinal 
chemistry useful for the early diagnosis of PD. The present study explores quantitative structure—activity relationship 
analysis of 34 PET imaging agents targeted toward dopamine D2 receptor. The dataset division into training and test sets 
was done using Euclidean distance division method, while the feature selection was done by double cross-validation-genetic 
algorithm method. Finally, a five-descriptor partial least squares regression model was derived after carrying out the best 
subset selection applied on the significant descriptors. The developed model showed robustness in terms of statistical param-
eters. Finally, the structural information derived from the model descriptors gives an insight for the development of new 
candidate D2-PET imaging for the use in PD.

Keywords Positron emission tomography · Parkinson’s disease · Quantitative structure—activity relationship

1 Introduction

Parkinson’s disease (PD) is considered as the second most 
common progressive neurodegenerative disorder associated 
with a selective degeneration of the dopaminergic neurons 
in the substantia nigra pars compacta and loss of projecting 
nerve fibers in the striatum. It is estimated that more than 
10 million people are living with PD worldwide and the 
occurrence of PD increases with age [1]. About four percent 
of people with PD are diagnosed before 50 years of age, 
and men are more prone to this disease than women (about 
1.5 times more) [1]. The neurons involved in this disease 
control the motor movements like resting tremor, muscular 

rigidity, bradykinesia, and postural imbalance [2]. Patients 
with this disease also experience a combination of non-
motor symptoms like sleep disturbances, dementia, fatigue, 
anxiety, depression, apathy, cognitive impairment, olfactory 
dysfunction, pain, sweating and constipation [3].

Neuroimaging studies are non-invasive methods which 
help in providing an in vivo image of the nigrostriatal dopa-
minergic system and further assessment of the extent of neu-
ronal loss associated with PD. Radioactive tracers that selec-
tively bind with dopamine receptors are involved in positron 
emission tomography (PET) imaging and lately single pho-
ton emission computed tomography (SPECT) imaging for 
research and clinical purposes [4]. PET imaging is a power-
ful analytical tool which is able to detect in vivo changes in 
the brain function [5]. PET imaging involves quantification 
of brain metabolism, abundance of a receptor and its bind-
ing in different neurotransmitter systems, and alterations in 
blood flow in specific region in the brain [5]. PET imaging is 
considered better than SPECT imaging in terms of accuracy 
and its regional distributions [6]. Heiss and Hilker (2003) 
[7] studied that the radiotracer 18F-fluorodopa (FDOPA) is 
capable of measuring dopamine deficiency, both its syn-
thesis and storage at the pre-synaptic striatal nerve end-
ings, thus allowing FDOPA-PET in the diagnosis of PD in 
early disease stages. Wu et al. [8] characterized the clinical 
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features and associated cerebral glucose metabolism pattern 
of cognitive impairments in (PD) using 18F-fluorodeoxyglu-
cose (18F-FDG) PET imaging. Glaab et al. integrated blood 
metabolomics data with PET imaging information which 
gave better diagnostic discrimination power in understand-
ing cellular processes, including oxidative stress response 
and inflammation [9].

There is a continuous search of new compounds with 
improved properties and lowered toxicity which takes enor-
mous human resource and cost into its requirement. Thus, 
theoretical approaches are gaining more importance among 
the pharmaceutical and chemical industries enabling logi-
cal design of pharmaceutical agents. Currently, quantitative 
structure-activity relationship (QSAR) has gained great 
interest in the process of modern drug discovery and design 
[10, 11]. The study attempts to build a relationship between 
the chemical properties with a well-defined endpoint as the 
compounds’ activity (QSAR) or property (QSPR) or toxicity 
(QSTR). QSAR acts as an effective tool in the prediction of 
biological response (activity/property/toxicity) of existing 
chemical compounds.

In the present study, we have developed a QSAR model 
with two-dimensional (2D) molecular descriptors to explore 
the correlations of the molecular structure of a series of 
PET tracers against the binding affinity of dopamine (D2) 
receptor.

2  Materials and methods

2.1  Dataset

Dopamine (D2) receptor binding affinity (Ki) data of 34 PET 
imaging agents were taken from different literature as men-
tioned in Table 1. The experimental binding affinity for all 
the compounds was measured using the same assay protocol, 
i.e., rat striatal homogenate (RSH) assay method. This datum 
was applied in the development of a 2D-QSAR model to 
determine the essential structural features required for good 
binding to the D2 receptor. The binding affinity (Ki) values 
for the PET imaging agents were converted to their negative 
logarithm (pKi) form and then used for modeling. The com-
pounds were represented using the MarvinSketch software 
[12] with proper aromatization and addition of hydrogen 
bond as necessary.

2.2  Molecular descriptors

QSAR models were developed using a selected class of two-
dimensional molecular descriptors. The descriptors were 
E-state indices, connectivity, constitutional, functional, 2D 
atom pairs, ring, atom-centered fragments, and molecular 
property descriptors. These descriptors were calculated 

Table 1  Dataset compounds with their observed binding affinity (in 
pKi)

Com-
pound no

Structure pKi Refer-
ence

1 2.321 [13]

2 4.420 [14]

3* 2.652 [14]

4 2.752 [14]

5 2.262 [15]

6 2.684 [13]

7* 3.951 [14]
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Table 1  (continued)

Com-
pound no

Structure pKi Refer-
ence

8 2.932 [13]

9 3.401 [13]

10 1.460 [16]

11 1.839 [16]

12 4.658 [17]

13 4.097 [17]

Table 1  (continued)

Com-
pound no

Structure pKi Refer-
ence

14 4.770 [14]

15 4.824 [18]

16 4.036 [18]

17 5.276 [14]

18 5.921 [18]

19* 3.428 [15]

20 3.108 [15]
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using Dragon 7 [22] descriptor calculator. A total of 403 
Dragon descriptors were calculated. Before the development 
of the QSAR model, the data were curated [23] by removing 
intercorrelated (|r|> 0.95), constant (variance < 0.0001), and 
other noisy and redundant data by using data pretreatment 
software developed in our laboratory and available from 
https ://dtcla b.webs.com/softw are-tools . After data pretreat-
ment, the number of descriptors was reduced to 179.

Table 1  (continued)

Com-
pound no

Structure pKi Refer-
ence

21 2.807 [15]

22* 3.114 [19]

23 3.824 [20]

24 3.959 [20]

25* 5.046 [20]

26* 4.367 [20]

27 3.523 [20]

28* 5.602 [20]

Table 1  (continued)

Com-
pound no

Structure pKi Refer-
ence

29 5.721 [20]

30 4.975 [20]

31 4.833 [20]

32 5.699 [20]

33 2.886 [20]

34 2.507 [21]

Compounds marked with "*" are test set compounds

https://dtclab.webs.com/software-tools
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2.3  Dataset splitting

Splitting of the dataset into training and test sets is a vital 
step in QSAR modeling, and it enables the development of 
a robust and well-validated model. Data division must be 
done in such a way that the points representing both training 
and test set are well scattered within the whole descriptor 
space defined by the entire dataset. The training set is used 
for model development and the test set for model valida-
tion. The division of the dataset was executed by one of the 
most extensively used methods, Euclidean distance division 
method, where the Euclidean distances for all of the com-
pounds in the dataset are calculated and the compounds are 
then sorted, based on the Euclidean distance [24].

2.4  Variable selection and model development

The main aim of the present study is to develop a well-
validated QSAR model to understand the binding of PET 
imaging agents toward dopamine (D2) receptor for the diag-
nosis of Parkinson’s disease. Critical selection of statistically 
significant descriptors ensures improvement in the quality 
of the model. Prior to development of the QSAR model, we 
have extracted a number of significant descriptors using dou-
ble cross-validation-genetic algorithm (DCV-GA) approach 
applied on the training set compounds [25–27]. Finally, a 
partial least squares (PLS) [28] regression model was gener-
ated using descriptors selected from the best subset selection 
(BSS).

Double cross-validation (DCV) is an attractive statis-
tical design which combines both model generation and 
model assessment with the aim to produce better models 
[25, 29]. Sometimes the fixed composition of a training 
set can lead to biased descriptor selection. DCV method 
helps in better descriptor selection by dividing the training 
set into ‘n’ calibration and validation sets. This results in 
diverse compositions of the modeling set, thus removing 
any bias in descriptor selection. DCV technique consists 
of two nested cross-validation loops commonly known as 
internal and external cross-validation loops. In the external 
loop, the data objects are split randomly into disjoint subsets 
known as training set compounds and test set compounds. 
The training set compounds are involved in the internal loop 
for the purpose of model development and model selection, 
and the test set is used solely for the intention of checking 
model predictivity. Further, in the internal loop, the train-
ing set compounds are repetitively split into calibration 
(construction) and validation sets by employing the k-fold 
cross-validation technique (here, k = 10) [29] and produc-
ing k iterations to construct calibration and validation sets. 

The calibration objects are used to derive different mod-
els by altering the tuning parameter(s) of the model (i.e., 
the descriptors), whereas the validation objects are used to 
guess the models’ error. The model with the lowest cross-
validated error is selected. The test compounds in the outer 
loop are employed to assess the predictive performance of 
the selected model.

In the current study, descriptor selection in the DCV plat-
form was done using genetic algorithm (GA) approach. GA is 
a model optimization approach with an algorithm inspired by 
the theory of evolution [26]. GA has five basic steps: (i) coding 
of variables; (ii) initiation of population; (iii) evaluation of the 
response; (iv) reproduction; and (v) mutation. Steps (iii) to (v) 
are repeated until a termination criterion is reached. The crite-
rion can be based on a lack of improvement in the response or 
simply on a maximum number of generations or on the total 
time allowed for the elaboration.

2.5  Statistical validation metrics

Validation of the robustness and predictive ability of the 
developed models is a very crucial step in a QSAR study. A 
meticulous examination of the statistical quality of the devel-
oped model has been done to judge the robustness in terms of 
reliability and predictivity measures using various internal and 
external validation parameters. For determining the quality 
of the developed model, statistical parameters like determina-
tion coefficient R2 and explained variance R2

a
 were calculated. 

Other parameters including internal predictivity parameters 
such as predicted residual sum of squares (PRESS) and leave-
one-out cross-validated correlation coefficient (Q2

LOO) were 
also calculated along with external predictivity parameters 
like R2

pred or Q2
F1

 , Q2
F2

 , and concordance correlation coefficient 
(CCC) [30]. Further, we have also calculated r2

m
 metrics (i.e., −

r2
m
 and Δ r2

m
 ) for both training and test set compounds [31]. 

Validation using mean absolute error (MAE)-based criteria for 
both external and internal validation was done [32]. The Q2

ext

-based criteria do not always interpret the correct prediction 
quality because of the impact of the response range as well 
as the distribution of the values of the response in both the 
training and test set compounds; so MAE was calculated to 
check the average error [32]. Figure 1 shows the flowchart of 
the present work methodology.

3  Results and discussion

3.1  Modeling binding affinity of PET tracers 
toward dopamine (D2) receptor

The final PLS model of three latent variables (LVs) consisted 
of five descriptors that explains the binding properties of the 
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PET radioligands toward dopamine receptor. The final model 
is given below:

pKi = 4.512 − 0.184 × SaaCH − 1.554 × B08[C − S] + 0.060 × SsF

− 2.350 × B10[N − F] + 1.425 × B10[C − O]

3.2  Mechanistic interpretation

The variable importance plot (VIP) (Fig. 2) gives an idea 
about the influence of the individual descriptors on the 
model and thereby on the binding affinity [33]. The order of 
importance of the descriptors was found as follows: SaaCH, 
B10[N–F], B10[C–O], SsF, and B08[C–S]. The VIP gives 
an understanding that descriptors SaaCH and B10[N–F] are 
highly influential due to their VIP scores being more than 
one. The regression coefficient plot (not shown) provides a 
basic understanding about the contribution of the individual 
descriptor on the model [28]. It is seen that the descriptors 
SaaCH, B08[C–S], and B10[N–F] negatively contributes to 
the response, while the descriptors SsF and B10[C–O] posi-
tively contribute to the response. The details of the descrip-
tors and their contributions are given in Table 2 and also 
explained below in detail. The observed vs predicted scatter 
plot is shown in Fig. 3.

The E-state indices descriptor SaaCH gives idea on 
the sum of the atom-type E-state values for aromatic –CH 
groups. From the regression coefficient of the descriptor, 
it can be inferred that aromaticity hinders the binding of 
the PET compounds to the D2 receptor as in compounds 
8 (SaaCH = 18.392) (Fig. 4), 10 (SaaCH = 16.63), and 11 
(SaaCH = 14.214). These compounds are aromatic and have 
high SaaCH values, and they have lower binding affinity val-
ues (pKi = 2.931, 1.460, and 1.839). Further, in compounds 
like 29 and 32, aromaticity is less as compared to the pre-
viously mentioned compounds, thus having lower values 
for the descriptor (SaaCH = 3.583 and 1.640, respectively). 
These compounds have better binding affinity (compound 
29 (pKi = 5.700) and compound 32 (pKi = 5.721)) toward 
dopamine receptor.

ntraining = 27,R2 = 0.731,R2
adj

= 0.696,Q2 = 0.623, r2
m(LOO)

= 0.507,Δr2
m(LOO)

= 0.159,MAE(train)

= 0.528, SD(train) = 0.550, PRESS = 15.392

ntest = 7,Q2
F1

= 0.687,Q2
F2

= 0.664, r2
m(test)

= 0.742,Δr2
m(test)

= 0.116,

MAE(test) = 0.505, SD(test) = 0.280, CCC(Test) = 0.812

Fig. 1  Flowchart of the present work methodology

Fig. 2  Variable importance plot of the PLS model

Table 2  Descriptor meaning and their contribution

Serial no Descriptor Descriptor type Contribution Discussion

1 SaaCH Atom-type E-state −ve Sum of the atom-type E-state values for aromatic –CH groups
2 B08[C-S] 2D atom pairs −ve Presence or absence of carbon and sulfur at the topological distance 8
3 SsF Atom-type E-state  +ve Sum of the atom-type E-state values for –F fragments
4 B10[N-F] 2D atom pairs −ve Presence or absence of nitrogen and fluorine at the topological distance 10
5 B10[C-O] 2D atom pairs  +ve Presence or absence of carbon and oxygen at the topological distance 10
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The next important descriptor is B10[N–F] (2D atom 
pair type), and the negative contribution implies that the 
presence of nitrogen and fluorine at the topological distance 
10 will hinder the binding affinity seen in compounds 11 
(B10[N–F] = 1; pKi = 1.838) (Fig. 4) and 33 (B10[N–F] = 1; 
pKi = 2.886). Further, the absence of this fragment will 
increase the binding affinity as observed in compounds 

29 (B10[N–F] = 0; pKi = 5.700) and 32 (B10[N–F] = 0; 
pKi = 5.721). The effect of the electronegativity of fluorine 
atom on nitrogen is a determining factor for the good binding 
which is latter explained while studying the descriptor SsF. 
The closeness between nitrogen and fluorine atom explains 
how the binding will occur.

B10[C–O] is another 2D atom pair descriptor repre-
senting the presence or absence of C–O fragment at the 
topological distance 10. The descriptor positively influ-
ences the binding affinity of the PET tracers toward dopa-
mine receptor as seen in compounds 18 (B10[C–O] = 1; 
pKi = 5.921) (Fig. 4), 29 (B10[C–O] = 1; pKi = 5.721), and 
32 (B10[C–O] = 1; pKi = 5.700). The presence of this kind 
of fragment affects the electronegativity of the compounds 
essential for binding. The absence of this fragment on the 
other hand decreases the dopamine binding affinity observed 
in compounds like 1 (pKi = 2.321) and 5 (pKi = 2.262).

The E-state values for the descriptor SsF depend on the 
number of fluorine atoms present in a PET tracer molecule. 
From the regression coefficient, it can be understood that 
with increasing fluorine atoms the binding affinity also 
increases as observed in 18 (SsF = 14.107; pKi = 5.921), 32 
(SsF = 12.490; pKi = 5.698) (Fig. 4), and 31(SsF = 13.108; 
pKi = 4.833). The electronegative fluorine atom is presumed 
to decrease electron charge density on nitrogen atoms. This 

Fig. 3  Observed versus predicted pKi plot

Fig. 4  Descriptors appearing in the PLS model and their contribution



 Theoretical Chemistry Accounts         (2020) 139:176 

1 3

  176  Page 8 of 12

reduces nitrogen basicity and its prospect to get protonated 
at physiological pH which is a basic requirement for good 
binding to dopamine receptors [34].

The least important descriptor is B08[C–S], which is also 
a 2D atom pair descriptor and gives an idea of the pres-
ence or absence of C–S fragment at a topological distance 8. 
The negative contribution suggests that the presence of this 
fragment will result in a decreased binding affinity toward 
the dopamine receptor which is observed in compounds 21 
(pKi = 2.807) and 20 (pKi = 3.107) (Fig. 4). Alternatively, 
compounds like 18 (pKi = 5.921), 29 (pKi = 5.721) and 32 
(pKi = 5.698) have no such fragment, thus having higher 
binding affinity.

From the descriptors and their contributions, we can draw 
an inference that the oxygen for B10[C–O] and fluorine for 
SsF impart an electronegative character to the PET ligands 
which plays an essential role for the good dopamine (D2) 
binding.

3.3  Plot Interpretation

1 Loading Plot— This plot gives a relationship between 
the X-variables (i.e., the descriptors) and Y-variable (i.e., 
response) [35]. In Fig. 5, five X-variables and one Y-var-
iable are shown. Generally, the plot is developed with 
the first and second components. A loading plot provides 
an insight about how much a variable contributes to a 
model and which variable provides the maximum foot-
print. For interpretation, the distance from the origin is 
taken under consideration. Descriptors which are similar 
in nature and providing similar contribution are corre-
lated and grouped together. Descriptors which are situ-

ated far away from the plot origin are supposed to have 
greater impact on the Y-response. From the loading plot 
it, is seen that descriptors SaaCH and B10[N–F] are far 
away from the plot origin supporting their higher influ-
ence also explained by the VIP. The positive or negative 
algebraic symbol is also taken under consideration in 
a PLS plot. Features explained by descriptors SsF and 
B10[C–O] are beneficial for binding because of their 
closeness to pKi in the plot. On the other hand, SaaCH, 
B10[N–F] and B08[C–S] are present in the negative side 
of the plot origin and are detrimental for good binding.

2 Score Plot— Figure 6 shows the distribution of the 
compounds in the latent variable space as defined by 
the scores. We have plotted the scores of the first two 
components t1 and t2. The applicability domain of the 
model is designated by the ellipse, as defined by Hotel-
ling’s t2. Hotelling’s t2 defines multivariate generaliza-
tion of Student’s t test. The method offers a check for 
compounds adhering to multivariate normality [36]. 
Compounds which are situated near each other in the 
plot have similar properties, whereas compounds which 
are far from each other have dissimilar properties with 
respect to their binding affinity toward dopamine recep-
tor. As an example, we can take compounds 14, 15, 16, 
and 17 which are clubbed together as a group on the plot 
space and can be considered to be with similar proper-
ties. On the other hand, compounds 18 and 12 are com-
pletely located on the opposite side of the origin and 
far from each other and they represent heterogeneity in 
their properties. Since there are no compounds out of 
the ellipse, we can conclude that there are no outliers 
according to this method.

Fig. 5  Loading plot of the PLS model
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  Y-Randomization Plot— Model randomization gives a 
notion about the model significance and ensures that the 
model is not an outcome of a chance correlation [37]. 
A randomized model is generated by the development 
of multiple models by shuffling or reordering different 
combinations of X-or Y-variables (here Y-variable only) 
and based on the fit of the reordered model. In the pre-
sent study, we have used 100 permutations which can 
be changed according to the choice of the user. A rand-
omized model should have very poor statistics. The R2 

and Q2 values for the random models (Y-axis) are plot-
ted against correlation coefficient between the original Y 
values and the permuted Y values (X-axis); the R2

y
 inter-

cept should not exceed 0.3, and the Q2
y
 intercept should 

not exceed 0.05. Figure 7 shows the correlation between 
original Y-vector and permuted Y-vector versus cumula-
tive R2

y
, cumulative Q2

y
 plot where R2

y
 intercept = 0.09 and 

Q2
y
 intercept = − 0.393 proving the model is robust and 

non-random.

Fig. 6  Score plot of the PLS 
model

Fig. 7  Y-randomization plot of 
the PLS model
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3 Applicability Domain (AD)— The prediction reliabil-
ity of a particular model is dependent on its applica-
bility domain (AD) assessment. Applicability domain 
(AD) “represents a chemical space from which a 
model is derived and where a prediction is consid-
ered to be reliable” [38]. The AD evaluation was done 
using the DModX (distance to model) in the X-space 
using SIMCA 16.0.2 software available at https ://landi 
ng.umetr ics.com/downl oads-simca . The AD plots are 
given in Figs. 8 and 9 and for training and test sets, 
respectively, and it is found that there are no outliers 
in case of training set, and none of the compounds are 
outside AD in case of the test set at 99% confidence level 
(D-crit = 0.009999, M-Dcrit [3] = 3.213).

4  Conclusion

In vivo imaging targeting dopamine receptor is a subject 
of extensive studies nowadays. Dopamine plays a vital role 
in controlling the pathophysiology of Parkinson’s disease. 
Hence, it can be treated as a suitable target in controlling 
the disease. The present study aims in the development of a 
2D QSAR model of a group of 34 PET imaging agents hav-
ing affinity toward dopamine D2 receptor. The 2D QSAR 
model developed is simple and interpretable and provides 
knowledge about the basic structural features required for 
good dopamine binding. The use of simple two-dimensional 
descriptors reduces the need of time-consuming computa-
tional approaches of conformational analysis or energy 

Fig. 8  DModX applicability 
domain of the training set

Fig. 9  DModX applicability 
domain of the test set

https://landing.umetrics.com/downloads-simca
https://landing.umetrics.com/downloads-simca
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minimization; thus, the developed model may be suitable 
for the quick screening purposes.
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Abstract
The neurotransmitter acetylcholine (ACh) plays a ubiquitous role in cognitive functions including learning and memory 
with widespread innervation in the cortex, subcortical structures, and the cerebellum. Cholinergic receptors, transporters, 
or enzymes associated with many neurodegenerative diseases, including Alzheimer’s disease (AD) and Parkinson’s disease 
(PD), are potential imaging targets. In the present study, we have developed 2D-quantitative structure–activity relationship 
(2D-QSAR) models for 19 positron emission tomography (PET) imaging agents targeted against presynaptic vesicular ace-
tylcholine transporter (VAChT). VAChT assists in the transport of ACh into the presynaptic storage vesicles, and it becomes 
one of the main targets for the diagnosis of various neurodegenerative diseases. In our work, we aimed to understand the 
important structural features of the PET imaging agents required for their binding with VAChT. This was done by feature 
selection using a Genetic Algorithm followed by the Best Subset Selection method and developing a Partial Least Squares- 
based 2D-QSAR model using the best feature combination. The developed QSAR model showed significant statistical 
performance and reliability. Using the features selected in the 2D-QSAR analysis, we have also performed similarity-based 
chemical read-across predictions and obtained encouraging external validation statistics. Further, we have also performed 
molecular docking analysis to understand the molecular interactions occurring between the PET imaging agents and the 
VAChT receptor. The molecular docking results were correlated with the QSAR features for a better understanding of the 
molecular interactions. This research serves to fulfill the experimental data gap, highlighting the applicability of computa-
tional methods in the PET imaging agents’ binding affinity prediction.
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Introduction

According to World Health Organisation (WHO), currently, 
more than 55 million people live with dementia worldwide, 
and there are more than 10 million cases new cases every 
year. Dementia is characterized by the loss or decline in 
memory or other cognitive impairment commonly observed 
in neurodegenerative disorders like Alzheimer’s disease 
(AD), Parkinson’s disease (PD), schizophrenia, and Down’s 
syndrome. The severity of dementia-associated cognitive 
dysfunction is connected with the loss of cholinergic synap-
tic elements in the cortex and subcortical regions of the brain 
(Bohnen and Albin 2011; Hampel et al. 2018). Cholinergic 
neurons are accountable for synaptic transmission as well 
as neuronal modulation in various regions of the central and 
peripheral nervous systems. Cholinergic neurotransmission 
controls cognitive functions including learning and memory. 
Acetylcholine (ACh) is one of the main neurotransmitters 
secreted by cholinergic neurons to perform a plethora of 
physiological functions (Prado et al. 2013). ACh is produced 
at the nerve terminals from acetyl coenzyme A (acetyl CoA) 
and choline by Choline acetyltransferase (ChAT) enzyme. 
The neurotransmitters are then transported and stored 
in synaptic vesicles by transporters called vesicular ACh 
transporters (VAChTs), before being released in the synap-
tic cleft (Amenta and Tayebati 2008). Neurodegenerative 
diseases have common events of cholinergic impairment. 

Thus, radiolabeling of these vesicular transporters would 
provide a presynaptic marker of cholinergic innervation. The 
depletion in ChAT and AChE levels, occurring in several 
neurodegenerative diseases, are potential measuring targets 
for these imaging agents (Bergmann et al. 1978; Mountjoy 
1986; Mountjoy et al. 1984) (Fig. 1). Imaging cholinergic 
neurotransmission in vivo with positron emission tomogra-
phy (PET) provides noteworthy information about disease 
progression.

Radio imaging of presynaptic VAChT was first done 
using 18F-fluoroethoxybenzovesamicol (18F-FEOBV), a PET 
ligand, which was later successfully rendered into clinical 
application. Vesamicol (2-(4-phenylpiperidino)cyclohex-
anol) was reported to bind to VAChT and is considered to 
be a useful lead for developing new PET imaging agents 
for mapping cholinergic signaling in vivo (Giboureau et al. 
2012). Kitamura et al. (2016) found that o-methyl-trans-
decalinvesamicol (OMDV) demonstrated a high binding 
affinity and selectivity for VAChT and can be used in the 
early diagnosis of Alzheimer’s disease (AD).  [11C]OMDV 
was synthesized and investigated as a new PET ligand for 
VAChT imaging through in vivo evaluation. Kilbourn et al. 
(2009) used (2R,3R)-5-[18F]fluoroethoxybenzovesamicol in 
micro PET imaging to determine the regional brain phar-
macokinetics of rat and rhesus monkey brains. Horsager 
et al. (2022) evaluated human in vivo VAChT distribu-
tion in 13 peripheral organs using a 70 min dynamic  [18F]
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fluoroethoxybenzovesamicol  ([18F]FEOBV) PET/CT proto-
col. Tu et al. (2009) synthesised nine fluorine-containing 
VAChT inhibitors and screened them as potential PET trac-
ers for imaging the VAChT. Earlier, imaging of AD was 
possible through the amyloid beta detection; however, these 
methods were not useful to evaluate the therapeutic efficacy 
of the AD treatment. The dysfunction of presynaptic cho-
linergic neurons is associated with loss of choline acetyl 
transferase (ChAT) (enzyme synthesizing ACh) and the 
vesicular acetylcholine transporter (VAChT) (Reinikainen 
et al. 1990). Thus, these internal molecules function as novel 
cranial molecular targets for developing new imaging agents 
for their detection.

Driven by the continuous search for new entities with 
improved properties and considerably lower toxicities, theo-
retical approaches are of high priority within the chemical 
and pharmaceutical industries. This provides a logical design 
of chemicals or pharmaceuticals with reduced time and cost. 
Quantitative structure–activity relationship (QSAR) has gained 
immense importance in the pharmaceutical industries as an 
effective tool for the predictions when experimental data is 
limited (Gramatica 2020). QSAR has enormous applications in 
medicinal chemistry, drug designing, and toxicity prediction. 
Another chemometric approach, similarity-based quantitative 
read-across (Chatterjee et al. 2022), can also be used for data 
gap filling. This method uses a weighted average approach to 

quantitatively predict similar query compounds. Read-across 
approach, due to its transparency, has a strong potential for 
providing confident predictions.

In the present research, we have strived to develop a two-
dimensional QSAR model with 19 PET imaging agents act-
ing against vesicular acetyl choline transporter. The selection 
of a small dataset was due to the non-availability of a larger 
number of experimental data. Here, QSAR modeling plays a 
pivotal role for providing promising predictions when data is 
scarce. To revalidate our predictions, we have performed leave-
one-out and leave-many-out cross-validation tests. We have 
also performed read-across based predictions to analyze the 
predictive ability of the features obtained from QSAR analy-
sis. Besides these, we also have performed molecular docking 
analysis to corroborate its results with QSAR analysis. Further, 
we have used two external datasets of PET imaging agents 
for their VAChT binding predictions (vide infra) using our 
developed 2D-QSAR model.

Materials and methods

In the present study, 2D-quantitative structure–activ-
ity relationship (2D-QSAR) models were developed for 
19 positron emission tomography (PET) imaging agents 
targeted against presynaptic vesicular acetylcholine 

Fig. 1  PET imaging of vesicular acetylcholine transporter to study 
its role in presynaptic cholinergic innervations. VAChT helps in the 
transport of Acetylcholine (ACh), the essential neurotransmitter regu-
lating AD and PD, through the synaptic vesicles. PET imaging tech-
nology helps in the diagnosis of the increase or decrease in the num-
ber of VAChT receptors. Mechanism of VAChT: In the cytoplasm of 

nerve endings, ACh is synthesized by the enzyme ChAT, and then it 
is loaded into synaptic vesicles by VAChT. Upon any nerve impulse, 
vesicles fuse to the plasma membrane and release the neurotransmit-
ter ACh. (AD: Alzheimer’s disease; PD: Parkinson’s disease; CoA: 
Coenzyme A; ChAT: Choline acetyltransferase)
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transporter (VAChT). VAChT assists in the transport of 
ACh into the presynaptic storage vesicles, and it is one of 
the main targets for the diagnosis of various neurodegen-
erative diseases.

The dataset

According to the OECD principle, dataset selection with a 
defined endpoint is the first essential step while developing 
a QSAR model. For our present work, the binding affin-
ity (Ki) values of 19 PET imaging agents acting against 
vesicular acetylcholine transporter were procured from dif-
ferent previously published literature (Kovac et al. 2010; 
Tu et al. 2015, 2009). The VAChT binding affinity of the 
dataset compounds was assayed by the same experimental 
protocol of the competitive displacement of 5 nM  [3H]
vesamicol on homogenates of PC12 cells (Zea-Ponce et al. 
2005). The binding affinity data which was expressed as 
Ki were converted to its negative logarithmic form (pKi). 
The structures obtained from different sources were then 
represented in MarvinSketch version 15.12.7.0 software 
with proper explicit hydrogen addition and aromatization. 
The 19 PET imaging agents used for the present study is 
given in Table 1. The dataset compounds obtained from 
three sources had some common compounds. The com-
pound IDs in Table 1 are given in such a way so that the 
common compounds are not repeated.

Molecular descriptors

The molecular descriptor is a fundamental component of 
QSAR and other in-silico models since it formally repre-
sents a molecule's structure numerically. Descriptors pro-
vide a mathematically meaningful relationship between 
the molecular structure and biological activities, physico-
chemical and toxicological properties of chemicals (Mauri 
et al. 2017). Descriptors can be classified into different cat-
egories depending on the process of calculation or scheme 
of experimental determination or concept of the origin. 
For ease of interpretation, the present work involved the 
use of eight main types of two-dimensional (2D) descrip-
tors, viz., E-state indices, extended topochemical atom 
(ETA), connectivity, constitutional, functional, 2D atom 
pairs, ring, atom-centered fragments and molecular prop-
erty descriptors. The descriptors were calculated using 
alvaDesc descriptor calculator (Alvascience, alvaDesc 
version 2.0.6, 2021, https:// www. alvas cience. com). With 
the intention to minimize the redundant and incompetent 
data, inter-correlated descriptors (correlation greater than 
0.95) were removed from the original descriptor pool. This 

resulted in a final pool of 188 descriptors which was used 
as input variables for QSAR modeling.

Feature selection and model development

In general, a QSAR model development involves a training 
set and a test for model development and validation purposes 
respectively. However, owing to the small number of com-
pounds in our dataset, we did not apply the general method 
of data division (Király et al. 2022; Kovács et al. 2021; Rácz 
et al. 2021). It is natural that all the descriptors calculated 
through AlvaDesc will not be able describe the binding 
properties of the PET imaging agents. Therefore, to further 
reduce the data pool, we have applied the Genetic Algorithm 
(Sukumar et al. 2014) feature selection method to choose 
essential features required for binding. Further, we have 
executed the Best Subset Selection (available from http:// 
dtclab. webs. com/ softw are- tools) on the reduced pool of 12 
descriptors obtained from the GA. Finally, the acquired pool 
of descriptors was applied to develop the final model using 
the partial least squares (PLS) regression (Wold et al. 2001). 
PLS converts the original descriptors into the new latent 
variable space thus lowering the dimensionality and obvi-
ating the inter-correlation among the original descriptors.

Machine learning‑based read across predictions

In the current work, we have employed a machine learning-
based Read-across prediction tool which relies on similar-
ity approaches. The predictions were made using the tool 
Quantitative Read Across v4.0 developed by Chatterjee 
et al. (2022) available from https:// sites. google. com/ jadav 
purun ivers ity. in/ dtc- lab- softw are/ home. The main similar-
ity approaches involved in this tool are Euclidean distance-
based similarity, Gaussian kernel function, and Laplacian 
kernel function-based similarity estimation. Please note 
that read-across does not develop any statistical model like 
QSAR and make predictions only based on the similarity 
values. Thus, this approach may be good when a limited 
number of source compounds is available (Banerjee and Roy 
2022). For read-across predictions, we have divided the data-
set into training and test sets. The prediction scheme starts 
with the initial optimization of hyperparameters (sigma and 
gamma values; distance and similarity thresholds) which 
requires division of the training into sub-training and sub-
test sets into different combinations. This step is followed by 
the selection of the best setting of hyperparameters which is 
then applied to the original training and test sets.

Molecular docking

In this study, molecular docking was performed using the 
most and least active compounds from the initial dataset to 

https://www.alvascience.com
http://dtclab.webs.com/software-tools
http://dtclab.webs.com/software-tools
https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home
https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home
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identify the interaction pattern with the target. Owing to the 
non-availability of any protein structure for VAChT in the 
protein data bank, we have retrieved the predicted protein 
structure from the AlphaFold Protein Structure Database 
(available from https:// alpha fold. ebi. ac. uk/ entry/ Q16572) 
with the UniProt: Q16572, Source organism: Homo sapi-
ens (Human), and AlphaFold id: AF-Q16572-F1-model_v2. 
AlphaFold is an artificial intelligence (AI) system estab-
lished by DeepMind that predicts a protein’s three-dimen-
sional (3D) structure from its amino acid sequence (Jumper 
et al. 2021; Varadi et al. 2022). We have then validated the 
reliability of the predicted structure using the Ramachandran 

plot server embedded in Biovia Discovery Studio 4.1 which 
represents the good quality of the model (see Fig. 2). In 
this study, multiple active sites at the surface of the protein 
were predicted using the Biovia discovery studio 4.1 client 
platform from the “define and edit binding site” using the 
module “generate active site from receptor cavities”, and 
the ligand was docked into each site to identify the favorable 
binding site (identified most favorable active site coordi-
nate x: 16.478, y: 6.38307, Z: -15.9527, the radius of the 
sphere: 26). Initially, a total of sixteen binding sites were 
identified where the standard compound “vesamicol” was 
docked. It was found that vesamicol binds at core of site 1 

Table 1  PET radiotracers target vesicular acetylcholine transporters (VAChT)

Structures with compound IDs pKi Structures with compound IDs pKi

1 

2.239

2 

3.060 

3 

2.921 

5 

2.770 

6 

2.569 

7 

2.337 

9 

2.261 

10 

1.252 

Structures with compound IDs pKi Structures with compound IDs pKi

1 

2.239

2 

3.060 

3 

2.921 

5 

2.770 

6 

2.569 

7 

2.337 

9 

2.261 

10 

1.252 

https://alphafold.ebi.ac.uk/entry/Q16572
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Table 1  (continued)

11 

1.032 

12 

2.185 

15 

1.801 

16 

1.476 

20 

3.658 

21 

3.602 

22 

3.347 

23 

3.319 

25 

2.770 

27 

2.367 

29 

0.967 

11 

1.032 

12 

2.185 

15 

1.801 

16 

1.476 

20 

3.658 

21 

3.602 

22 

3.347 

23 

3.319 

25 

2.770 

27 

2.367 

29 

0.967 
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of the protein with a good binding energy (27.572 kcal/mol) 
and interactions (shown later in the “Results and discussion” 
section). Out of other 15 sites, molecular docking failed in 
five docking sites and in case of the rest ten sites vesamicol 
did not bind at the docking site (outside the grid). Thus, site 
1 was chosen for further docking analysis. Ligand prepa-
ration was performed using selected high and low active 
compounds by running them through the Discovery Studio 
platform’s ‘small-molecule module’, where several ligand 
conformers were formed. Each of these generated conform-
ers was subsequently employed in the CDOCKER module 
for molecular docking using a CHARMm-based molecular 
dynamic scheme (Wu et al. 2003). The CDOCKER inter-
action energy parameter (kcal/mol) was examined for all 
receptor-ligand complexes, and the highest-scoring (more 
negative; hence favorable to binding) poses with only non-
covalent interactions (ionic bonds, hydrophobic interactions, 
hydrogen bonds, etc.) were kept for future investigation.

Results and discussions

The present work demonstrates the contribution of different 
structural attributes of PET imaging agents required for bind-
ing to and quantifying the presence of vesicular acetylcholine 
transporter. The main work is focused on the development of a 

simple 2D-QSAR model to obtain the major structural features 
responsible for binding. These features were further validated 
using the structural similarity-based read-across approach as 
well as molecular docking techniques.

QSAR modeling of binding affinity of PET imaging 
agents towards VAChT

The dataset procured for this study consisted of 19 compounds. 
A three-descriptor partial least squares (PLS) regression model 
with two latent variables (LVs) was developed which could 
explain 71.77% of the variance. The leave-one-out cross-vali-
dated determination coefficient (i.e., Q2

LOO
= 0.523 ) is above 

the critical threshold value fulfilling the statistical reliability 
of the model. We have also calculated the leave-many-out 
squared correlation coefficient ( Q2

LMO(25%)
 ), and the result 

obtained was above the threshold value (Roy et al. 2015). The 
observed versus predicted pKi (Supplementary S1) scatter plot 
is shown in Fig. 3. In cases, where residuals are high (Fig. 3), 
clearly some contributing features important for the response 
have remained unidentified and not included in the model. This 
is usual for models developed from a small data set, as due to 
limited variability of a particular (important) feature in the data 
set, the feature is not captured by the modeling algorithm. As 
more and more data become available, the model can be 
refined subsequently. However, with the available data, the 
presently developed model may be a good start as a tool for 
future predictions.

Fig. 2  Ramachandran plot for Vesicular acetylcholine transporter 
model (UniProt: Q16572, Source organism: Homo sapiens (Human), 
and AlphaFold id: AF-Q16572-F1-model_v2). Ramachandran plot 
shows 435 residues (97.098%) reside in the most favored region, 10 
(2.232%) residues reside in the preferable region and only 3 (0.670%) 
reside in the unfavorable region

Fig. 3  Observed versus predicted scatter plot of the PLS model
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The descriptors appearing in the final PLS model are all 
2D atom pair descriptors suggesting the importance of the 
presence of a particular atom pair in the PET tracer mol-
ecule. The 2D atom pair descriptors are mainly depend-
ent on the topological distance between two atoms pairs. 
Thus, the value of the descriptors can be similar for many 
compounds resulting in same predicted pKi values for 
many dataset compounds (Fig. 3). The residual might be 
high in such cases, but all the compounds are inside the 
applicability domain of the model (vide infra). The vari-
able importance plot (Akarachantachote et al. 2014) given 
in Fig. 4 shows the significance level of each descriptor 
toward VAChT binding affinity. The descriptor F09[N-
F] was the most significant descriptor with VIP Score > 1 
(VIP = 1.289) followed by F08[C-N] (VIP = 1.043) and 
B06[N–O] (VIP = 0.502). F09[N-F] which contributes 
negatively to the binding affinity, is the frequency of the 

pKi =2.018 − 0.831 × B06[N − O] + 0.757 × F08[C − N]
− 0.812 × F09[N − F]

N = 19, R2 = 0.718, Q2

(LOO)
= 0.523,

Q2

LMO(25%)
= 0.598, r2

m(LOO)
= 0.439,

Δr2
m(LOO)

= 0.027,MAE = 0.335, SD = 0.273

N-F fragment at a topological distance 9. Compounds like 
10 and 11 (Fig. 4) have nitrogen and fluorine at the topo-
logical distance 9, thereby decreasing the binding affinity 
towards VAChT, whereas in compounds like 21 and 23, 
the N-F fragment at 9 distance is absent, and the pKi val-
ues are high.

The next important 2D atom pair descriptor is F08[C-N] 
which denotes the frequency of C-N fragment at the topo-
logical distance 8. The positive regression coefficient indi-
cates that with an increase in the frequency of C-N at the 
8 distance, the binding affinity will increase as observed in 
compounds like 20 (Fig. 4), 23, and 25. These compounds 
have three such fragments and have high pKi values of 
3.658, 3.319, and 2.700 respectively.

The least important among all the descriptors is 
B06[N–O] which implies the presence or absence of an N–O 
fragment at a topological distance 6. The negative contri-
bution indicates that the presence of such a fragment will 
decrease the VAChT binding of the PET imaging agents 
as seen in compounds like 10 and 11 (Fig. 4). These com-
pounds have a very low binding affinity towards (1.251 and 
1.032 respectively) VAChT receptor.

The significance and validity of the developed model 
were further analyzed using some important PLS plots, 
namely, the loading plot, randomization plot, and applica-
bility domain (AD) which are described below.

Fig. 4  Variable importance plot and significance of the descriptors appearing in the PLS model
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A loading plot (Fig. 5) explains the relationship between 
the independent variables or descriptors (X-variables) with 
the dependent variable or pKi values (Y-variable). The influ-
ence of the descriptors on the developed model can be rec-
ognized from the loading plot. Descriptors that are far from 
the plot origin (like F08[C-N] and F09[N-F]) contribute 
significantly more toward the binding affinity. Descriptors 
with different meanings appear distantly from each other in 
the loading plot.

Model randomization confirms that the model is not the 
outcome of any chance correlation (Topliss and Edwards 
1979). The randomization plot determines the statistical 
significance and robustness of the model. Multiple models 
are generated during a randomization plot development 
by shuffling different combinations of either X-variables 
(X-randomization) or Y-response (Y-randomization). The 
Y-randomization was performed in the present study with 
100 permutations for each model for random model genera-
tion. For a non-random model R2

y
 intercept should not exceed 

0.3 and Q2
y
 intercept should not exceed 0.05. The randomi-

zation plot given in Fig. S1 (Supplementary File S2) shows 
that the developed model is non-random and robust and is 
suitable for prediction.

According to OECD guideline 3, a developed QSAR 
model should possess a defined chemical domain of appli-
cability. AD can be interpreted as a chemical space defined 
by the structural information or molecular properties of the 
chemicals used in the model development (Gadaleta et al. 
2016). Compounds present within this chemical space can 
only be properly predicted. In this study, the DModX (dis-
tance to model in X-space) method of AD determination 
(Kar et al. 2018; Vargas et al. 2018) at a 99% confidence 
interval (D-crit = 0.009999) was applied using SIMCA 

16.0.2 software (Wu et al. 2010). DModX represents the 
unexplained variation (residuals), and it can be explained as 
the distance to the model X space corresponding to the X 
residuals standard deviation (Vargas et  al. 2018). The 
DModX value of an observation i can be calculated using 

the formula Si =
√

Σe2
ik

(K−A)
∕

√

Σe2
k

(N−A−A0)((K−A)
 , where eik is the 

X-residual of the observation i and variable k, Σe2
k
 is the 

squared sum of the residuals, N is the number of observa-
tions, K is the number of x-variables, and A is the number 
of latent variables, A0 is 1 if the model is centered and 0 
otherwise. The DModX is asserted to be F-distributed, and 
thus, can be used to analyse if the observation is significantly 
far away from the PLS model presuming the data is normally 
distributed. The AD plot (Fig. 6) shows none of the com-
pounds was an outlier. The PET compounds selected for the 
VAChT binding and imaging contained a basic core struc-
ture of 2-(piperidin-1-yl)cyclohexan-1-ol which is also the 
main core moiety of standard compound vesamicol. The 
QSAR model developed in the present research contains 
2D-atom pair features which can predict compounds with or 
without the core structures as evident from the external set 
predictions (vide infra).

Although we developed our QSAR model from the whole 
set due to the limited availability of the experimental data, 
to further check its validity for external predictions, we have 
additionally split the dataset into training and test sets, and 
redeveloped three models with the same combination of 
descriptors (given in the Supplementary Section S1). The 
models were found to be robust and predictive.

Fig. 5  Loading plot of the PLS 
model
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Read‑across based predictions

To explore the predictivity of the selected features used 
for QSAR modeling, a similarity-based read- across 
prediction was performed by using a group of five com-
pounds (compound ID: 3, 11, 12, 21, and 27) as the test 
set (Chatterjee et al. 2022). Read-across was also previ-
ously performed on small datasets (< 20 compounds) suc-
cessfully (Gajewicz et al. 2014, 2017; Gajewicz 2017a, 
b). In the current work, three types of similarity were 
measured: the Euclidean Distance-based, the Gauss-
ian Kernel Similarity-based, and the Laplacean Kernel 
Similarity based predictions using Read-Across-v4.1 
(https:// sites. google. com/ jadav purun ivers ity. in/ dtc- lab- 
softw are/ home) tool and after hyperparameter optimi-
zation using Auto_RA_Optimizer-v1.0 tool (https:// 
sites. google. com/ jadav purun ivers ity. in/ dtc- lab- softw 
are/ home), it was found that the external validation 
results obtained from quantitative Read-Across algo-
rithm using Gaussian Kernel Similarity-based functions 

( Q2

F1
= 0.763,Q2

F2
= 0.763,RMSE = 0.414,MAE = 0.331 ) 

was better compared to the results obtained with the other 
two read-across approaches (Table 2).

Molecular docking

Molecular docking must include a reasonably accurate 
model of energy and should be able to deal with the com-
binatorial complexity experienced by the molecular flex-
ibility of the docking partners. In the present research, 
molecular docking studies were performed to understand 
the individual molecular interactions and orientation of the 
imaging agents occurring at the binding zone of the VAChT 
receptor (Fig. 7). In the present work, the protein structure 
for VAChT was not available in PDB, hence, we have pro-
cured the predicted protein structure from AlphaFold Pro-
tein Structure Database. The selected protein structure was 
further validated using the famous Ramachandran plot to 
improve the accuracy of prediction. From the Ramachandran 

Fig. 6  DModX AD plot of the 
PLS model

Table 2  Comparison between 
three types of read-across 
predictions

Bold values indicate the best predictions

Method Ntrain R2 Q2

(LOO)
MAE Ntest Q2

F1
Q2

F2
MAE

QSAR 19 0.718 0.523 0.335 – – – –
Read-Across
 Euclidean distance 14 – – – 5 0.189 0.189 0.596
 Gaussian Kernel – – – 0.763 0.763 0.331
 Laplacian Kernel – – – 0.719 0.719 0.380

https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home
https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home
https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home
https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home
https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home
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plot, we found that 435 residues (97.098%) reside in the most 
favored region, 10 (2.232%) residues reside in the preferable 
region and only 3 (0.670%) reside in the unfavorable region. 
During docking, the physiological pH of brain was consid-
ered at which the piperidine N is protonated. The tautomers 
were also considered. Further, validation using the stand-
ard compound, i.e., vesamicol was performed by docking 
at the binding site to understand its nature of interactions. 
Again, both high and low-active compounds were also used 
for the docking study. In the case of vesamicol (compound 
9), which has a moderate binding affinity (pKi = 2.261), 
the interaction forces include hydrogen bond interactions 
(both conventional and carbon-hydrogen bond interactions) 
and π-anion interactions. The amino acid residues engaged 
in vesamicol binding are Asp A:202, Asp A:483, and Ser 
A:480. Comparing vesamicol-VAChT binding interac-
tions with highly active compounds like compound ID 20 
(pKi = 3.658), 21 (pKi = 3.602), and 22 (pKi = 3.347), it was 
observed that similar interactions were also involved in their 
binding (Fig. 7). However, it was found that these highly 
active compounds were docked with higher number of inter-
actions at their binding site with far better binding (Table 3). 
For compound 20, halogen (fluorine) interactions, attractive 
charge, π-cation, and π-alkyl interactions were active along 
with hydrogen bond interactions. In the case of compound 

21, additional interactions include attractive charge, π-anion, 
and π-cation interactions. Similarly, in the case of compound 
22, attractive charges, alkyl, and π-alkyl interactions were 
active along with conventional hydrogen bond and carbon-
hydrogen bond interactions. The attractive charge interaction 
of Asp A:483 amino acid with the nitrogen of piperidine 
moiety of all three high active compounds was a noteworthy 
finding inferring the importance of the fragment in VAChT 
binding.

In the case of lower active compounds like compound 10 
(pKi = 1.032) and compound 29 (pKi = 0.967) (Fig. 7), the 
number of molecular interactions was much less than the 
higher active ones (Table 3). Conventional hydrogen bond 
and carbon-hydrogen bond interactions were prevalent, with 
additional halogen and π-alkyl in the case of compound 29.

Relationship with QSAR features

From QSAR modeling, it was found that F08[C-N] is the 
only positively contributing descriptor. Therefore, the pres-
ence of nitrogen in the PET imaging agent is very essen-
tial for good VAChT binding. In the case of highly active 
compounds (compounds 20, 21, and 22) used for molecular 
docking, it was found that attractive charge interaction was 
prevalent in all three compounds which occurred between 

Fig. 7  Molecular docking interactions of highly active, least active and standard compounds against VAChT binding
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Asp A:483 amino acid with the nitrogen of piperidine moi-
ety of the PET tracer. These two observations correlate with 
each other and thus it can be inferred that nitrogen (as piperi-
dine moiety) is essential for good VAChT binding.

True external set predictions

For the analysis of the predictivity of the developed model, 
we have considered two PET datasets previously used 
by our group (De et al. 2019; De and Roy 2020) for their 
VAChT binding predictions (Table S1). Dataset D1 was 
initially used for amyloid beta imaging and dataset D2 was 
used for Dopamine (D2) imaging. The prediction quality 
was further verified using by the application of “Prediction 
Reliability Indicator” tool (Roy et al. 2018) available from 
https:// dtclab. webs. com/ softw are- tools. The prediction tool 
reported “Good” quality prediction for all the compounds 
and they were all inside the AD of the model (Supplemen-
tary Files S1 and S2). Thus, these compounds can also be 
considered as potential PET imaging agents for VAChT sub-
ject to experimental validation.

Conclusions

The neurotransmitter acetylcholine (ACh) plays a ubiqui-
tous role in cognitive functions including learning and 
memory with widespread innervation in the cortex, sub-
cortical structures and the cerebellum. Cholinergic recep-
tors, transporters, or enzymes associated with many neu-
rodegenerative diseases, including Alzheimer’s disease 
(AD) and Parkinson’s disease (PD), are potential imaging 
targets. In the present study, we have developed a 

2D-QSAR model for 19 positron emission tomography 
(PET) imaging agents targeted against presynaptic vesicu-
lar acetylcholine transporter (VAChT). In our work, we 
aimed to understand the important structural features of 
the PET imaging agents required for their binding with 
VAChT. This was done by the feature selection using a 
Genetic Algorithm followed by the Best Subset Selection 
method and developing a Partial Least Squares- based 2D 
QSAR model using the best feature combination. The 
developed QSAR model showed significant statistical per-
f o r m a n c e  a n d  r e l i a b i l i t y 
( R2 = 0.718,Q2

(LOO)
= 0.523,Q2

LMO(25%)
= 0.598 ). Using the 

features selected in the 2D-QSAR analysis, we have also 
performed similarity-based chemical read-across predic-
tions and obtained encouraging external validation statis-
tics. From the developed QSAR model, it was found that 
the presence of nitrogen in the PET tracer molecule poten-
tiates the binding affinity towards the VAChT receptor. 
This was further confirmed by molecular docking studies 
where nitrogen in the piperidine moiety produced attrac-
tive charge interaction with Asp A:483 amino acid of 
VAChT. In the future, this study will help in the prediction 
of newly developed compounds within the applicability 
domain of the model targeted toward VAChT.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s40203- 023- 00146-4.
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Table 3  The interacting residues and different types of binding interaction occurring between the PET imaging agents and VAChT

Compound Category pKi Binding amino acids Types of interactions

9 (Vesamicol) Standard 2.261 Asp A:202, Asp A:483, Ser A:480 Conventional hydrogen bond interactions, carbon-
hydrogen interactions, and π-anion interaction

20 Highly active 3.658 Ser A:415, Asp A:410, Tyr A:417, Arg A:477, Arg 
A:479, Asp A:483, Arg A:482

Conventional hydrogen bond interactions, carbon-
hydrogen interactions, attractive charge, halogen 
(fluorine) interaction, π-cation, and π-alkyl 
interaction

21 3.602 Arg A:477, Asp A:483, Ser A:480, Arg A:482, Asp 
A:202

Conventional hydrogen bond interactions, carbon-
hydrogen interactions, attractive charge, π-cation, 
and π-anion interactions

22 3.347 Pro A:205, Tyr A:494, Arg A:482, Asp A:483, Ser 
A:480, Pro A:490

Conventional hydrogen bond interactions, carbon-
hydrogen interactions, attractive charge, alkyl, 
and π-alkyl interactions

10 Least active 1.032 Asp A:202, Arg A:482, Pro A:490 Conventional hydrogen bond interactions and 
carbon-hydrogen interactions

29 0.967 Arg A:479, Arg A:477, Tyr A:417 Conventional hydrogen bond interactions, carbon-
hydrogen interactions, halogen (fluorine), and 
π-alkyl interactions

https://dtclab.webs.com/software-tools
https://doi.org/10.1007/s40203-023-00146-4
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Abstract
Radiosensitizers are aimed to augment tumor cell killing by radiation while having much less effect on normal tissues.
Nitroimidazoles and related analogues are efficient radiation sensitivity enhancers, and they particularly work on hypoxic tumor
cells. In the current study, we have developed two partial least squares (PLS) regression-based two-dimensional quantitative
structure-activity relationship (2D-QSAR) models using a novel class of 84 nitroimidazole compounds to understand their
radiosensitization effectiveness (pC1.6). Feature selection was done by genetic algorithm along with stepwise regression, while
model validation was performed using various stringent validation criteria following the strict rules of OECD guidelines of
QSAR validation. The variables included in the models were obtained from Dragon (version 7.0) and simplex representation of
molecular structures (SiRMS) (version 4.1.2.270) software. The developed models were robust, externally predictive, and useful
tools to predict the radiosensitization effectiveness of nitroimidazole compounds. True external prediction was carried out using a
group of six nitroimidazole derivatives and the model reliability was checked using the Prediction Reliability Indicator tool
(http://dtclab.webs.com/software-tools). Furthermore, the developed models will give an insight for development of new
radiosensitizers with enhanced radiation sensitivity.

Keywords Radiosensitizers . Radiosensitization effectiveness . QSAR . SiRMS

Introduction

Radiation, surgery, and chemotherapy have been the major
approaches of treatment for cancer and malignancies for more
than 40 years. Combination therapy including radiation and
chemotherapy often termed as chemoradiation has provided
promising results in targeting, diagnosis, and treatment of hu-
man malignancy. With recent discoveries, newer molecules
targeting specific pathophysiology or molecular pathways
have come into the forefront. The use of antibodies or

hormones labeled with radionuclides to deliver radiation in
the systemic circulation has enlarged the concept of
radiosensitizers [1]. Nitroimidazoles have proven to be effi-
cient radiation sensitivity enhancer particularly in hypoxic tu-
mor cells [2]. Hypoxia is a particular pathophysiological con-
dition arising due to inefficient vascularization of tumors,
causing an alteration in tumor metabolism [3], and metastasis
[4], and is associated with poor diagnosis and resistance to
therapeutic agents [5]. Nitroimidazole radiosensitizers are rel-
atively non-toxic molecules, and they replace oxygen in oxi-
dizing radiation-induced DNA free radicals to generate cyto-
toxic DNA strand breakage [6].

A number of studies performed previously have elaborately
explained the role of nitroimidazole derivatives in radiation
sensitivity enhancement. 1-Methyl-5-sulfonamide-4-
nitroimidazole (MJL-1–191-VII) sensitizes hypoxic cells with
its electron affinity, but does not affect the radiosensitivity of
aerated cells when added to cells 5 min prior to irradiation [7].
2-nitroimidazoles like misonidazole and etanidazole has abil-
ity to kill hypoxic cell by increasing the cells’ radiation sen-
sitivity via radiochemical and biochemical means known as
“preincubation effect” [8].
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Molecular modeling studies such as quantitative structure-
activity relationships (QSAR) [9] are effective tools in prediction
of radiosensitization effectiveness due to lack of data and proper
experimental facilities. QSAR studies have found immense ap-
plications in the prediction of absorption, distribution, metabo-
lism, elimination, and toxicity (ADMET) properties of drug and
other organic biologicals [10–12]. Computational ADMET in
combination with in vivo and in vitro predictions helps in reduc-
ing the chances of safety related issues [13]. Many pharmaceuti-
cal and chemical industries, commercial software developers,
and research groups are developing new QSAR models for
ADMET properties utilizing large databases or compilation of
published data. Awide number of computational research work
describing oral absorption and bioavailability [14, 15], metabo-
lism [16], volume of distribution [17], and enzyme inhibition and
induction [18, 19] have been carried out in recent years. The
theory of QSAR is applied not only to model activity and toxic-
ity, but also properties of materials in the form of quantitative
structure-property relationships (QSPR). Radiosensitization ef-
fectiveness can be considered as a property of the nitroimidazole
compounds and can thus be subjected to QSAR analysis. Many
such property based QSAR models for radiopharmaceuticals
have been developed previously by different groups of re-
searchers [20–24]. A properly validated QSAR model could
generate radiosensitization data for groups of such related
chemicals, and such predictions have the ability to substitute
experimental evaluation to an extent.

Feature selection is an essential step for unbiased develop-
ment of QSAR models. The selection of a reduced pool of de-
scriptors by using multilayered variable selection strategy has
proven to be an effective method in QSAR model development
and easier data handling. Furthermore, feature selection can re-
duce the chances of intercorrelation among the descriptors [25].
The current study presents QSAR models for predicting the
radiosensitization effectiveness of a dataset of 84 nitroimidazole
derivatives. Two-dimensional descriptors calculated from
Dragon and SiRMS softwarewere capable enough in developing
well-validated and predictive models. Simplex representation of
molecular structures (SiRMS) descriptors helped in providing a
comprehensive understanding of the basic fragments contribut-
ing towards the improvement of radiosensitization effectiveness
of the nitroimidazole derivatives. The 2D-QSAR models were
developed with an intention of producing statistically robust pre-
dictions for radiosensitization effectiveness of nitroimidazole de-
rivatives. Furthermore, we have also predicted some related
nitroimidazole compounds to prove the validity of the developed
models.

Materials and methods

A data of 86 nitroimidazoles possessing radiosensitizing prop-
erties are used for two-dimensional QSAR (2D-QSAR) study

[26]. Radiosensitization capacities of the compounds can be
understood by radiosensitization effectiveness, expressed as
C1.6, which can be represented as the corresponding concen-
tration of a given compound when its sensitization enhance-
ment ratio (SER) accomplishes 1.6. Higher value of C1.6 in-
dicates lower bioactivity of radiosensitization effectiveness.
For analysis purpose, the source literature had converted the
endpoint C1.6 to its negative logarithmic scale (pC1.6, where
pC1.6 = − log(C1.6)). Two compounds (one radical and one
salt) were removed, and the final dataset of 84 compounds is
used for model development. The structures of the compounds
were drawn inMarvinSketch software (version 14.10.27) [27]
with proper aromatization and hydrogen bond addition and
saved as MDL.mol, a recommended format for further de-
scriptor calculation.

Descriptor calculation

For developing the first 2D-QSAR model, a pool of 270 de-
scriptors was calculated using Dragon version 7 [28] software.
This model was developed using specific classes of descrip-
tors including E-state indices, connectivity, constitutional,
functional, 2D atom pairs, ring, atom-centered fragments
and molecular property descriptors. Additionally, SiRMS de-
scriptors were calculated using SiRMS (version 4.1.2.270)
[29] tool. Simplex representations of molecular structure
(SiRMS) descriptors symbolize a class of diverse molecular
features developed from 1D to 4Dmolecular structures. These
are tetratomic fragments of different simplex descriptors hav-
ing predefined chirality, composition, and symmetry [29].
SiRMS descriptors consider both connected and unconnected
fragments and also take into account not only the nature of
atoms but also their different chemical and physical properties
like charge, lipophilicity, electronegativity, atomic refraction,
donor/acceptor of hydrogen in the potential Hbond, etc. In our
study, we have used 2D SiRMS descriptors only in order to
avoid conformational complexity and energy minimization
requirements for higher dimensional descriptors and to derive
reproducible models. The constant (variance < 0.0001),
intercorrelated (|r| >0.95) variables and other incompetent data
were removed using an in house software available at http://
dtclab.webs.com/software-tools before model development.

Dataset splitting

A well-validated QSAR model is the main objective of any
QSAR study which can be obtained through proper division
of the dataset into training (used for model development) and
test (used for model validation) sets. An unbiased external
validation with uniform distribution of compounds into train-
ing and test sets can be obtained through rational dataset divi-
sion [30]. For 2D-QSAR modeling, the whole dataset utilized
for modeling was divided into training (75%) and test (25%)
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sets using modified k-Medoids (Modified k-medoid GUI 1.3)
[31, 32] method of dataset division.

Variable selection and QSAR model development

Development of well-validated QSAR models in order to un-
derstand the radiosensitization effectiveness of the dataset
compounds was the main aim of the present study. Critical
evaluation process helped in the selection of statistically sig-
nificant models. In this study, we have built two QSAR
models; a 2D-QSAR model to deduce a relationship between
the molecular properties of the nitroimidazoles and their
radiosensitization properties. For the model with Dragon de-
scriptors, a pool of 32 descriptors were selected using Genetic
Algorithm (GA) [33, 34] modeling implemented in double
cross-validation (DCV) [35] tool (version 1.2). Then, the final
model was generated using Partial Least Squares (PLS) re-
gression [33, 36] method using descriptors selected from best
subset selection (BSS). In case of SiRMS, the number of de-
scriptors generated was large, i.e., about more than ten thou-
sand. Handling of this large data is very much complicated,
and so we have applied stepwise regression on the large pool
of SiRMS descriptors to find out the essential descriptors con-
tributing to the radiosensitization properties of the dataset.
After descriptor thinning, the obtained pool of 300 descriptors
was further subjected to multilayered stepwise regression to
obtain a manageable number of descriptors and run best sub-
set selection for development of five descriptors models. From
the developed models obtained after best subset selection, we
have selected one model based on different validation param-
eters for the test set. Finally, we have run a partial least squares
regression (PLS) using SIMCA-P software [37] and devel-
oped a PLS model.

Statistical validation metrics

We have rigorously examined the statistical quality of the
derived models to judge the robustness in terms of reliability
and predictivity measures using various internal and external
validation parameters. In the present work we have computed
various stat is t ical parameters like determinat ion
coefficient R2, explained variance R2

a, variance ratio (F), and
standard error of estimate (s). Since these quality parameters
are not sufficient to assess the predictive ability of the model,
we have further used additional parameters that could properly
validate our predictions. For internal predictions, leave-one-

out cross-validation (Q2
LOOð Þ ) was reported, and for external

predictions, parameters like R2
pred or Q2

F1,Q
2
F2 and concor-

dance correlation coefficient (CCC), were calculated [38].

We have also calculated r2m metrics (i.e., r2m andΔr2m ) for both
training and test set compounds [39]. We have also validated
the models using mean absolute error (MAE) based criteria for

both external and internal validation [40]. This was done since

the Q2
ext based criteria do not always offer the correct indica-

tion of the prediction quality because of the influence of the
response range as well as the distribution of the values of
response in both the training and test set compounds [40].

Results and discussion

Statistically significant 2D-QSAR models using Dragon and
simplex (SiRMS) descriptors explaining the chemical features
required for good radiosensitization are presented in the fol-
lowing section. The observed versus predicted pC1.6 values
are plotted for both the models is shown in Fig. 1.

2D-QSAR model using dragon descriptors

pC1:6 ¼ 3:612þ 0:613� C−035ð Þ−0:285� nCp−1:129

� C−043ð Þ þ 0:068� H−052ð Þ−1:630� C−042ð Þ
þ 0:295� nRNHR:

Ntrain ¼ 63;R2 ¼ 0:773;R2
adj ¼ 0:757;Q2

LOOð Þ

¼ 0:746; r2m Trainð Þ ¼ 0:647;Δr2m Trainð Þ

¼ 0:173;MAE Trainð Þ ¼ 0:246; SD Trainð Þ
¼ 0:195;RMSEC ¼ 0:30;Quality ¼ GoodNtest

¼ 21;Q2
F1 ¼ 0:752;Q2

F2 ¼ 0:724; r2m Testð Þ

¼ 0:608;Δr2m Testð Þ ¼ 0:216;CCC Testð Þ
: 0:831;MAE Testð Þ ¼ 0:240; SD Testð Þ
¼ 0:204;RMSEP ¼ 0:31;Quality ¼ Moderate

Model 1

The PLS model with 4 latent variables (LVs) could predict
74.6% variance of the training set and 75.2% of the test set.
Important internal and external metrics used to determine the
quality of the QSAR model are listed in eq. 1. Mechanistic in-
terpretation of the six descriptors obtained in the model would
give us an insight about the structural features of the
nitroimidazoles which are likely to influence their
radiosensitization effectiveness. The obtained descriptors are
C-035, nCp, C-043, H-052, C-042, and nRNHR. The model
contains four atom-centered fragments C-035 (R–CX..X; posi-
tive contribution), C-043 (X–CR..X, negative contribution), H-
052 (hydrogen (He) attached to sp3 carbon (C0) with one X
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attached to next carbon, “e” represents the formal oxidation num-
ber; positive contribution) and C-042 (X–CH..X; negative con-
tribution). These descriptors are further explained with molecular
structures from the dataset in Fig. 2. The other two descriptor
belonging to functional group counts are nCp (number of termi-
nal primary C (sp3); negative contribution) and nRNHR (number
of secondary amines (aliphatic); positive contribution). The de-
scriptors obtained in the model gives us an idea regarding the
vital features essential for better radiosensitizationwhich includes
the position of nitro group in the imidazole moiety. Atom-
centered fragment-based descriptors like C-042 and C-043 could
explain that presence of nitro group at position 4 and position 5
would decrease the pC1.6.

The variable importance plot (VIP) [41] analysis gives us
a premonition that C-042 and C-035 are the most important
descriptors (VIP > 1) and contributing mostly towards the
radiation enhancement of the compounds. The loading plot
gives the relationship between the Y variable (pC1.6) and the
X variables (descriptors). For interpretation of the loading,
the distance from the plot origin is considered, where similar
types of descriptors with similar properties are located to-
gether. The variables which are far away from the plot origin
are considered to have stronger impact on the model. This
statement is verified by descriptors C-042 and C-035 which
are proved to have higher impact from the VIP values also.
The closeness of any descriptor to the Y variable signifies its
higher influence on the response. The VIP and loading plot
are shown in Fig. 3.

The 2D-QSAR model with Dragon descriptors gives an
insight about the importance of the position of nitro group in
the nitroimidazole compounds. Also it is found that the

presence of secondary aliphatic amine has significant impor-
tance on radiosensitization.

2D-QSAR model using SiRMS descriptors

We have further tried to improve the quality of the model by
the use of SiRMS descriptors. The obtained 2D-QSAR model
using SiRMS descriptors for radiosensitization effectiveness
of nitroimidazoles was highly robust in terms of the statistical
parameters as the values of quality metrics were above the
recommended threshold as currently practiced [39].

pC1:6 ¼ 1:381þ 0:802� Fr3 elmð Þ=CNN=12s; 13a=
þ0:494� SA chgð Þ=ACDD=12s; 14a; 34s=6
þ0:004� SA chgð Þ=BCCC=14s; 34s=4
þ0:377� Fr5 typeð Þ=C:3C:ARC:ARC:ARN :AR=12s; 23a; 25a; 45a=
þ0:269� Fr enð Þ=CCCCD=15s; 23s; 25s; 34a=

Ntrain ¼ 63;R2 ¼ 0:82;R2
ad j ¼ 0:81;Q2

L00ð Þ ¼ 0:79; r2m 100ð Þ ¼ 0:70;Δr2m l00ð Þ ¼ 0:14;
MAEtrain ¼ 0:22; SDtrain ¼ 0:18;RMSEC ¼ 0:26;Quality Trainð Þ ¼ Moderate

N test ¼ 21;Q2
F1 orR2

pred

� �
¼ 0:80;Q2

F2 ¼ 0:77; r2m Testð Þ ¼ 0:70;Δr2m Testð Þ ¼ 0:05;
CCC Testð Þ ¼ 0:88;MAEtest ¼ 0:23; SDtest ¼ 0:16;RMSEP ¼ 0:28;Quality Testð Þ

¼ Moderate

Model 2

The PLS equation with 3 LVs is able to predict 79% variance

of the training set (Q2) and 80% of the test set (R2
pred ). The

various internal and external metric values obtained are given
in eq. 2. The observed and predicted radiosensitization effec-
tiveness values of the nitroimidazoles are listed in Table S1 in
the Supplementary Section.

From VIP (Fig. 4) the descriptors from highest to lowest
order of significance are as follows: Fr3(elm)/C_N_N/
1_2s,1_3a/, S_A(chg)/A_C_D_D/1_2s,1_4a,3_4s/6,
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Fig. 1 Scatter plots for observed vs predicted pC1.6values for Model 1 and Model 2
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Fig. 2 Descriptor features obtained from Dragon controlling the radiosensitization effectiveness of nitroimidazoles

V
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[4
]

Variable Importance Plot
VIP[Comp. 4]

C-042 C-035 C-043 H-052 nCp nRNHR

Descriptors

Loading Plot
w*c[Comp.1]/w*c[Comp.2]

Fig. 3 VIP and loading plot of Model 1
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S_A ( c h g ) /B_C_C_C / 1 _ 4 s , 3 _ 4 s / 4 , F r 5 ( t y p e ) /
C.3_C.AR_C.AR_C.AR_N.AR/1_2s,2_3a,2_5a,4_5a/ and
Fr5(en)/C_C_C_C_D/1_5s,2_3s,2_5s,3_4a/. The loading plot
developed using first two components describe the relation-
ship between the X variables and Yvariable is shown in Fig. 5.

The highest contributing descriptor is Fr3(elm)/C_N_N/
1_2s,1_3a/ which is a three atomic fragment depicted by N-
C=N (Box 1). Here, the unsaturation between carbon and
nitrogen takes place within the imidazole moiety and the other

nitrogen is from the nitro group. This descriptor has a positive
impact on the radiosensitization of the nitroimidazoles thus
with higher number of such fragments increases the pC1.6

value. All the compounds in the dataset have this particular
group once or twice. Compounds with two fragments of this
kind has higher pC1.6 values as prominently seen in com-
pounds like 63, 47, 11, 53, 46, 51, 43, 45, 10, 22, 54, etc.
Compounds with only one fragment have considerably lower
pC1.6 values as observed in 72, 71, 82, 78, 75, 86, 80, 81, 85,

Fig. 4 Variable importance plot of SiRMS model. (A- Fr3(elm)/C_N_N/1_2s,1_3a/, B- S_A(chg)/A_C_D_D/1_2s,1_4a,3_4s/6, C- S_A(chg)/B_C_C_
C/1_4s,3_4s/4, D- Fr5(type)/C.3_C.AR_C.AR_C.AR_N.AR/1_2s,2_3a,2_5a,4_5a/, E- Fr5(en)/C_C_C_C_D/1_5s,2_3s,2_5s,3_4a/)

Loading Plot
w*c[Comp. 1]/w*c[Comp. 2]

pC1.6

A

B

C

D

E

Fig. 5 Loading plot of the SiRMS model. (A - Fr3(elm)/C_N_N/1_2s,1_3a/, B - S_A(chg)/A_C_D_D/1_2s,1_4a,3_4s/6, C - S_A(chg)/B_C_C_C/1_
4s,3_4s/4, D-Fr5(en)/C_C_C_C_D/1_5s,2_3s,2_5s,3_4a/, E- Fr5(type)/C.3_C.AR_C.AR_C.AR_N.AR/1_2s,2_3a,2_5a,4_5a/)
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Fig. 6 Simplex representation of molecular structures (SiRMS) frag-
ments appearing in the nitroimidazole dataset. (I- Fr3(elm)/C_N_N/1_
2s,1_3a/, II- S_A(chg)/A_C_D_D/1_2s,1_4a,3_4s/6, III- S_A(chg)/B_

C_C_C/1_4s,3_4s/4, IV- Fr5(type)/C.3_C.AR_C.AR_C.AR_N.AR/1_
2s,2_3a,2_5a,4_5a/, V- Fr5(en)/C_C_C_C_D/1_5s,2_3s,2_5s,3_4a/)

Fig. 7 SiRMS features controlling the increase or decrease in pC1.6
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84, etc. Thus, the importance of this fragment leads us to a
conclusion that the presence of nitro groups in nitroimidazole
should be between N1 and N3 positions of imidazole moiety
so as to show better radiosensitization property.

The second important descriptor is S_A(chg)/A_C_D_D/
1_2s,1_4a,3_4s/6 that represents the partial charge of any of
the four atom fragment as given in Box 2. The fragment here
has two possibilities, one with single nitrogen present within
the imidazole moiety and another with two nitrogens (one
from the imidazole moiety and another from the nitro group)
(given in Box 2). Most of the compounds having this fragment
have a nitro group attached at position 2 of the imidazole ring.
Thus, the position of nitro group plays a vital role in control-
ling the pC1.6 value. This fragment has a positive influence on
the radiosensitization effectiveness observed in compounds
like 63, 66, 65, 68, 47, 11, and 53. Compounds which are
devoid of these kind of fragments have considerably low
pC1.6 value (such as in 74, 77, 80, 75, 78, 71, and 72)
(Figs. 6 and 7).

The next impor tant descr iptor is S_A(chg) /
B_C_C_C/1_4s,3_4s/4 which represents the partial
charge of a four atom fragments as given in Box 3.
The presence of the mentioned fragment (i.e., three car-
bon chain attached to nitrogen from a cyclic nucleus)
would increase the radiosensitization effectiveness due
to the positive influence of the descriptor. Compounds
like 47, 51, 43, 46, 55, 49, 54, and 53 have higher

partial charges due to the presence of the mentioned
fragments thereby increasing the radiosensitization effec-
tiveness whereas in compounds with no such fragments
(like in 71, 72, 82, 78, 75, 80, and 81) the effect of
such charges is not observed thereby the pC1.6 value is
less.

T h e n e x t impo r t a n t d e s c r i p t o r Fr5 ( t y p e ) /
C.3_C.AR_C.AR_C.AR_N.AR/1_2s,2_3a,2_5a,4_5a/ is a
five atomic fragment signifying the following formula: C
(sp3)-C (aromatic)-C (aromatic)-C (aromatic)-N (aromatic).
The structure of the possible fragment is given in Box 4.
The presence of this type of fragment reduces the
radiosensitization effectiveness as indicated by the negative
influence of the descriptor on pC1.6 value. This is well ob-
served in compounds like 72, 59, 57, 61, 69, 62, 41, and 70.
On the other hand, absence of this fragment increases the
radiosensitization property as seen in compounds such as 43,
45, 51, 46, 11, 53, 47, and 63.

The descriptor with the least significance is Fr5(en)/
C_C_C_C_D/1_5s,2_3s,2_5s,3_4a/ which denotes the elec-
tronegativity of the compound due to the presence of a four
atomic fragment given in Box 5. The positive contribution
suggested that the presence of any of the given fragments will
influence the electronegativity of the compound thereby in-
creasing the pC1.6 value. Compounds 9, 10, and 11 have been
reported to have two such fragments and thereby increase the
radiosensitization effectiveness.
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Fig. 8 Applicability Domain of training and test set of Model 1 (with Dragon descriptors) at 99% confidence level
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Fig. 9 Applicability Domain of training and test set of Model 2 (with SiRMS descriptor) at 99% confidence level
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Applicability domain assessment

The prediction reliability of both the 2D-QSAR models is
determined by the applicability domain (AD) assessment.
AD gives a theoretical region in chemical space defined by
the respective model descriptors and responses in which the
predictions are reliable [42]. AD assessment for both the
models was performed using DModX (distance to model in
the X-space) approach at 99% confidence level (Figs. 8 and
9). Both the models displayed good coverage of domain of

applicability showing maximum number of compounds in the
AD (only compound 6 is outside the AD in case of Model 1,
i.e., 2D-QSAR model with Dragon descriptors). There were
no outliers obtained from the test set for both the models. We
have also performed AD assessment at 95% confidence level
for both the models as given in the Supplementary Materials
(Figures S1 and S2) and found that in this case three com-
pounds in the test set were outside AD for the model with
Dragon descriptors and two compounds in the test set for the
model with SiRMS descriptors.

Fig. 10 Y-randomization plots for Model 1 and Model 2
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Table 1 External dataset and their predicted pC1.6 values

Compound

Number
Structure

Observed 

pC1.6

Predicted 

pC1.6 using 

model 1

Predicted 

pC1.6 using 

model 2

Reference

P-1 4.05 3.58 3.67 [26]

P-2 2.89 3.88 3.82 [26]

P-3 - 1.98 2.18 [44]

P-4 - 4.22 2.18 [44]

P-5 - 2.81 2.18 [44]

P-6 - 2.53 2.18 [44]

P-7 - 3.33 3.48 [45]

P-8 - 3.04 3.48 [45]
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Y-randomization

Y-randomization plot analysis helps to understand the statisti-
cal significance of the model. The randomization plot con-
firms that the model is not the result of any chance correlation
[43]. In this process, a number of models are generated by
shuffling different combinations of X or Y variables (here Y
variable only) based on the fit of the reordered model. In our
work, we have used 100 permutations for random model gen-
eration. A model with no chance correlation would show very
poor statistics for the randomized models, i.e., RY

2 intercept
should not exceed 0.3 and QY

2 intercept should not exceed
0.05 [43]. The randomization plots given in Fig. S8 show that
the developed models are non-random and robust (as under-
stood from their RY

2 and QY
2 values) and are suitable for

prediction of the radiosensitization effectiveness within the
AD of the model (Fig. 10).

True external predictions

Prediction of responses for external compounds based on their
molecular features using chemometric methods can reduce the
experiment costs and animal handling. To verify the predictive
power of both the models, we have used a set of eight
nitroimidazole derivatives (Table 1) as an external prediction
set [26, 44, 45]. The original dataset in the source literature

contain 86 nitroimidazoles but we have removed two of them
and used the rest 84 for modeling. These two compounds are
now used for prediction purpose. In addition to this, the do-
main of applicability and their predictive reliability are ana-
lyzed using Prediction Reliability Indicator tool [46]. The
prediction quality and domain of applicability are given in
Table 2. From the prediction status, it can be inferred that
model with fragment-based SiRMS descriptors provides bet-
ter prediction than model with dragon descriptors.

Comparison with the previously published research

In the previously published research by Long and Liu (2010)
[26], the authors developed MLR and projection pursuit re-
gression (PPR) [47–49] models using complex descriptors
such as geometrical, electrostatic, and quantum chemical de-
scriptors. The models developed by us cannot be critically
compared to the previously published since the calibration
and validation set compositions are different. However, it
can be found that our MLR model developed using SiRMS
descriptor is better in terms of both training and test set vali-
dation metrics if we consider their MLRmodel (Table 3). Also
the current model comes with an added advantage of presence
of lower number of simple descriptors and non-requirement of
conformation analysis or energy minimization prior to their
calculation. Furthermore, the PPR based model reported in the

Table 2 Prediction quality [46] for the true external dataset

Compound
number

Prediction status of model with Dragon descriptors Prediction status of model with SiRMS descriptors

Composite
score

Prediction
quality

AD status (using
standardization
approach)

Composite
score

Prediction
quality

AD status (using
standardization
approach)

P-1 3 Good Outside AD 3 Good In

P-2 3 Good In 3 Good In

P-3 2 Moderate In 3 Good In

P-4 3 Good In 3 Good In

P-5 3 Good In 3 Good In

P-6 3 Good Outside AD 3 Good In

P-7 3 Good In 3 Good In

P-8 3 Good In 3 Good In

Table 3 Comparison of the current SiRMS model with previously developed MLR model

Model Total no. of
compounds
used

No. of
compounds in the
training set

No. of
compounds
in the test
set

Descriptor
type

No. of
descriptors
in final
model

Training set Test set

R2 Q2 RMSEC Q2
F1 RMSEP

Current study 84 63 21 2D (fragment-based
SiRMS)

5 (3 LVs) 0.82 0.79 0.26 0.80 0.28

Long and Liu,
2010

86 68 18 3D 6 0.80 0.76 0.28 0.76 0.28
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previous study is derived from a more complicated process
which uses projection based approach to convert high dimen-
sional data to lower dimension. Moreover, 3D descriptors
were used in the previous work.MLR or PLSmodels are more
straight-forward and reproducible as used in the current work.
In addition, 2D descriptors used in the present work are easy
to compute and do not need any conformation analysis or
energy minimization process.

Conclusion

This study targets for the development of fragment-based 2D-
QSAR models for predicting radiosensitization of
nitroimidazole derivatives. The simplex descriptors give an
insight about the fragments and their proper position in the
ni t ro imidazole r ing that enhance or decl ine the
radiosensitization effectiveness. Also reduction in the large
data pool by using multilayered variable selection is shown
for better handling of a large pool of descriptors and removing
chances of intercorrelation among them. Further, the newly
developed models were used for prediction of eight external
compounds and their prediction reliability was checked.

Funding information PD thanks Indian Council of Medical Research,
New Delhi, for awarding with a Senior Research Fellowship. KR thanks
BRNS, Department of Atomic Energy, Govt. of India, for a Major
Research Project (36(3)/14/08/2017-BRNS).

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of
interest.

References

1. Kvols LK (2005) Radiation sensitizers: a selective review of mol-
ecules targeting DNA and non-DNA targets. J Nucl Med 46:187S

2. Bonnet M, Hong CR, Gu Y, Anderson RF, Wilson WR, Pruijn FB,
Wa n g J , H i c k s K O , H a y M P ( 2 0 1 4 ) N o v e l
nitroimidazolealkylsulfonamides as hypoxic cell radiosensitisers.
Bioorg Med Chem 22:2123–2132

3. Cairns RA, Harris IS, Mak TW (2011) Regulation of cancer cell
metabolism. Nat Rev Cancer 11:85

4. Chang Q, Jurisica I, Do T, Hedley DW (2011) Hypoxia predicts
aggressive growth and spontaneous metastasis formation from
orthotopically grown primary xenografts of human pancreatic can-
cer. Cancer Res 71:3110–3120

5. Rohwer N, Cramer T (2011) Hypoxia-mediated drug resistance:
novel insights on the functional interaction of HIFs and cell death
pathways. Drug Resist Updat 14:191–201

6. Wilson WR, Hay MP (2011) Targeting hypoxia in cancer therapy.
Nat Rev Cancer 11:393

7. Astor M, Hall EJ, Martin J, Flynn M, Biaglow J, Parham JC (1982)
Radiosensitizing and cytotoxic properties of ortho-substituted 4-
and 5-nitroimidazoles: role of NPSH reactivity. Int J Radiat Oncol
Biol Phys 8:409–413

8. Koch CJ, Skov KA (1994) Enhanced radiation-sensitivity by
preincubation with nitroimidazoles: effect of glutathione depletion.
Int J Radiat Oncol Biol Phys 29:345–349

9. Roy K (2018) Quantitative structure-activity relationships
(QSARs): a few validation methods and software tools developed
at the DTC laboratory. J Indian Chem Soc 95:1497–1502

10. Hansch C, Leo A, Hoekman DH (1995) Exploring QSAR: funda-
mentals and applications in chemistry and biology. American
Chemical Society Washington, DC

11. Hansch C, Leo A, Mekapati SB, Kurup A (2004) Qsar and Adme.
Bioorg Med Chem 12:3391–3400

12. Klein C, Kaiser D, Kopp S, Chiba P, Ecker GF (2002) Similarity
based SAR (SIBAR) as tool for early ADME profiling. J Comput
Aided Mol Des 16:785–793

13. Merlot C (2010) Computational toxicology—a tool for early safety
evaluation. Drug Discov Today 15:16–22

14. Xu X, Zhang W, Huang C, Li Y, Yu H, Wang Y, Duan J, Ling Y
(2012) A novel chemometric method for the prediction of human
oral bioavailability. Int J Mol Sci 13:6964–6982

15. Yoshida F, Topliss JG (2000) QSAR model for drug human oral
bioavailability. J Med Chem 43:2575–2585

16. Roy H, Nandi S (2019) In silico modeling in drug metabolism and
interaction: current strategies of lead discovery. Bentham Science
Publishers, Sharjah

17. Simeon S, Montanari D, Gleeson MP (2019) Investigation of fac-
tors affecting the performance of in silico volume distribution
QSAR models for human, rat, mouse, dog & monkey. Mol
Inform 38:1900059

18. Halder AK, Cordeiro M (2019) Development of multi-target che-
mometric models for the inhibition of class I PI3K enzyme iso-
forms: a case study using QSAR-Co tool. Int J Mol Sci 20:4191

19. Dmitriev AV, Lagunin AA, Karasev DЦ, Rudik AV, Pogodin PV,
Filimonov DA, Poroikov VV (2019) Prediction of drug-drug inter-
actions related to inhibition or induction of drug-metabolizing en-
zymes. Curr Top Med Chem 19:319–336

20. Salahinejad M (2015) Quantitative structure property relationships
on formation constants of radiometals for radiopharmaceuticals ap-
plications. J Radioanal Nucl Chem 303:671–680

21. Singh S, Ojha H, Tiwari AK,Kumar N, Singh B,Mishra AK (2010)
Design, synthesis, and in vitro antiproliferative activity of benz-
imidazole analogues for radiopharmaceutical efficacy. Cancer
Biother Radiopharm 25:245–250

22. Yoshizuka K, Pietzsch H-J, Seifert S, Stephan H (2013)
Quantitative structure property relationship of logP for radiophar-
maceutical technetium and rhenium complexes by using molecular
dynamics calculations. Solvent Extr Res Dev, Jpn 20:15–27

23. Santos L, Pilar CornagoM, Izquierdo MC, Consuelo Lopez-Zumel
M, Smeyers YG (1989) Electron affinity/radiosensitizing activity
relationship for quaternary 5-nitroimidazole derivatives. Quantum
chemical QSAR. Quant Struct-Act Rel 8:214–217

24. Wardman P, Clarke ED (1987) Redox properties and rate constants
in free-radical mediated damage. Br J Cancer Suppl 8:172

25. De P, Bhattacharyya D, Roy K (2019) Application of multilayered
strategy for variable selection in QSAR modeling of PET and
SPECT imaging agents as diagnostic agents for Alzheimer’s dis-
ease. Struct Chem 30:2429–2445

26. Long W, Liu P (2010) Quantitative structure activity relationship
modeling for predicting radiosensitization effectiveness of
nitroimidazole compounds. J Radiat Res 51:563–572

27. MarvinSketch software, https://www.chemaxon.com. Accessed 26
Aug 2019

28. Dragon version 7, Kodesrl, Milan, Italy, 2016; software available at
http://www.talete.mi.it/index.htm. Accessed 26Aug 2019

29. Kuz’min VE, Artemenko AG, Polischuk PG, Muratov EN, Hromov
AI, Liahovskiy AV, Andronati SA, Makan SY (2005) Hierarchic

1054 Struct Chem (2020) 31:1043–1055

https://www.chemaxon.com
http://www.talete.mi.it/index.htm


system of QSAR models (1D–4D) on the base of simplex representa-
tion of molecular structure. J Mol Model 11:457–467

30. Golbraikh A, ShenM, Xiao Z, Xiao Y-D, Lee K-H, Tropsha A (2003)
Rational selection of training and test sets for the development of val-
idated QSAR models. J Comput Aided Mol Des 17:241–253

31. Park H-S, Jun C-H (2009) A simple and fast algorithm for K-
medoids clustering. Expert Syst Appl 36:3336–3341

32. Drug Theoretics and Cheminformatics (DTC) laboratory software
tools https://dtclab.webs.com/software-tools Accessed 28
Aug 2019

33. Khan PM, Roy K (2018) Current approaches for choosing feature
selection and learning algorithms in quantitative structure–activity
relationships (QSAR). Expert Opin Drug Discov 13:1075–1089

34. Devillers J (1996) Genetic algorithms in molecular modeling.
Academic Press, Cornwall, Great Britain

35. Roy K, Ambure P (2016) The “double cross-validation” software
tool for MLR QSAR model development. Chemom Intell Lab Syst
159:108–126

36. Wold S, Sjöström M, Eriksson L (2001) PLS-regression: a basic
tool of chemometrics. Chemom Intell Lab Syst 58:109–130

37. U. Simca-P, 10.0, info@umetrics.com, www.umetrics.com, Umea,
Sweden, 2002. Accessed 30 Aug 2019

38. Roy K, Mitra I (2011) On various metrics used for validation of
predictive QSAR models with applications in virtual screening and
focused library design. Comb Chem High Throughput Screen 14:
450–474

39. Ojha PK, Mitra I, Das RN, Roy K (2011) Further exploring rm2

metrics for validation of QSPR models. Chemom Intell Lab Syst
107:194–205

40. Roy K, Das RN, Ambure P, Aher RB (2016) Be aware of error
measures. Further studies on validation of predictive QSAR
models. Chemom Intell Lab Syst 152:18–33

41. Akarachantachote N, Chadcham S, Saithanu K (2014) Cutoff
threshold of variable importance in projection for variable selection.
Int J Pure Appl Math 94:307–322

42. Gadaleta D, Mangiatordi GF, Catto M, Carotti A, Nicolotti O
(2016) Applicability domain for QSAR models: where theory
meets reality. IJQSPR 1:45–63

43. Rücker C, Rücker G, Meringer M (2007) Y-randomization and its
variants in QSPR/QSAR. J Chem Inf Model 47:2345–2357

44. Krause W, Jordan A, Scholz R, Jimenez J-LM (2005) Iodinated
nitroimidazoles as radiosensitizers. Anticancer Res 25:2145–2151

45. Brown JM, Ning YY, Brown DM, Lee WW (1981) SR-2508: a 2-
nitroimidazole amidewhich should be superior tomisonidazole as a
radiosensitizer for clinical use. Int J Radiat Oncol Biol Phys 7:695–
703

46. Roy K, Ambure P, Kar S (2018) How precise are our quantitative
structure–activity relationship derived predictions for new query
chemicals? ACS Omega 3:11392–11406

47. Friedman JH, Stuetzle W (1981) Projection pursuit regression. J
Am Stat Assoc 76:817–823

48. Du Y, Liang Y, Yun D (2002) Data mining for seeking an accurate
quantitative relationship between molecular structure and GC reten-
tion indices of alkenes by projection pursuit. J Chem Inf Comput
Sci 42:1283–1292

49. Liu H, Yao X, Liu M, Hu Z, Fan B (2007) Prediction of gas-phase
reduced ion mobility constants (K0) based on the multiple linear
regression and projection pursuit regression. Talanta 71:258–263

Publisher’s note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

Struct Chem (2020) 31:1043–1055 1055

https://dtclab.webs.com/software-tools
http://www.umetrics.com


ORIGINAL RESEARCH

QSAR and QSAAR modeling of nitroimidazole sulfonamide
radiosensitizers: application of small dataset modeling

Priyanka De1 & Kunal Roy1

Received: 1 December 2020 /Accepted: 15 January 2021
# The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021

Abstract
In recent years, hypoxic cell radiosensitizers have evolved as potential molecules in the diagnosis of cancer and in clinical
radiotherapy. Nitroimidazole and its sulfonamide analogues are effective radiosensitizers working on hypoxic tumor cells. The
application of QSAR modeling technique has paved an easier way for the prediction of newly developed compounds. In the
present study, we have used 21 nitroimidazole sulfonamide analogues to develop 2D quantitative structure-activity relationship
(QSAR) models and determine their structural features essential for two radiosensitization properties, viz., sensitizer enhance-
ment ratio and survival ratio. The models were developed using the small dataset modeler software (http://teqip.jdvu.ac.in/
QSAR_Tools/DTCLab/), and model validation was performed using various stringent validation criteria. The developed
models are robust, predictive, and should be useful tools to predict the radiosensitization of nitroimidazole sulfonamides.
Furthermore, we have used the “prediction reliability indicator” tool to check the predictive ability of the developed models
using 14 external nitroimidazole sulfonamide derivatives. We have also developed quantitative structure-activity-activity rela-
tionship (QSAAR) models for the two endpoints.

Keywords QSAR . QSAAR . Nitroimidazole sulfonamide . Radiosensitizer . Small dataset modeler

Introduction

Hypoxia is a principal component of the tumor microenviron-
ment, which is considered to be the pivotal cause of clinical
radioresistance and local failure. Oxygen is considered as the best
radiosensitizer by far; however, metabolic consumption of oxy-
gen limits its diffusion into hypoxic tumor cells [1]. Hypoxia has
a chief role in cancer progression manipulating angiogenesis [2],
vasculogenesis [3], and activation of a glycolytic shift in metab-
olism [4], invasion enhancement, and metastasis [5]. Radiation
therapy is an anchoring treatment for many types of cancer;
however, there is a great challenge to augment radiation damage
to the tumor tissues and reduce side effects to healthy tissues.
Radiosensitizers are promising agents in controlling hypoxia by
enhancing tumor tissue injury through accelerating DNA dam-
age and producing free radicals [6].

Oxygen-mimetic radiosensitizers are potential agents in con-
trolling radiation damage in hypoxic tumor cells.
Nitroheterocyclic compounds such as nitroimidazoles have been
evaluated as oxygen-mimetic agents where electron-rich nitro
group is intended to react with DNA radicals produced by ion-
izing radiation in a similar fashion like oxygen does [6, 7]. DNA
and nitro group adduct leads to DNA strand breaks and subse-
quent cellular apoptosis or lysis. Enhanced radiosensitization af-
ter prolonged exposure of cells to misonidazole was identified by
Hall et al. [8]. However, this was restricted by delayed peripheral
neuropathies when combined with fractionated radiotherapy [9].
Ro 03-8799 (pimonidazole) and SR 2508 (etanidazole) were
used in combination as cell radiosensitizers in the treatment of
high-grade gliomas. It was found that Ro 03-8799 is distributed
extensively in the central nervous system, and SR 2508 could
achieve high tumor concentrations when the blood-brain barrier
is compromised [10]. Yahiro et al. studied effects of the
radiosensitizer doranidazole (PR-350) on the radioresponse of
murine and human tumor cells in vitro and in vivo and observed
that the amount of radiosensitization of tumors induced by
doranidazole is dependent on the oxygenation status of the tu-
mors [11]. A 5-nitroimidazole derivative, nimorazole, has shown
similar radiosensitization properties to misonidazole at clinically
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acceptable dose levels. It is clinically used in head and neck
cancer along with fractionated radiotherapy (FRT) [12].

Recently, a wide range of nitroimidazole sulfonamides has
been identified as potential radiosensitizers against hypoxic
cancer cells [13, 14]. These sulfonamides have been consid-
ered as hypoxia-selective cytotoxins and radiosensitizers, and
their variation in side chains noticeably influence the physico-
chemical properties of the analogues. The compounds might
have lowered aqueous solubility and raised the electron affin-
ity of the nitroimidazole group.

Computational approaches such as quantitative structure-
activity/property relationships (QSAR/QSPR) [15] are effec-
tive tools in prediction of radiosensitization properties when
experimental data is scarce. The method allows virtual screen-
ing of drug libraries to find suitable drug-target for a particular
disease. QSAR finds an immense application in the prediction
of ADMET (absorption, distribution, metabolism, elimina-
tion, and toxicity) properties of drugs and other biologicals
[16, 17]. A large number of researches have been carried out
with the hope to do some predictions of the ADMET proper-
ties using the structural features of the molecules. QSAR/
QSPR modeling is one such important approach where data
derived from their activity profiles and their different structur-
al features (quantitative molecular descriptors) are used [18].
Radiosensitization is a property of nitroimidazole and
nitroimidazole sulfonamide derivatives and can thus be sub-
jected to QSAR analysis. A well-validated QSAR model
could evaluate and generate radiosensitization data for such
related compounds when experimental data is not available.

The present study explores the features essential to show
radiosensitization properties by nitroimidazole sulfonamide
derivatives using QSAR and quantitative structure activity-
activity relationship (QSAAR) modeling [19]. Two dimen-
sional (2D) descriptors obtained from Dragon and SiRMS
software were utilized during the development of well-
validated models. A small dataset of nitroimidazole sulfon-
amides is used for modeling in the current study where split-
ting of the dataset into training and test sets would cause loss
of chemical information leading to unreliable models. Thus, a
“small dataset modeling” approach has been adopted using the
whole dataset [20], and the developed models were subjected
to leave-many-out cross-validation. Furthermore, a group of
nitroimidazole sulfonamides has been predicted to prove the
validity of the developed models.

Materials and methods

Dataset

In vitro radiosensitization data of selected compounds involv-
ing sensitizer enhancement ratio (drug SER) and survival ratio
(drug SR) was obtained from a previously published research

work [21]. A dataset of 21 compounds given in Table 1 was
selected for 2D QSAR modeling. Sensitizer enhancement ra-
tio (SER) can be defined as the ratio of radiation dose for 1%
survival without or with the drug in a condition where
HCT116 cells (human colorectal carcinoma cell line) were
exposed to the drug at 6–29 Gy radiation for 1 h. Survival
ratio can be explained using the following expression: “SR=
(cell survival with radiation)/(cell survival with drug and with
radiation) interpolated from the radiation dose response curves
at 15 Gy.” During modeling, the drug SER values were used
as provided in the original article but drug SR values were
converted into their logarithmic form (logSR) for analysis.
The compounds were drawn in MarvinSketch software (ver-
sion 14.10.27) [22] with hydrogen bond addition and proper
aromatization and saved as MDL.mol, a suggested format for
further descriptor calculation.

Molecular descriptors

The molecular descriptor is the “final result of a logical and
mathematical procedure, which transforms chemical informa-
tion encoded within a symbolic representation of a molecule
into a useful number or the result of some standardized exper-
iment” [23]. A selected class of 356 2D molecular descriptors
was calculated from Dragon version 7 [24] software. These
comprised E-state indices, connectivity, constitutional, func-
tional, 2D atom pairs, ring, atom-centered fragments, and mo-
lecular property descriptors. Intercorrelated (|r| > 0.95) and
constant (variance < 0.0001) variables and other incompetent
data were removed using a software available at http://dtclab.
webs.com/software-tools prior to model development. This
resulted in 224 Dragon descriptors which were used for
modeling. Furthermore, SiRMS descriptors were calculated
using SiRMS (version 4.1.2.270) [25] tool and used along
with Dragon descriptors during modeling. Simplex
representations of molecular structure (SiRMS) descriptors
are a class of molecular descriptors developed from 1D to
4D molecular structures involving tetratomic fragments of
different simplex descriptors having predefined chirality,
composition, and symmetry [25].

Model development: application of small dataset
modeler

Before development of a QSAR model, the dataset is gener-
ally divided into a training set (calibration) and a test set (val-
idation). Furthermore, a double cross-validation method [26]
of model development involves two nested cross-validation
loops: internal (inner) and external (outer) cross-validation
loops. In the outer loop, the data points are segregated into
two subsets, i.e., training and test sets. The training set is
further employed in the inner loop for model building and
selection purpose. The test set has the sole purpose of model
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validation. However, the present study deals with a small
dataset containing a limited number of data points (21 com-
pounds), and splitting of this dataset into training and test sets
is not desirable. Small dataset modeling (http://teqip.jdvu.ac.
in/QSAR_Tools/DTCLab/) involves the DCV method of
modeling for small datasets without dividing the dataset into
training and test sets [20]. Here, the “modeling set” in the
inner loop is not generated. However, deriving all possible
combinations (k) of the validation set (containing n
compounds) and the calibration set (containing n − r
compounds) is followed. The tool has an option for the user
to define the number of compounds to be kept in the validation
set (r) depending on which the calibration and validation sets
are defined. Calibration set compounds are used for the
generation of genetic algorithm-multiple linear regression
(GA-MLR) [27, 28] models, and the validation sets are uti-
lized for model prediction purpose. A number of internal and
external validation metrics are calculated in the exhaustive
double cross-validation technique for all the selected models.
Additionally, the software also derives partial least squares
(PLS) [29] regression models corresponding to each MLR
model. Furthermore, the selection of best/top model can be
done in any of the five following methods mentioned:

(i) Model (MLR/PLS) with the lowest mean absolute error
or MAE (95%) in the validation set is selected.

(ii) Model (MLR/PLS) with the lowest MAE (95%) in the
modeling set is selected.

(iii) Model (MLR/PLS) with the highest Q2
Leave−many−out

(modeling set).
(iv) Application of consensus modeling by using top rank-

ing models selected based on the MAE (95%) values in
the respective validation sets. Two types of consensus
approaches include (a) simple arithmetic average of pre-
dictions from all the selected top models, and (b)
weighted average of predictions by assigning appropri-
ate weights to the selected topmodels based on themean
absolute error obtained from leave-one-out cross-valida-
tion, MAEcv(95%).

(v) A pool of unique descriptors from the top 3 models with
lowest MAE (95%) of the validation set is used. These
descriptors are used for further model development pur-
pose. In case of MLR, the best subset selection (BSS)
method is used which finds the best combinations of
descriptors out of all the possible combinations of unique
descriptors present in the selected models. In case of PLS
models, the models are formed by all descriptors selected
in the top models through a PLS run.

The approach proposed in small dataset modeler (Fig. 1)
thus ensures the division of small dataset internally within the
DCV algorithm without the actual need of a test set. Thus,

Table 1 Dataset of 21 compounds used for modeling

Serial number Compound number Structure (SMILES) Drug SER Log drug SR

1 1 c1(n(ccn1)CC(COC)O)[N+](=O)[O-] 1.4 0.833

2 2 c1(n(ccn1)CC(=O)NCCO)[N+](=O)[O-] 1.339 0.663

3 4 c1n(c(cn1)[N+](=O)[O-])CCN1CCOCC1 1.8 1.652

4 6 c1(n(ccn1)CS(=O)(=O)NCCCOC)[N+](=O)[O-] 1.2 0.462

5 7 c1(n(ccn1)CS(=O)(=O)NCCCO)[N+](=O)[O-] 1.11 0.255

6 8 c1(n(ccn1)CS(=O)(=O)NCCCN1CCOCC1)[N+](=O)[O-] 1.28 0.591

7 12 c1(n(ccn1)CS(=O)(=O)NN1CCOCC1)[N+](=O)[O-] 1.11 0.301

8 14 c1(n(ccn1)CCS(=O)(=O)NCCCO)[N+](=O)[O-] 1.27 0.623

9 15 c1(n(ccn1)CCS(=O)(=O)NCCCN1CCOCC1)[N+](=O)[O-] 1.357 0.699

10 16 c1n(cc(n1)[N+](=O)[O-])CS(=O)(=O)NCCCOC 1.105 0.114

11 19 c1n(c(cn1)[N+](=O)[O-])CS(=O)(=O)NCCCO 1.81 2.057

12 21 c1n(c(cn1)[N+](=O)[O-])CS(=O)(=O)NCCCN1CCOCC1 1.43 0.914

13 22 c1n(c(cn1)[N+](=O)[O-])CCS(=O)(=O)NCCCOC 1.56 1.415

14 24 c1n(c(cn1)[N+](=O)[O-])CCS(=O)(=O)NCCCO 1.81 2.212

15 26 c1(n(c(cn1)[N+](=O)[O-])CCS(=O)(=O)NCCCOC)C 1.34 0.681

16 28 c1(n(c(cn1)[N+](=O)[O-])CCS(=O)(=O)NCCCO)C 1.176 0.208

17 30 c1(n(c(cn1)[N+](=O)[O-])CCS(=O)(=O)NCCCCN1CCOCC1)C 1.68 1.447

18 31 c1(n(c(cn1)[N+](=O)[O-])CCS(=O)(=O)NCCCN(C)C)C 1.57 1.173

19 34 c1(n(c(cn1)[N+](=O)[O-])CCS(=O)(=O)NCCCN1CCCC1)C 1.54 1.134

20 35 c1(n(c(cn1)[N+](=O)[O-])CCS(=O)(=O)NCCCN1CCCCC1)C 1.71 1.380

21 38 c1(n(c(cn1)[N+](=O)[O-])CCS(=O)(=O)NN1CCC(CC1)N(C)C)C 1.67 1.398
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there is no requirement of the dataset division. The small
dataset modeling approach combines data curation, exhaus-
tive double cross-validation, and optimal model approaches
including consensus predictions for model development, par-
ticularly for small datasets.

Statistical validation metrics

A rigorous analysis using multiple approaches of assessment
of the model quality for measurement of the fitness, stability,
robustness, and predictivity of the developed models was car-
ried out. In the present work, we have computed various sta-
tistical parameters like determination coefficient (R2) and

leave-one-out squared correlation coefficient (Q2
LOO ) for in-

ternal validation. We have also calculated the leave-many-out

squared correlation coefficient (Q2
LMO 20%ð Þ ) for the final PLS

models [30]. Furthermore, r2m metrics [31], root mean square
error (RMSE), and mean absolute error (MAE) were also cal-
culated [32].

Results and discussion

2D QSAR models using Dragon and SiRMS descriptors
explaining chemical features required for good drug
radiosensitization (both SER and logSR) are shown in the
following section. There are 4 models developed of which
two are QSAR models and the rest two are QSAAR models.
All the models are three-descriptor PLS models with 2 latent
variables (LVs) showing acceptable values for all validation
metrics as shown in Table 2. The validation metrics included

R2, Q2, Q2
LMO 20%ð Þ, r

2
m LOOð Þ, Δr2m LOOð Þ, SD (95% data; train-

ing), MAE (95% data; training), and RMSE. Furthermore, we

have calculated the Q2
F1 metric for the validation set in each

iteration cycle for each model during the calculation of

Q2
LMO 20%ð Þ (Supplementary Section). The experimental and

predicted values for al l the models are given in
Supplementary files (S1) and the observed versus predicted
plots for all the developed QSAR and QSAAR models are
shown in Fig. 2. The different PLS plots including variable
importance plot [33], loading plot [29], regression coefficient
plot [29], and randomization plot [34] discussed later are
shown in Supplementary files (SM2).

Model 1: modeling drug sensitizer enhancement ratio

SER ¼ 0:931þ 0:452�H−049−0:238� B05 O−S½ �
þ 0:09� F05 C−S½ �

The first descriptor H-049 belongs to atom-centered frag-
ment type, which indicates H atom attached to C3 (sp3)/C2

(sp2)/C3 (sp2)/C3 (sp). The descriptor symbolizes the hydro-
gen of a CH group with the carbon bonded to varying numbers
of heteroatoms in a variety of hybridizations. The descriptor
has a positive contribution towards the response (Fig. 3)
which is well understood from certain higher active com-
pounds in the dataset like compounds 19 (SER = 1.81)
and 24 (SER = 1.81), each of which has two H-049
fragments. On the other hand, compounds like 12
(SER = 1.11) and 16 (SER = 1.105) having only one
such fragments have low SER values.

The next descriptor is B05[O-S], which is a 2D atom pair
descriptor demonstrating the presence or absence of oxygen
and sulfur atoms at the topological distance 5. The negative
contribution explains that presence of oxygen and sulfur

Fig. 1 The approach adopted to
develop QSAR models for small-
sized dataset using small dataset
modeler
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atoms at the topological distance 5 will lower the SER values
(Fig. 3) as observed in compounds 7 (SER = 1.11) and 16
(SER = 1.105). On the other hand, in compounds like 4
(SER = 1.835) and 30 (SER = 1.687), the absence of such
fragment does not lower the SER value.

The descriptor F05[C-S], another 2D atom pair descriptor,
denotes the frequency of C-S at the topological distance 5. The
positive contribution of the descriptor indicates that higher fre-
quency of the C-S fragment at the topological distance 5 will
increase the SER value (Fig. 3) as seen in compounds 30
(F05[C-S] = 3, SER= 1.68) and 38 (F05[C-S] = 3, SER= 1.67).

Model 2: modeling drug survival ratio (logSR)

logSR ¼ 1:965−1:08

� S A chgð Þ=A B B D=1 4s; 3 4s=4−1:073

� C−033−0:108� F07 C−C½ �

S_A(chg)/A_B_B_D/1_4s,3_4s/4 represents a four atomic
fragment labeled by partial charges, and its negative regres-
sion coefficient indicates that it reduces the radiosensitization
property with the presence of such fragment (shown in Fig. 4).
In compounds like 26 and 28, presence of such fragment re-
duces the radiosensitization (logSR = 0.681 and 0.208).

C-033 is an atom-centered fragment descriptor repre-
sented by R–CH..X fragment. “R” denotes any group
linked through carbon, “- -“ represents an aromatic
bond as in benzene or delocalized bonds such as the
N-O bond in a nitro group, “..” represents aromatic
single bonds as the C-N bond in pyrrole, and “X” is
any electronegative atom (O, N, S, P, Se, halogens)
[35]. The negative coefficient indicates that presence
of this type of fragment lowers logSR (Fig. 4) values
as observed in compounds 6 (C-033 = 1, logSR = 0.462)
and 7 (C-033 = 1, logSR = 0.255).

F07[C-C] is a 2D atom pair descriptor, which signifies the
frequency of the C-C fragment at the topological distance 7.
The negative coefficient indicates that a higher value of the
descriptor may decrease the radiosensitization (logSR value)
(Fig. 4). This is observed in compounds like 12 and 8 where
F07[C-C] are high (6 and 5 respectively) and their logSR
values are low (0.301 and 0.591 respectively).

Quantitative structure activity-activity relationship
models

Quantitative structure activity-activity relationship
(QSAAR) models are mathematical expressions correlat-
ing two biological endpoints, here SER and logSR, with
the aim to extrapolate any one explicit activity endpointTa
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when the experimental data is not available. This ad-
vanced technique can overcome the additional cost of
manifold experimental procedures. In the present study,
we have developed two QSAAR models, one taking
SER as the endpoint and logSR as an independent var-
iable and another taking logSR as the endpoint and SER
as an independent variable. It was found that these two
endpoints had positive correlation between themselves
explaining that increase in experimental values of any
of the endpoints would increase the other endpoint
values and vice versa.

Model 3: QSAAR modeling of SER

SER ¼ 1:084þ 0:018� F03 C−C½ � þ 0:363

� logSR−0:001� T N ::Oð Þ

Model 3 is a PLS model with 2 latent variables and shows
acceptable values of the validation metrics. Here, logSR has
been used as an independent variable to produce a QSAAR
model for drug SER. Thus, for any compound, if survival ratio

Fig. 3 Features increasing or
decreasing SER values as
explained in model 1

Fig. 2 Scatter plots for QSAR
and QSAAR models
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(SR) value is known, the SER value can be extrapolated using
model 3. This reduces time and experimental expenses. In the
model, logSR shows a positive regression coefficient; hence, a
higher value of logSR will increase SER values as observed in
compounds like 19 (logSR = 2.212, SER = 1.81) and 24
(logSR = 2.057, SER = 1.81).

The descriptor F03[C-C] is a 2D atom pair descriptor sig-
nifying the frequency of C-C fragments at the topological
distance 3. This makes a positive contribution to the endpoint,
thus indicating that with an increase in the F03[C-C] descrip-
tor value, SER value will also increase as seen in compounds
30 (F03[C-C] = 14, SER = 1.68) and 35 (F03[C-C] = 13,
SER = 1.71). Another 2D atom pair descriptor T(N..O) ap-
pears in the model signifying the sum of topological distances
between N..O. This descriptor has a negative influence on the
SER values indicating that the total distance between nitrogen
and oxygen should be low for higher SER values as in com-
pound 4 (T(N..O) = 51, SER = 1.8). Compounds with higher
T(N..O) values will have lower SER values as observed in
compounds 8 (T(N..O) = 130, SER = 1.28) and 12
(T(N..O) = 106, SER = 1.11). Features increasing and de-
creasing SER values are shown in Fig. 5.

Model 4: QSAAR modeling of logSR

logSR ¼ −3:364þ 2:735� SER−0:028� F03 C−C½ �
þ 0:125� nO

In model 4, SER has been used as an independent variable for
modeling logSR. SER makes a positive contribution to logSR,
proving the authenticity of the previously developedmodel 3 and
this can be explained by the same compounds 19 and 24.

F03[C-C] is a 2D atom pair descriptor symbolizing the
frequency of the C-C fragment at the topological distance 3.
The descriptor shows a negative regression coefficient, thus
signifying that with an increase in F03[C-C] values, logSR
value will decrease and vice versa. It is observed that in com-
pounds 15 and 34, the F03[C-C] values are high (10 and 11
respectively) and their logSR values are low (log SR = 0.699
and 1.134 respectively). The opposite is observed in com-
pounds 19 (F03[C-C] = 2, logSR = 2.057) and 24 (F03[C-
C] = 4, logSR = 2.212) having lower values for F03[C-C].
Descriptor nO is a constitutional descriptor meaning the

Fig. 4 Factors decreasing logSR
values as explained in model 2

Fig. 5 Features increasing or
decreasing SER value as
explained in model 3
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number of oxygen atoms present in a molecule. The positive
regression coefficient indicates that presence of oxygen atoms
is beneficial for the in vitro radiosensitization (logSR). In
compounds like 19 (logSR = 2.057) and 24 (logSR = 2.212),
higher number of oxygen (nO = 5) contributes to a higher
value of logSR. Features increasing and decreasing logSR
value are shown in Fig. 6.

Plot interpretation

(i) Variable importance plot (VIP)—AVIP can provide with a
better knowledge about the descriptors and their contribu-
tion in controlling the radiosensitization properties of
nitroimidazole sulfonamides. The plot signifies the order
of contribution of each descriptor appearing in the model.
The most and least important descriptors can be identified
using this plot. A variable with VIP score > 1 indicates the
descriptor has higher statistical significance as compared to
the one with a lower VIP value [33]. The VIP plot showing

the descriptors from higher to lower significance is given in
the Supplementary Section S2 (Figs. S1–S4).

(ii) Loading plot—The loading plot defines the relationship
between X variables and Y variables [29]. The plot was
developed using the two latent variables for all the four
models. The plot describes the impact of the different
variables. Descriptors that are grouped together have
similar meanings and similar effects on the response,
whereas descriptors with different meanings are situated
at a considerable distance from each other. Descriptors
which are situated far from the plot origin have greater
impact on the response. The loading plots of the four
models are given in the Supplementary Section S2
(Figs. S5–S8).

(iii) Regression coefficient plot—The regression coefficient
plot [29] gives knowledge about the positive or negative
contribution of the descriptors towards the activity (SER
or logSR) of the compounds. Descriptors having a pos-
itive regression coefficient indicate that with an increase

Fig. 6 Features increasing or
decreasing logSR value as
explained in model 4

Fig. 7 DModX applicability domain plot of model 1 and model 2 Fig. 8 DModX applicability domain of model 3 and model 4
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in the descriptor values, the SER and logSR increase.
On the other hand, a negative regression coefficient in-
dicates that with an increase in the descriptor val-
ue, the SER and logSR decrease. The regression
coefficient plots are given in Supplementary
Section S2 (Figs. S9–S12).

(iv) Randomization plot—Model randomization is done to
ensure that the model is not the result of any chance
correlation [34]. The statistical significance of the model
is determined by a randomization model. During the
model randomization, multiple models are generated
by shuffling different combinations of X or Y variables
(here Y variable) based on the fit of the reorderedmodel.
Here, we have used 100 permutations for eachmodel for
randommodel generation. A model not generated out of

chance correlation should have poor statistics (R2
y inter-

cept should not exceed 0.3 and Q2
y intercept should not

exceed 0.05). The randomization plots given in Figs.
S12–S16 show that the developed models are non-
random and robust and are suitable for prediction.

Applicability domain

Applicability domain (AD) explains the prediction reliability
of a particular model. It is the “chemical space from which a
model is derived and where a prediction is considered to be
reliable” [36]. AD evaluation was done using DModX (dis-
tance to model) in the X-space using SIMCA 16.0.2 software
(https://landing.umetrics.com/downloads-simca). The AD

plots are given in Figs. 7 and 8. It is found that there is no
outlier in any of the four models developed at 95% confidence
level (D-crit = 0.009999).

Prediction dataset

AQSARmodel helps in the prediction of external datasets based
on their molecular features, thereby reducing the experiment
costs and animal handling. To study the predictive power of
the developed models, we have used 14 compounds whose
SER and logSR values have been predicted. These 14 com-
pounds were selected from Table 1 of the source article [21].
This table contained about 36 nitroimidazole sulfonamides out
of which 21 compounds were used for QSAR and QSAAR
modeling and rest 14 compounds were used as an external set
for prediction. Furthermore, we have analyzed the prediction
quality and domain of applicability using the prediction reliability
indicator tool [37]. The prediction status and domain of applica-
bility are given in Table 3. Prediction was possible for model 1
(M1), model 2 (M2), and model 3 (M3). In M1 and M2, the
predicted SER and predicted logSR valueswere calculated for 14
compounds. In case of M3 (QSAAR-SER), SR15 values were
obtained from source article [21] and the values were converted
to logarithmic form and used as an independent variable for the
calculation of predicted SER values. Prediction for model M4
was not possible since experimental SER values for the predic-
tion compounds are not available. During prediction with model
M1, three compounds had bad/unreliable predictions. This is due
to the difference between the mean of the training set response
and predicted value of the query compound being considerably
higher. However, these compounds fall inside the AD of the

Fig. 9 Overview of the present
work involving the development
of QSAR and QSAAR model
using small dataset modeler

640 Struct Chem (2021) 32:631–642
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model. In case of M2, one compound (compound no. 25) is
outside AD; however, it shows moderate prediction quality.
During prediction with model M3, all the compounds
are found to have “moderate” prediction quality and
are inside the model AD.

Conclusion

This study aims at developing 2D QSAR models with the
notion to investigate the essential features in nitroimidazole
sulfonamide analogues to show radiosensitization properties
with respect to sensitizer enhancement ratio and survival ratio
endpoints. The different descriptors obtained give an idea
about the position of the features and type of chemical groups
required to enhance or hinder these properties. Moreover,
QSAAR modeling helps in correlating two endpoints (SER
and logSR) and suggests how to extrapolate an endpoint if the
experimental information is unavailable. The current study
emphasizes on the application of the “small dataset modeler”
software when the dataset is small and splitting of dataset is
not worthy. Furthermore, the newly developed models were
used for prediction of 14 compounds and their prediction re-
liability was checked. These developed QSAR and QSAAR
models are able to predict newly developed nitroimidazole
sulfonamide derivatives with known structural features. The
complete overview of the work is explained in Fig. 9.
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A B S T R A C T

Hypoxia is the prime component of tumor microenvironment that plays a pivotal role in cancer progression.
Nitroaromatic compounds are known to enhance the sensitivity of hypoxic cells to ionizing radiation. The
application of computational tools like Quantitative Structure-Activity Relationship (QSAR) can be used to predict
newly developed nitroaromatics or compounds with missing data. In the present work, three datasets consisting of
18 nitrofurans, 11 nitrothiophenes and 84 nitroimidazoles were utilised for two-dimensional QSAR modeling to
retrieve their structural features essential to elicit radiosensitivity. The work comprises two parts: (i) local
modeling using individual datasets; and (ii) global modeling by clubbing the three datasets. The two-dimensional
descriptors were calculated using Dragon (version 7.0) software. The developed models were obtained using
various feature selection techniques applied in “Small Dataset Modeling” and “Double Cross Validation” tools
available from https://dtclab.webs.com/software-tools. Finally, the models were validated using stringent metrics
following the Organisation for Economic Co-operation and Development (OECD) guidelines. The developed
models are robust, predictive, and are useful tools to predict the radiosensitization of newly developed nitro-
aromatics. Furthermore, the global model was used to predict two external sets comprising 10 and 47 compounds,
and the prediction ability was validated using the “Prediction Reliability Indicator” tool.

1. Introduction

Nitroaromatic drugs have been applied to radiation therapy owing to
their effectiveness in enhancing radiation damages selectively in hypoxic
mammalian cells at nontoxic concentration. These drugs are known to
cause a specific group of mutagenesis that require cell hypoxia as their
metabolic activation and expression [1]. Nitroaromatic sensitizers are
able to control the rate of local tumor growth by traditional radiotherapy
while hypoxia plays a limiting role. A second discrete function of these
agents involves selective cytotoxicity of the drug to hypoxic tumor cell.
Moreover, these drugs have the ability to identify and locate hypoxic cells
making it suitable for tumor diagnosis [2]. DNA damaging potential of
nitroaromatics is an effective knowledge for the development of newer
antineoplastic drugs. Bioreduction ability of nitroaromatics allows gen-
eration of free radicals in intracellular environments with a low oxygen
concentration; a typical circumstance occurring in solid tumors encom-
passing areas of hypoxia resulting from inadequate blood supply [3,4].
The radiosensitizing activity of these compounds is dependent on two
important properties: electron affinity and reduction potential. The
ionizing radiation generates free radicals which has marked ability to

cause DNA damage and cellular death [5]. Nitroheterocyclic compounds
like nitroimidazoles, nitrofurans and nitrothiophenes are recognized
oxygen-mimetic agents in which electron rich reactive nitro group reacts
with DNA, after which the DNA and nitro group adduct causes DNA
strand breakage and subsequent cell death. The mechanism for DNA
damage by aromatic nitro compounds is shown in Fig. 1. Radiosensitizers
are aimed to augment tumor killing while having minimal effect on
normal tissues. An ideal radiosensitizer should be able to selectively
target hypoxic cells and reach them faster in adequate concentrations. It
should have least toxicity itself and minimum or controllable augmen-
tation of radiation induced toxicity [6].

Oxygen is the prime hypoxic cell radiosensitizer and compounds
which mimic oxygen, such as nitroimidazoles, nitrofurans and nitro-
thiophenes, are potential targets to combat hypoxia-associated radio-
resistance. In a study by Chapman et al. [7], analysis with various
analogues of nitrofuran and nitroheterocyclics on Chinese hamster cells
grown in vitro helped in understanding their toxicity and radiosensitivity.
The nitrofurans exhibited good radiosensitization ability with nifur-
aldezone being the most potential compound. Langenbacher et al. char-
acterised the in vitro hypoxic cytotoxicity and radiosensitizing efficacy of
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N, N, N-tris[2-(2-nitro1H-imidazole-1-yl)ethyl]amine (PRC), as a novel
hypoxia-selective cytotoxic agent. The study performed on
hypoxia-sensitive lymphoma and hypoxia-resistant glioblastoma cell line
by colony formation assay and flow cytometry showed that PRC exerted
high hypoxic cytotoxic and radiosensitizing action on both cell lines at
almost absent toxicity under normoxic conditions [8]. Breccia et al. [9]
synthesized a series of nitrothiophene analogues and studied their
physicochemical parameters which influence their radiosensitization
potential and toxicity. Compounds like NTMA (2-(5-nitrothiophen-3-yl)
propanedioic acid), NTM (4-(5-nitrothiophene-2-carbonyl)morpholine),
4 and 5- NTCA (4-nitrothiophene-2-carboxylic acid and 5-nitrothiophe-
ne-2-carboxylic acid respectively) were found promising agents exhibit-
ing good radiosensitization. Bioreductive prodrug SN38023, a
nitroimidazole analogue elicits radiosensitivity on hypoxic tumor cells
selectively in the absence of oxygen [10]. This compound undergoes
reduction (bioreduction) within the tumor cells before exhibiting radi-
osensitizing property and provides suitable trigger in the inactivation of
DNA protein kinase inhibitors (DNA-PKi). Misonidazole is a hypoxic
radiosensitizer which can augment the antitumor role of cyclo-
phosmamide as observed in preclinical studies [11]. It is anticipated to be
an ideal radiation therapy sensitizer concerning the control of
radiation-resistant tumor cells and p53 mutant tumor cells [12].

In silico tools such as quantitative structure-activity relationship
(QSAR) modeling has become an effective practice for the prediction of
radiosensitization properties when there is lack of data. Further, in
comparison with the animal testing, in silico approaches are faster and
less expensive, thus an in-silico method is very helpful towards data gap
filling of a new query compound [13]. Computational methods like QSAR
have significantly impacted the paradigm of drug discovery. This method
allows for the calculation of physicochemical properties (e.g., lip-
ophilicity) [14,15], the estimation of biological activity (or toxicity) [16,
17], lead optimization [18], as well as the evaluation of absorption,
distribution, metabolism, and excretion (ADME) [19,20]. Radiosensi-
tivity in terms of radiosensitization effectiveness is considered as a
property of nitroaromatics which can be subjected to in silico QSAR
analysis. Experimental data for radiosensitization of nitroaromatic
compounds is very scarce; hence, well validated QSAR models assist in
the prediction of such compounds and reduce experimental evaluation to
a certain degree.

The current study aims to explore the maximum possible structural
features expressed by nitroaromatics which are responsible for their
radiosensitization effectiveness. We have collected three datasets of
nitroimidazole, nitrofuran and nitrothiophene analogues which were
modelled individually as local datasets as well as collectively put into
global QSARmodeling. For the calculation of a large pool of over 800 two-
dimensional molecular features, we have applied Dragon 7 software [21].
The individual local datasets (mainly nitrofuran and nitrothiophene data)
comprise a small number of compounds (<20 compounds) and therefore

they are not suitable for usual data division into training and test sets. To
avoid loss of chemical information for these kinds of datasets, “small
dataset modeling” was adopted using the whole dataset [22]. For datasets
with larger number of data points as in case of local nitroimidazole dataset,
feature selection was carried out using the Genetic Algorithm [23,24]
method. In case of global data set modeling, variable selection was per-
formed using Genetic Algorithm employing the Double Cross Validation
[25] tool. The developed 2D-QSAR models were rigorously validated by
applying internationally accepted stringent validation parameters. Addi-
tionally, two different sets of external compounds were used for the pre-
diction using the global model to check its predictive ability.

2. Materials and methods

2.1. Datasets

The radiosensitization effectiveness (pC1.6) data for three nitro-
aromatics datasets (nitrofurans, nitrothiophenes and nitroimidazoles)
were obtained from the previously published literature [26–28]. The
datasets comprised 18 nitrofuran analogues, 11 nitrothiophenes and 84
nitroimidazole derivatives in the composite set. ‘C1.6’ is a term used to
explain the radiosensitization capacities; this is the molar concentration
of the compound required to give a sensitizer enhancement ratio (SER) of
1.6. Thus, a lower value for C1.6 will give greater sensitizing efficiency.
For an efficient analysis, the C1.6 values were converted into their
negative logarithmic scale (pC1.6). The structures in the datasets were
drawn in MarvinSketch software (version 14.10.27) [29] with proper
aromatization and hydrogen bond addition and saved as MDL. mol
format.

2.2. Descriptor calculation

Before a QSAR model is developed, the structural information is
converted into numerical values known as descriptors [30]. The three
curated datasets were used for the calculation of descriptors using
Dragon version 7 [31] software. Specific classes of descriptors were used
for model development including connectivity, constitutional, topologi-
cal, E-state indices, functional, 2D atom pairs, 2D autocorrelation, ring,
atom-centred fragments and molecular property descriptors. The de-
scriptors were pre-treated to reduce redundant and noisy data; constant
(variance <0.0001) and intercorrelated (|r| >0.95) variables were
removed using an in-house software available at http://dtclab.webs
.com/software-tools before model development.

2.3. Data set splitting and model development

Rational splitting of a dataset into training and test sets is a crucial
step before a QSAR model development leading to the establishment of

Fig. 1. Mechanism of nitroaromatic radiosensitizers in DNA damage.
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the models' predictive power. However, a general problem faced by in
silico researchers during the development of ideal QSAR models is the
non-availability of sufficient data suitable for data set splitting. Datasets
with 25–50 datapoints or even less are difficult to divide into training and
test sets and there is less chance of getting robust and predictive models.
Ambure et al. [22] proposed a method for small datasets which does not
require the step of data set division. “Small dataset modeling” as pro-
posed by these authors involves the Double Cross Validation (DCV)
method [25,32]. In this method, the entire dataset of n compounds is
taken under consideration. The process involves the generation of all
possible combinations (k) of the validation set (each containing r com-
pounds) and the calibration set (containing n � r compounds). Here, the
user is allowed to set the ‘r’ value, i.e., the number to compounds to be
retained in the validation set and depending on that all probable com-
binations of calibration and validation sets are generated. The models are
generated using Multiple Linear Regression (MLR) [33] method using
Genetic Algorithm (GA) method of feature of selection. In this scheme of
exhaustive DCV, several important validation metrics are calculated for
all the elected models. The selection of the best models is dependent on a
set of criteria discussed in the source literature [22]. In the current study,
the number of data points for nitrofurans and nitrothiophenes is rela-
tively very small (18 and 11 respectively) for dataset division. Hence, we
have utilised the “small dataset modeling” technique for efficient model
development for these datasets. For the nitrofuran dataset, we have
chosen the best Multiple Linear Regression (MLR) [33] model developed
using the MLR plus Validation 1.3 tool available from https://dtclab.w
ebs.com/software-tools. However, for the nitrothiophene dataset, the
descriptors of the best MLRmodel were subjected to Partial Least Squares
(PLS) regression [34] using the Partial Least Squares tool (available from
https://dtclab.webs.com/software-tools). Note that PLS is a robust and
generalized version of MLR which converts the original sets of de-
scriptors into new latent variables which are lower in number in com-
parison to the descriptors appearing in the corresponding MLR model
[34]. PLS can handle numerous and noisy variables and do not suffer
from the inter-correlation problem.

In case of the nitroimidazole dataset with 84 datapoints, we have
applied the Genetic AlgorithmMultiple Linear Regression (GA-MLR) [23,
24] method for feature selection on the whole dataset. A pool of ten
descriptors (features) was selected after this process which were further
subjected to the Best Subset Selection (BSS) method which finds the best
combinations of descriptors out of all the possible combinations of
unique descriptors present in the selected models. The best descriptor
combination obtained in this process were further subjected to PLS
regression using the Partial Least Squares tool (available from https
://dtclab.webs.com/software-tools) to obtain better quality model. In
this work, we have not divided the nitroimidazole dataset though it has

sufficient amount of data points because division of the data set was
earlier performed by our group in a previous work [35]. Thus, we have
developed three local models from undivided data sets: nitrofuranmodel,
nitrothiophene model and nitroimidazole model. These data sets were
further clubbed to form a global dataset which was then modelled.

During modeling the global dataset, the compounds were split into
training and test sets using Kennard-Stone method [36] in Dataset Di-
vision GUI 1.2 software tool available from https://dtclab.webs.com/s
oftware-tools. The dataset was divided into training and test sets in 7:3
ratio. Here, Genetic Algorithm method was used in the Double Cross
Validation tool [25] for variable selection. A pool of 16 descriptors was
selected and the final model was generated using PLS regression method
using the Partial Least Squares tool (available from https://dtclab.webs
.com/software-tools) using descriptors selected from best subset selec-
tion (BSS).

2.4. Statistical validation metrics

During the course of the present work, we have performed rigorous
analysis using multiple approaches of assessment of the model quality for
measurement of the stability, robustness, fitness, and predictivity of the
developed models. We have computed various statistical metrics like
determination coefficient (R2), adjusted determination coefficient (R2

adj)

and leave-one-out squared correlation coefficient (Q2
LOO) for internal

validation [37]. We have also computed the leave-many-out squar-
ed-correlation coefficient (Q2

LMOð20%Þ) [38]. For external validation, in

case of the global model, parameters like R2
pred or Q2

F1, Q
2
F2 and concor-

dance correlation coefficient (CCC) were calculated [39]. Furthermore,
we have also calculated the r2m metrics (both Δr2m and r2m) [40] and vali-
dated the models using root mean squared error (RMSE) and mean ab-
solute error (MAE) based criteria [41].

3. Result and discussion

3.1. Modeling local nitro datasets

2D-QSAR models for explaining radiosensitization effectiveness
(pC1.6) are discussed in this section. The QSAR models from individual
class of nitro compounds were found to have good and acceptable values
for all validation metrics. The validation metrics included R2, Q2, Q2

LMO ,

r2mðLOOÞ, Δr
2
mðLOOÞ, MAE and RMSE. The current work proposes statistically

robust and acceptable local models employing simple 2D descriptors. The
observed versus predicted pC1.6 plots for the local models are given in
Fig. 2.

Fig. 2. Observed vs predicted pC1.6 scatter plot for the local nitro datasets.
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3.1.1. QSAR model studying radiosensitization effectiveness of nitrofurans

pC1:6 ¼ �0:617ð � 0:249Þ � 0:361ð � 0:039Þ � nTAþ 0:127ð � 0:028Þ
� nCrsþ 1:050ð � 0:110Þ � DBI

N¼ 18; R2 ¼ 0:911;R2
adj ¼ 0:892; Q2

LOO ¼ 0:842; Q2
LMOð20%Þ ¼ 0:780; r2mðLOOÞ

¼ 0:786; Δr2mðLOOÞ ¼ 0:037; MAEð95%Þ¼ 0:078; RMSE

¼ 0:090; Prediction Quality¼Moderate

(1)

Fig. 3. Contribution of the descriptors obtained in local nitro dataset modeling towards radiosensitization effectiveness (pC1.6 values).

Fig. 4. Variable importance plot of local nitrothiophene and nitroimidazole datasets.
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The number of data points in case of nitrofurans was very less and not
suitable for data set division into training and test sets. Thus, small
dataset modeling was used for robust model development where data set
division is not worthy. The MLR model developed showed good deter-
mination coefficient (R2) and leave-one-out squared correlation coeffi-
cient (Q2

LOO) for internal validation. The leave-many-out predicted
variance (Q2

LMO) was also calculated. The descriptors appearing in the
model are: nTA (number of terminal atoms), nCrs (number of ring sec-
ondary C(sp3)) and DBI (Dragon branching index).

The descriptor nTA belonging to the constitutional type has a nega-
tive contribution towards radiosensitization effectiveness; thus, com-
pounds having higher number of terminal atoms will have lower pC1.6
value and vice versa. This can be explained with compounds NF-10 and
NF-12. In compound NF-10, which has a lower value for pC1.6 (pC1.6 ¼
1.523), the number of terminal atoms is 7 (in higher side) (Fig. 3a).
Again, compound NF-12 which has a lower number of terminal atoms
(nTA ¼ 3) shows higher pC1.6 value (pC1.6 ¼ 2.097).

nCrs represents the number of sp3 hybridised secondary carbon
present in a ring system. The positive contribution implicates that with
an increase in nCrs values, radiosensitization effectiveness will increase.
This has been observed in compounds likeNF-18 (nCrs¼ 3) (Fig. 3a) and
NF-12 (nCrs¼ 1) where presence of such secondary carbon has increased
the pC1.6 value (pC1.6 ¼ 2 and 2.097 respectively).

Another positively correlated descriptor, DBI, represents the
branching nature of the compound. With an increase in the branching
index, the radiosensitization will increase as observed in compound NF-
13 (DBI ¼ 4.301, pC1.6 ¼ 2.097) (Fig. 3a).

3.1.2. QSAR model studying radiosensitization effectiveness of
nitrothiophenes

pC1:6 ¼ 0:816þ 0:191� nCsþ 4:555�MATS4v

N¼11;R2¼0:933;Q2
LOO¼ 0:807;Q2

LMOð20%Þ¼0:896; r2mðLOOÞ
¼0:660;Δr2mðLOOÞ¼0:178;MAEFitted¼0:081;MAELOO¼0:124;RMSE

¼0:101;PredictionQuality¼Moderate

(2)

Small dataset modeling was utilised again owing to the limited
number of compounds in the dataset. The developed PLS model has two
descriptors and one latent variable: nCs (total number of secondary
carbon (sp3)) and MATS4v (Moran autocorrelation of lag 4 weighted by
van derWaals volume). From the VIP plot [42] (Fig. 4a), it was found that
MATS4v has higher VIP score than nCs denoting that MATS4v is of
higher significance than nCs. The predicted variance explained by spe-
cific features for each latent variable is given in the Supplementary
section.

MATS4v is a 2D autocorrelation descriptor, which represents the
distribution mode of the atomic van der Waals volumes along the topo-
logical structure of nitrothiophenes. Here, the path connecting a pair of
atoms has length 4 and applies the atomic van der Waals volumes as
weighting scheme. The positive regression coefficient advocates that a
higher positive value of the descriptor enhances the radiosensitivity as
observed in compound NT-9 (MATS4v ¼ 0.068914, pC1.6 ¼ 1.301)
(Fig. 3b).

nCs is a functional group count descriptor and has a positive corre-
lation with radiosensitization effectiveness. A secondary carbon is one
which is bound by two other carbon atoms. Increase in the number of
such fragments in nitrothiophenes will increase their radiosensitivity.
This is observed in compounds like NT-5 (nCs ¼ 3, pC1.6 ¼ 1.523)
(Fig. 3b) and NT-6 (nCs ¼ 4, pC1.6 ¼ 1.301).

3.1.3. QSAR model studying radiosensitization effectiveness of
nitroimidazoles

pC1:6 ¼ 0:873� 1:267� C� 042� 0:227�H � 051þ 0:287� B09½C� C�
þ 3:115� PDI

N¼ 84; R2 ¼ 0:733; R2
adj ¼ 0:723; Q2

LOO ¼ 0:701 ; Q2
LMOð20%Þ ¼ 0:696; r2mðLOOÞ

¼ 0:588; Δr2mðLOOÞ ¼ 0:193; MAE¼ 0:251; RMSE

¼ 0:321; Prediction Quality¼Moderate

(3)

A four descriptor PLS model with 3 latent variables (LVs) was
developed for the nitroimidazole dataset. Here, the number of com-
pounds in the dataset was relatively higher and could be divided into
training and test sets for model development. However, this dataset was
earlier used by our group for model development in a previously pub-
lished literature [37] where division of this dataset provided acceptable
results. Here, we have tried modeling for the whole dataset using
GA-MLR method of variable selection followed by BSS method of model
development. The descriptors selected in the best MLRmodel was further
subjected to PLS regression with 3 LVs which showed good determina-
tion coefficient (R2) and leave-one-out squared correlation coefficient
(Q2

LOO) as given in model 3. From the VIP plot (Fig. 4b), the significance of
the descriptors are as follows: C-042, B09[C–C], H-051 and PDI.

The descriptor C-042 is an atom-centred fragment descriptor repre-
senting the fragment X–CH.X (Figure), where X is any electronegative
atom (O, N, S, P, Se, halogens); ‘–' is an aromatic bond as in benzene or
delocalized bonds such as the N–O bond in a nitro group; and ‘.’ is an
aromatic single bond as the C–N bond in pyrrole. The negative regression
coefficient implicates that increase in the number of such type of frag-
ments in the nitroimidazole analogues will hinder its radiosensitivity.
This has been observed in compounds like NI-69 (C-042 ¼ 1, pC1.6 ¼
1.85) andNI-70 (C-042¼ 1, pC1.6¼ 1.80) (Fig. 3c) where the presence of
C-042 fragment caused a lowering in pC1.6 values.

The next descriptor is B09[C–C], a 2D atom pair descriptor denoting
the presence or absence of C–C fragment at the topological distance 9.
The positive coefficient of this descriptor implies that the value of B09

Fig. 5. Scatter plot of the global model.
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[C–C] is directly proportional to the radiosensitization effectiveness,
which is established from the presence of such fragments in most of the
active compounds (e.g., compounds NI-8 and NI-11) (Fig. 3c).

Another atom-centred fragment descriptor, H-051 corresponds to H
attached to alpha carbon (where alpha carbon is any carbon attached
through a single bond with –C ¼ X, –C#X, -C-X). This descriptor also
contributes negatively towards the radiosensitive effectiveness; thus with
an increase in the descriptor value, pC1.6 value will decrease. This can be
explained with compound number NI-70 where there are three such H-
051(H-051 ¼ 3) fragments and pC1.6 is low (pC1.6 ¼ 1.80).

The last descriptor for this model is PDI or packing density index is a
molecular property descriptor. PDI is described as the ratio between the
McGowan volume and the total surface area [43]. The descriptor has a
positive correlation with pC1.6 thereby implicating an enhancing effect
on radiosensitivity. This is observed in compounds NI-46 (PDI ¼ 0.922;
pC1.6 ¼ 4.28) and NI-44 (PDI ¼ 0.927; pC1.6 ¼ 4.12) (Fig. 3c).

The loading plot [44] of the two local PLS models are given in the
Supplementary Section (Figs. S1 and S2).

3.2. Modeling the global nitroaromatics dataset

The global dataset, i.e., the dataset containing all the compounds
from the individual local datasets was subjected to modeling using
Dragon descriptors. The dataset was divided into training and test sets by
the Kennard-Stone method of data division, and then the DCV-GA
method was utilised for feature selection. The final model was devel-
oped using the Best Subset Selection (BSS) method followed by PLS
regression. The PLS model with 3 LVs derived exhibited 88.1% variance
for the training set (86.5% in terms of leave one out variance) and 92.5%

for the test set variance (in terms of Q2
F1 or R

2
pred). The observed versus

predicted pC1.6 plot for the global model is given in Fig. 5. The residuals
of the observed and predicted pC1.6 values for some compounds were on
the higher side as evident from the scatter plot. However, it was found
that all the training set and test set compounds were inside the domain of
applicability [47] which will be discussed in later section.

pC1:6 ¼ 1:256þ 1:318� nImidazoleþ 0:951� C� 044þ 0:354� B09½C
� C� � 0:459� B03½O� S�

Ntrain¼79; R2¼0:881; R2
adj¼0:876; Q2

LOO¼0:865;Q2
LMOð20%Þ ¼0:866; r2mðLOOÞ

¼0:806; Δr2mðLOOÞ ¼0:101; MAEðtrainÞ¼0:262; SDðtrainÞ
¼0:256; RMSEC¼0:344; QualityTrain¼Good

Ntest ¼ 34; Q2
F1 ¼ 0:925;Q2

F2 ¼ 0:899; r2mðLOOÞ ¼ 0:863; Δr2mðLOOÞ
¼ 0:006; CCC¼ 0:948;MAEðTestÞ¼ 0:301; SDðTestÞ
¼ 0:211; RMSEP¼ 0:366; QualityTest ¼Good

The model is constituted of four descriptors, viz., nImidazole, C-044,
B09[C–C] and B03[O–S]. From the VIP plot (Fig. 6a), the descriptors are
in the following order of significance: C-044, nImidazole, B03[O–S] and
B09[C–C].

The first descriptor is C-044, which is an atom centre fragment
descriptor and represented as X–CX.X, where X is any electronegative atom
(O, N, S, P, Se, halogens); ‘–' is an aromatic bond as in benzene or delo-
calized bonds such as the N–O bond in a nitro group; and ‘.’ is an aromatic

Fig. 6. Variable importance plot and loading plot of the global model.

Fig. 7. Contribution of the descriptors appearing in the global model.
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single bond as the C–N bond in pyrrole. Compounds showing positive
values for the C-044 descriptor were found to have a specific fragment in
their structure, i.e., O––NC-N. Here the O––N fragment represents the
delocalized bonds in the nitro group and C–N is an aromatic single bond in
pyrrole giving an idea of the 2-nitroimidazole fragment (Fig. 7). Hence, the
descriptor C-044 provides a knowledge that nitroimidazoles are better

radiosensitizers having higher radiosensitization effectiveness. Next,
nImidazole is a functional group descriptor indicating the number of
imidazole present in the compound. The positive correlation gives an idea
that imidazole group will increase the compounds' radiosensitivity, lead-
ing to a conclusion that nitroimidazoles are better radiosensitizers than
nitrofuran or nitrothiophenes (Fig. 7).

Table 1
Golbraikh and Tropsha's criteria for all local and global models.

Metrics Acceptable range Local Nitrofuran Local Nitrothiophene Local Nitroimidazole Global dataset

r2 >0.6 0.911 0.933 0.733 0.881

Q2 >0.5 0.842 0.896 0.701 0.865
�
�r0 � r

02
0

�
� <0.3 0.008 0.067 0.094 0.016

k 0.85<k < 1.15 1 1 1 1
½ðr2 � r20Þ= r2Þ� ½ðr2 �r20 Þ=r2Þ� <0.1 0 0 0 0
k' 0.85<k’<1.15 0.997 0.992 0.992 1
½ðr2 � r

02
0 Þ= r2Þ� ½ðr2 �r020Þ=r2Þ� <0.1 0.009 0.0045 0.129 0.018

Fig. 8. Applicability domain plot for the global dataset.
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Another 2D atom pair descriptor B03[O–S] describes the presence or
absence of O–S fragment at a topological distance 3. It has a negative
correlation with radiosensitization effectiveness denoting that with the
presence of such fragment pC1.6 value decreases as in compounds NS-1
(pC1.6 ¼ 1.0) (Fig. 7) and NS-2 (pC1.6 ¼ 0.0).

The next descriptor is B09[C–C], a 2D atom pair descriptor, which
denotes the presence or absence of C–C fragment at the topological dis-
tance 9. The positive coefficient indicates that presence of C–C fragment
at distance 9 will enhance pC1.6 values as seen in compounds like NI-51
(pC1.6 ¼ 4.3) (Fig. 7) and NI-8 (pC1.6 ¼ 4.22).

From, the descriptors obtained in the global dataset, it can be inferred
that nitroimidazoles are better radiosensitizers than nitrofuran or

nitrothiophene analogues. Although the global model gives any idea
regarding the superiority of nitroimidazoles giving better radio-
sensitization, the model actually takes into account a diverse group of
chemicals. Also, division of dataset gives us more reliance regarding the
predictivity of the model.

The loading plot explains the relationship between the descriptors (or
the X-variables) with the response (or the Y-variable) [34]. The first two
latent variables were utilised for the development of the plot. Through a
loading plot, the impact of the descriptors on the response can be un-
derstood. Descriptors having similar meaning are grouped together close
to one another. This can be explained by Fig. 6b where descriptors C-044
and nImidazole are grouped together and they almost impart the same
meaning (contribution of imidazole group). Descriptors with high impact
on the model are situated far from the plot origin (e.g., C-044 and
nImidazole).

3.2.1. Golbraikh and Tropsha's criteria
We have calculated the Golbraikh-Tropsha's criteria [45] for all the

local models as well as for the global model and reported in Table 1. All
the models developed in the present study passed the criteria.

Table 2
Y-Randomization model metrics for the developed local and global models.

Models R2
y Q2

ðLOOÞy

Local Nitrofuran 0.1727 �0.3979
Nitrothiophene �0.0311 �0.262
Nitroimidazole �0.0132 �0.248

Global �0.0305 �0.246

Table 3
Predicting pC1.6 values of a true external dataset using the global model.

Compound ID Structure Observed pC1.6 Predicted pC1.6 (Global model) Composite Score Prediction Quality AD status Reference

1 – 3.879 3 Good In [26]

2 – 3.879 3 Good In [26]

3 4.05 3.879 3 Good In [28]

4 2.89 3.879 3 Good In [28]

5 – 2.574 3 Good In [50]

6 – 3.525 3 Good In [50]

7 – 2.574 3 Good In [50]

8 – 2.928 3 Good In [50]

9 – 3.879 3 Good In [51]

10 – 3.879 3 Good In [51]
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3.2.2. Applicability domain (AD) assessment
In accordance with OECD guideline 3, any QSARmodel should hold a

defined domain of applicability. AD can be interpreted as a chemical
space defined by the structural information or molecular properties of the
chemicals used in the model development [46]. Any compound which is
present within the chemical space can only be properly predicted. In the
present study, for the nitrofurans data set, we have used the standardi-
zation approach [47]. There was no outlier found for the nitrofuran
dataset. In case of local nitrothiophenes, local nitroimidazoles and global
datasets, we have applied the DModX (distance to model in X-space)
method of AD determination at 99% confidence interval (D-crit ¼
0.009999) using SIMCA 16.0.2 software (https://landing.umetrics.co
m/downloads-simca). The AD plots for the two local datasets given in
Figs. S3 and S4 (in Supplementary Section) show that there was no
outlier. In case of the global dataset as shown in Fig. 8, it was observed
that there was neither any outlier in the training set nor any compound
was outside the AD in the test set.

3.2.3. Y-randomization test
The significance of a developed QSAR model is understood by a

model randomization test, and it ensures that the model is not an
outcome of a chance correlation [48]. During the development of a
randomized model, many models are generated by reordering or shuf-
fling different combination of X- or Y-variables (Y-variable here) and
accordingly are called X-randomization or Y-randomization. In the pre-
sent work, we have used 100 permutations for all the developed models;
however, this can be changed according to the choice of the user. Models
which are randomly developed with y-variable shuffling should have
very poor statistics. The R2

y intercept should not exceed 0.3 and the Q2
y

intercept should not exceed 0.05. The metrics for the randomized models
given in Table 2 and Supplementary Figs. S5 and S6 and S7 indicate that
the local and global models developed are not out of chance correlation
and are robust for suitable predictions.

3.2.4. True external prediction using the global model
The global model can be considered the best model here, owing to the

diversity of the nitro compounds used for modeling. Further, to analyse
the predictivity of the developed global model, we have considered a set
of external compounds for prediction (Table 2). Predictions for these
compounds were further verified by the application of “Prediction
Reliability Indicator” tool [49] available from https://dtclab.webs
.com/software-tools. The PRI results showed that predictions for all the
10 compounds were ‘Good’ (with Composite Score 3) and all the com-
pounds were inside the AD of the model (Table 3). Based on the insights
obtained, it can be inferred that developed global model can be used for
the prediction of radiosenstization effectiveness in nitro compounds,
especially for nitroimidazole derivatives. We have further computed
predictions using the global model for another external dataset retrieved
from the ChEMBL database (https://www.ebi.ac.uk/chembl/) and
checked the quality of predictions using the PRI tool. We have reported
the results in the Supplementary Section (Table S2). Of note, the pre-
diction quality was found to be good for all the external compounds. It
will be interesting to verify the predictions experimentally in the future.

4. Conclusion

The present study targets for the development of 2D-QSAR models for
three nitroaromatics datasets both locally and globally predicting radi-
osensitization effectiveness. The local models gave us an idea about the
structural features required for effective radiosensitization within their
own group while the global model imparted an insight regarding which
type of nitroaromatic compounds are more efficient to produce better
radiosenstization. The descriptors obtained in the global model clearly
implicated that nitroimidazoles are better radiosensitizers as compared
with nitrofuran or nitrothiazole derivatives. Moreover, all the developed

local and global models were statistically sound and well validated. The
global model was further used for the prediction of two sets of external
compounds, and their prediction reliability was analysed using the PRI
tool.
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Abstract
The reliability of any quantitative structure–activity relationship (QSAR) model depends on multiple aspects such as the 
accuracy of the input dataset, selection of significant descriptors, the appropriate splitting process of the dataset, statistical 
tools used, and most notably on the measures of validation. Validation, the most crucial step in QSAR model development, 
confirms the reliability of the developed QSAR models and the acceptability of each step in the model development. The 
present review deals with various validation tools that involve multiple techniques that improve the model quality and robust-
ness. The double cross-validation tool helps in building improved quality models using different combinations of the same 
training set in an inner cross-validation loop. This exhaustive method is also integrated for small datasets (< 40 compounds) 
in another tool, namely the small dataset modeler tool. The main aim of QSAR researchers is to improve prediction quality by 
lowering the prediction errors for the query compounds. ‘Intelligent’ selection of multiple models and consensus predictions 
integrated in the intelligent consensus predictor tool were found to be more externally predictive than individual models. 
Furthermore, another tool called Prediction Reliability Indicator was explained to understand the quality of predictions for 
a true external set. This tool uses a composite scoring technique to identify query compounds as ‘good’ or ‘moderate’ or 
‘bad’ predictions. We have also discussed a quantitative read-across tool which predicts a chemical response based on the 
similarity with structural analogues. The discussed tools are freely available from https:// dtclab. webs. com/ softw are- tools 
or http:// teqip. jdvu. ac. in/ QSAR_ Tools/ DTCLab/ and https:// sites. google. com/ jadav purun ivers ity. in/ dtc- lab- softw are/ home 
(for read-across).

Keywords QSAR · Validation · Double cross-validation · Small dataset modeling · Intelligent consensus prediction · Read 
across

Introduction

A growing number of research have been conducted in 
recent years, wherein computational methods have been 
used to predict the physicochemical properties and biologi-
cal activities of chemical compounds. Quantitative struc-
ture−activity relationship (QSAR) (Dearden 2016) modeling 

is a popular in silico technique performed to find out a quan-
titative correlation between the structural features (known as 
descriptors) and a known response (activity/property/toxic-
ity) for a set of molecules using various chemometric meth-
odologies. QSAR evolves at the crossroads of chemistry, 
statistics, biology, and toxicological studies. The main aim 
is to identify and optimize new leads to shorten the time and 
reduce expenditure for drug discovery (Hsu et al. 2017). The 
fundamental assumption regarding QSAR modeling is that 
a chemical structure possesses unique features (geometric, 
steric, and electronic properties) responsible for its physical, 
chemical, and biological properties.

The European Union (EU) envisaged that QSAR models 
would increasingly be used for hazard and risk assessments 
of chemicals (Commission of the European Communities 
2001). It is also necessary to create and apply QSARs to 
address animal welfare concerns by replacing, reducing, 
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and refining animal testing in toxicological assessments. In 
November 2004, the European Commission and the OECD 
(Organisation for Economic Co-operation and Develop-
ment) member countries adopted principles for valida-
tion of QSAR models for use in regulatory assessment of 
chemical safety (Organisation for Economic Co-operation 
and Development (OECD 2004). According to the agreed 
guidelines of OECD, a QSAR model should be developed 
with

(a) A defined endpoint,
(b) An unambiguous algorithm to guarantee model 
transparency,
(c) A defined domain of applicability,
(d) Proper measures of validation including internal 
performance (as determined by goodness-of-fit and 
robustness) and predictivity (as represented by exter-
nal validation), and
(e) Possible mechanistic interpretation.

Validation is crucial for the development and applica-
tion of any QSAR model. It confirms the reliability of 
the developed model and the acceptability of each step 
through model development. The debate between internal 
versus external validation prevails predominantly among 
QSAR practitioners (Roy 2007). Some QSAR studies 
reported an inconsistency between internal and exter-
nal predictivity (Novellino et al. 1995; Norinder 1996). 
According to researchers, there might be an inconsistency 
between internal and external predictability, i.e., high 
internal predictivity may result in low external predictivity 
and vice versa (Kubinyi 1998). However, external valida-
tion is considered the ‘gold standard’ of checking predic-
tive potential of QSAR models. Some researchers consider 
cross-validation to be more appropriate for checking the 
predictive ability of QSAR models to circumvent the loss 
of information from splitting the dataset into training and 
test sets (Héberger 2017). Several validation metrics (as 
discussed later) are used to check the quality of predictions 
generated by regression-based and classification-based 
QSAR models (Gramatica and Sangion 2016; Todeschini 
et al. 2016).

The present review has discussed several prediction reli-
ability tools exploring various strategies to determine model 
reliability and predictivity. We have discussed the tools that 
engage in the model-building through a double cross-vali-
dation approach on large and small datasets. Furthermore, 
we have explained the utility of intelligent selection of mul-
tiple models and various forms of consensus prediction. 
We have also mentioned a tool that explains a similarity-
based reliability scoring approach to understand the quality 
of predictions for a new query compound and ensure the 
developed models’ reliability. We have further reported a 

similarity-based quantitative read-across tool addressing the 
quality of predictions both quantitatively and qualitatively.

Predictive QSAR model development 
approaches

Modern QSAR methods use multiple descriptors combined 
with the application of both linear and non-linear mode-
ling approaches with a strong emphasis on rigorous model 
validation to afford robust and predictive QSAR models. 
Several types of research along with our understanding of 
QSAR model development and validation led us to establish 
a general outline of QSAR model workflow as described 
in Fig. 1. This figure illustrates the classical QSAR model 
development algorithm which includes: (a) collection of per-
tinent data with a defined endpoint, (b) descriptor calcula-
tion and data pre-treatment, (c) model development through 
analysis of the correlation between input data and descrip-
tors calculated, (d) validation of the model, and (e) design 
and prediction of the activity of new query molecules. The 
QSAR modeling scheme is further described briefly in the 
following section.

 (i) Dataset preparation and data curation: One of the 
most challenging parts of QSAR is dataset collec-
tion with a “defined endpoint” as explained in OECD 
principle 1. The intent is to confirm the transparency 
of the endpoint aimed for prediction models, con-
sidering that a given endpoint could be dependent 
on the experimental protocol and the experimental 
conditions. Data curation is an essential and time-
consuming step in the QSAR model development 
process. Erroneous data (both in chemical structures 
and biological data) retrieved from online sources 
require strict curation to avoid false or non-predictive 
models (Ambure and Cordeiro 2020).

 (ii) Calculation of molecular descriptors: The molecu-
lar structures applied for QSAR modeling need to 
be translated into numbers, i.e., molecular descrip-
tors. The molecular descriptor is an encoded repre-
sentation of the information about a chemical com-
pound in the form of numerical values based on its 
chemical constitution, allowing the correlation of 
chemical structure with physical properties, chemi-
cal reactions, or biological activity (Consonni and 
Todeschini 2010). In a QSAR model, descriptors of 
a molecule, which describe specific aspects of a mol-
ecule, are predictors (X) of the dependent variable 
(Y). A QSAR study uses a variety of descriptors that 
can be classified into different dimensions or catego-
ries, as shown in Table 1.
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(iii) Dataset division: A predictive model's performance 
must be determined by dividing the dataset into a train-
ing set and a test set. Among all chemicals, only the 
training set molecules are used for developing QSAR 
models, and the external predictivity of the models is 
examined through the use of test set compounds. In 
developing the QSAR model, it is necessary to select a 
training set in a way, such that it encompasses a wide 
chemical domain. The test set compounds must lie 
within the chemical space of the training set. Data-
set division involves different methods including (a) 
Euclidean distance (diversity-based) (Golmohammadi 
et al. 2012), (b) Kennard-Stone (Kennard and Stone 
1969), (c) k-means clustering (Likas et al. 2003), (d) 
sorted response (Roy 2018), etc.

(iv) Feature selection: A feature selection process is a vital 
step that involves identifying important predictor vari-
ables to develop correlations with the response vari-
able. Feature selection helps decrease the model com-
plexity, decreases the risk of overfitting or overtraining, 
and helps select the most critical descriptors among a 
pool of hundreds or thousands. In this way, the dimen-
sionality of input descriptors is minimized without the 
loss of essential information (Goodarzi et al. 2012). 
Finally, these selected descriptors are used to build a 
mathematical model linking to the biological activity 

of the corresponding compounds. According to the 
OECD guidelines, several feature selection techniques 
have been applied using a mechanistic basis includ-
ing, genetic algorithms, genetic function approxima-
tion (GFA), forward selection, backward elimination, 
stepwise regression, simulated annealing, etc.

(v) Model development algorithms: The OECD guideline 
2 explains that a QSAR model should be developed 
using an “unambiguous algorithm” (Directorate 2007). 
The rule focuses on bringing transparency in model-
building, rendering it reproducible to others and mak-
ing it possible to achieve the endpoint estimates. This 
embraces the methods implemented during data pre-
treatment, division of data, feature selection, and model 
development. Linear modeling techniques involve mul-
tiple linear regression (MLR) (Pope and Webster 1972; 
De and Roy 2018), ordinary least squares (OLS), par-
tial least squares (PLS) (Wold et al. 2001), principal 
component analysis (PCA) (Abdi and Williams 2010), 
principal component regression (PCR), etc.

In QSAR, model-building tools can be grouped into two 
major categories: regression-based approach and classifica-
tion-based approach. Regression-based approaches are effec-
tive when both dependent (response variable) and independ-
ent (molecular descriptors) variables are quantitative (Roy 
et al. 2015a; b). In the case of classification-based modeling, 
a relationship between the descriptors and the graded values 

Fig. 1  Schematic representation of QSAR methodology according to OECD guidelines
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of the response variable(s) is established. Here, the response 
is offered in a Boolean form like active/inactive and positive/
negative or categorical (as observed in linear discriminant 
analysis, logistic regression, and cluster analysis).

 (vi) Determination of domain of applicability: One of 
the most essential checkpoints in QSAR modeling 
is determining the applicability domain (AD) of a 
model as explained in OECD principle 3. The appli-
cability domain denotes a physicochemical space 
(both the response and chemical structure space) 
within which a QSAR model can predict with a cer-
tain degree of reliability (Roy et al. 2015a, b). This 
space is defined by the features explained by the 

compounds in the training set and is mandatory to 
examine whether the prediction of test set molecules 
is reliable or not. The concept of AD was used to 
avoid an unjustified extrapolation of property predic-
tions.

 (vii) QSAR model validation: Before interpreting and 
predicting biological responses of untested com-
pounds, any QSAR model needs to be validated. 
Here, the model's predictive power is established, and 
the ability to reproduce the biological activities of 
the untested compounds is measured. In consonance 
with the fourth principle of OECD guidelines, statis-
tical validation of models in terms of goodness-of-fit, 
robustness, and predictivity is an extremely impor-

Table 1  Types of 0D-3D descriptors used in the QSAR study

0D, 1D, and 2D descriptors may be collectively grouped under the broad class of 2D descriptors in general

Dimension 
of descrip-
tors

Parameters Examples

0D Constitutional indices Number of atoms, number of non-H atoms, number of bonds, number of aromatic bonds, sum of 
atomic van der Waals volumes (scaled on carbon atom), etc.

Molecular property
Atom and bond counts

Unsaturation count, unsaturation index, hydrophilic factor, unsaturation index

1D Fragment counts, fingerprints Atom centered fragments (C-001, H-046, O-056, etc.)
2D Topological Wiener index (W), Zagreb group indices, Balaban J index, Randic branching index (χ), Molecular 

connectivity index, subgraph count, Chi indices, etc.
Structural Chiral centers, rotatable bonds, HBond donor, HBond acceptor
Physicochemical parameters 

(thermodynamic param-
eters)

Heat of formation (Hf), Log of the partition coefficient using Ghose and Crippen’s method 
(AlogP), Desolvation free energy (Fh2o, Foct)

Connectivity indices Average connectivity index, valence connectivity index, solvation connectivity index, modified 
Randic index, connectivity topochemical index, perturbation connectivity index

Functional group counts Number of terminal primary C(sp3), number of total secondary C(sp3), number of ring quaternary 
C(sp3), number of carboxylic acids, number of hydroxyl groups, etc.

2D matrix based Balaban-like index from adjacency matrix, logarithmic spectral positive sum from adjacency 
matrix, spectral absolute deviation from adjacency matrix, etc.

2D atom pairs Presence or absence of any two atoms at a particular topological distance (B01[C–C], B09[C-F], 
etc.), frequency of two atoms at a particular topological distance (F01[C-F], F05[O-N]), sum of 
occurrence of two atoms at a particular topological distance (T(N..I), T(O..N))

3D Electronic Dipole moment, highest occupied molecular orbital (HOMO), lowest unoccupied molecular orbital 
(LUMO), superdelocalizibility

Spatial The radius of gyration, Jurs descriptors, area, density, volume, etc.
Receptor surface
analysis parameters

Hydrophobicity, partial charge, electrostatic (ELE) potential, van der Waals (VDW) potential, and 
hydrogen bonding propensity

Molecular shape analysis Difference volume (DIFFV), Common overlap steric volume (COSV), Common overlap volume 
ratio (Fo), Noncommon overlap steric volume (NCOSV), Root mean square to shape reference 
(ShapeRMS)

Geometric Molecular eccentricity, spherosity, asphericity, aromaticity index, gravitational index
Other 3D descriptors 3D matrix based (Wiener like index, Randic like index, Balaban-like index, etc. all from geomet-

ric matrix, spectral moment,), 3D autocorrelations (3D Topological distance-based descriptors: 
unweighted; weighted by mass, polarizability, van der Waals volume, Sanderson electronegativ-
ity, ionization potential), 3D Morse descriptors, WHIM descriptors, GETAWAY descriptors, 
quantum-chemical descriptors
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tant step during QSAR model development. The vali-
dation of QSAR models is crucial if these models are 
used for virtual screening. Each validation parameter 
aims to judge the accuracy of prediction, i.e., deter-
mining whether the experimental value is close to the 
model-derived value. The model fitness determined 
using the coefficient of determination or correlation 
coefficient from the training set measures the degree 
of achieved correlation between the experimental 
 (Yexp) and calculated  (Ycalc) response values. Data 
fitting does not confirm the predictability of a model 
but instead demonstrates the model’s statistical qual-
ity. Different internal and external validation metrics 
for both regression and classification modeling are 
utilized to check model prediction quality which is 
discussed later in the following section.

 (viii) Mechanistic interpretation: The fifth OECD prin-
ciple focuses on identifying the features of the vari-
ables that may contribute to a more thorough under-
standing of the response being modeled. Chemicals 
that act specifically using a specific mechanism 
can only be designed and developed with absolute 
certainty using the structural analogues. However, 
it is evident that furnishing mechanistic informa-
tion may not always be feasible. The rule suggests 
that the modeler should report if any such informa-
tion is available, facilitating future research on that 
endpoint. A mechanistic interpretation from the lit-
erature can be added, and therefore, the fifth OECD 
principle encourages the reporting of such informa-
tion to enrich the physicochemical understanding of 
response being modeled.

Regression and classification validation 
metrics

The reliability of a developed QSAR model is confirmed 
through the validation process. The quality of input data, 
dataset diversity, predictability on an external set, applica-
bility domain determination, and mechanistic interpretabil-
ity are also confirmed through various validation metrics. 
QSAR model validation can be classified into two major 
types: (a) internal validation and (b) external validation. 
Internal validation in QSAR modeling involves activity pre-
diction of the molecules/compounds used for generating the 
model. This is followed by estimating metrics for detecting 
the precision of predictions. Internal validation is useful in 
the case of cross-validation approaches (Konovalov et al. 
2008) where the internal data are partitioned into calibration 
(training) and validation (test) subsets. The calibration set 
is used for model-building purposes, and the validation set 
is utilized for model predictivity assessment. Assessment of 

prediction capability and applicability of a QSAR model to 
predict newly designed or untested molecules is done using 
external validation metrics. In most cases, some compounds 
from the original datasets are used for validation purpose 
when true external data points are limited or not available.

Regression‑based validation metrics

One of the main quality metrics to check the goodness-of-fit 
of a regression model is the determination coefficient 

(
R2

)
 

which measures the variation of observed data with the fitted 
ones. The maximum possible value for R2 is 1, which defines 
a perfect correlation.

Adjusted R2 ( R2
adj

 ) is a modified version of the determina-
tion coefficient and is also known as the explained variance. 
The R2

adj
 parameter incorporates the information of the number 

of samples and the independent variables used in the model.
Considering the internal validation for a regression-based 

QSAR model, the leave-one-out cross-validation ( Q2
LOO

 ) met-
ric is calculated. Here, a model is developed by modifying the 
original training set of n compounds by removing one com-
pound. The activity of the omitted compound is then predicted 
using the model developed with n-1 compounds. This cycle 
is repeated until all the training set compounds have been 
eliminated once and the predicted activity data are obtained 
for all the training set compounds. The model predictivity is 
thus measured using the predicted residual sum of squares 
( PRESS ) and cross-validated R2 ( Q2 ) (Table 2). The PRESS 
value is defined as the sum of squared differences between the 
experimental and leave-one-out predicted data. The standard 
deviation of error of predictions ( SDEP ) is calculated from 
the PRESS value (Table 2). A model is considered satisfactory 
if the value of Q2 is higher than the predetermined value of 
0.6. However, numerous evidences suggested that leave-one-
out prediction should neither be considered as the ultimate 
standard for judging the predictive power of models nor for 
model selection (Konovalov et al. 2007; Veerasamy et al. 
2011). There is a chance of overfitting and overestimation in 
LOO due to structural redundancy (Höltje and Sippl 2001). 
Leave-many-out (LMO) or leave-some-out (LSO) might be a 
better alternative where a part of the training data is held out 
((1 ≤ m < n, where n is a sample size) and the remaining data 
are modeled. The model is developed using the remaining 
compounds in each cycle, and the hold-out compounds are 
predicted. This cycle continues till all the compounds are pre-
dicted, and the predicted values are used for the calculation of 
Q2

LMO
 . Therefore, the LMO technique partly reflects external 

validation in the context of internal validation. 
Although, Q2

LOO
 provides a measure of model robustness, 

it may not be sufficient to characterize the performance of the 
model during prediction of new query/test compounds. Fur-
thermore, Q2

LOO
 can provide an overestimation of model 
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Table 2  Validation metrics for regression modeling

Parameters Equation Description

Determination coefficient 
(
R2

)
R2 = 1 −

∑
(Yobs−Ypred)

2

∑�
Yobs−Ytraining

�2

Metric to check the goodness-of-fit of a regression 
model. It measures the variation of observed data 
with the predicted ones. The maximum possible 
value for R2 is 1, which defines a perfect correla-
tion. Yobs denotes the observed response values for 
the training set, and Ypred denotes the calculated 
response values for the training set of compounds. 
Ytraining is the mean observed response of the train-
ing set compounds

Explained variance or adjusted R2 ( R2

adj
) R2

adj
=

{(n−1)XR2}−p
n−p−1

Modified version of the determination coefficient. 
The R2

adj
 parameter incorporates the information of 

the number of samples and the independent vari-
ables used in the model. n is the number of training 
set compounds and p is the number of predictor 
variables

Leave-one-out cross-validation ( Q2

LOO
)

Q2

LOO
= 1 −

∑
(Yobs(training)−Ypred(training))

2

∑�
Yobs(training)−Ytraining

�2

Cross‐validated R2(Q2 ) is checked for internal 
validation. Yobs(training) is the observed response, and 
Ypred(training) is the predicted response of the training 
set molecules based on the leave‐one‐out (LOO) 
technique

Predictive R2 or R2

pred
 or Q2

ext(F1) Q2

ext(F1)
= 1 −

∑
(Yobs(test)−Ypred(test))

2

∑
(Yobs(test)−Ytraining)

2

This metric employed for judging external predic-
tivity. It is a measure of correlation between the 
observed and predicted data of test set. Yobs(test) is 
the observed response, and Ypred(test) is the predicted 
response of the test set molecules. Ytraining denotes 
the mean observed response of the training set

Q2

ext(F2) Q2

ext(F2)
= 1 −

∑
(Yobs(test)−Ypred(test))

2

∑
(Yobs(test)−Ytest )

2

It helps in the judgment of predictivity of a model 
using the test set mean 

(
Ytest

)
.

Q2

ext(F3) Q2

ext(F3)
= 1 −

�∑
(Yobs(test)−Ypred(test))

2
�
∕ntest

�
∑�

Yobs(train)−Ytraining

�2
�

∕ntrain

Q2

ext(F3)
 is measured to determine external predictiv-

ity employing both training and test set features. 
Yobs(test) is the observed response, and Ypred(test) is 
the predicted response of the test set molecules. 
Yobs(training) is the observed response and Ytraining 
denotes the mean observed response of the training 
set molecules. The threshold for Q2

ext(F3)
 is 0.5

Concordance correlation coefficient (CCC) CCC = pc =
2
∑n

i=1
(xi−x)(yi−y)

∑n

i=1
(xi−x)

2
+
∑n

i=1
(yi−y)

2
+n(x−y)

The concordance correlation coefficient (CCC) 
measures both precision and accuracy detecting the 
distance of the observations from the fitting line 
and the degree of deviation of the regression line 
from that passing through the origin, respectively. 
‘n’ denotes the number of compounds, and xi and yi 
signify the mean of observed and predicted values, 
respectively

Root mean square error in predictions ( RMSEp)
RMSEp =

�
∑

(Yobs(test)−Ypred(test))
2

ntest

It gives a measure of model external validation. A 
lower value of this parameter is desirable for good 
external predictivity

r2
m
 metrics

r2
m
=

r
2

m
+r�

2

m

2
and Δr2

m
=
|||
r
2

m
− r

�2

m

|||

where r2
m
= r

2 × (1 −

√
r2 − r

2

0
))

r
�2

m
= r

2 ×

(

1 −

√
r2 − r�

2

0

)

r2 is the squared correlation coefficient value between 
observed and predicted response values, and r0

2 
and r′02 are the respective squared correlation coef-
ficients when the regression line is passed through 
the origin by interchanging the axes. For the 
acceptable prediction, the value of all Δr2

m
 metrics 

should preferably be lower than 0.2 provided that 
the value of

r2
m

 is more than 0.5 (Ojha et al. 2011)
Predicted residual sum of squares ( PRESS) PRESS =

∑�
Yobs − Ypred

�2 Sum of squared differences between experimental 
and predicted data. Yobs and Ypred correspond to the 
observed and LOO predicted values
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quality as a result of structural redundancy in the training set 
data. Thus, the performance of a model on an external dataset 
is considered mandatory for the judgment of predictivity. The 
metric employed for judging external predictivity is termed 
as predictive R2 or R2

pred
 or Q2

ext(F1)
 . The Q2

ext(F1)
 metric is char-

acterized by a minimum threshold value of 0.6, i.e., models 
showing a value more than 0.6 are considered to be externally 
predictive with the ideal value being 1.0. Schüürmann and 
co-workers (Schüürmann et al. 2008) defined another external 
validation metric Q2

ext(F2)
 for the judgment of the predictivity 

of a model using the test set. Consonni et al. (2009) introduced 
another external validation metric Q2

ext(F3)
 . This metric meas-

ures the model predictability and is sensitive to the selection 
of training dataset and tends to penalize models fitted to a very 
homogeneous data set even if predictions are close to the 
truth, with a threshold value being 0.6.

Another metric that checks the model reliability is the 
concordance correlation coefficient (CCC) metric (Chirico 
and Gramatica 2011). It measures both precision and accu-
racy, detecting the distance of the observations from the fit-
ting line and the degree of deviation of the regression line 
from that passing through the origin, respectively. Any devi-
ation of the regression line from the concordance line (line 
passing through the origin) gives a value of CCC smaller 
than 1. The desirable threshold value for CCC is 0.85.

The root-mean-square error in predictions 
(
RMSEp

)
 gives 

a measure of model external validation. This metric is com-
paratively simpler and directly depicts the prediction errors 
for the test set observations concerning the total number of 
test set samples. A lower value of this metric is desirable for 
good external predictivity.

The r2
m

 metrics: the training set mean value and the 
distance of the mean from the response values of each 
compound play a decisive role in computing the Q2 val-
ues. The Q2 value increases with the rise in the value 
of the denominator in the expression of Q2. Thus, even 
for a considerable deviation between the predicted and 
observed response values, satisfactory Q2 values may be 
obtained, if the molecules exhibit a considerably broad 
range of response data. Using the concept of regression 
through origin approach, Roy et al. (2012) introduced a 
new metric r2

m
 or modified r2 that penalizes the r2 value of 

a model when there is large deviation between r2 (squared 
correlation coefficient values between the observed (Y 
axis) and predicted (X axis) values of the compounds with 
intercept) and  r0

2 (squared correlation coefficient values 
between the observed (Y axis) and predicted (X axis) val-
ues of the compounds without intercept) values (Table 1).

MAE-based criteria: in a study, Roy et al. (2016) have 
shown that the conventional correlation-based external 
validation metrics ( Q2

ext(F1)
,Q2

ext(F2)
 ) often provide biased 

judgment of model predictivity, since such metrics are 
influenced by factors such as response range and distribu-
tion of data. Here, the authors have defined a set of criteria 
using simple ‘mean absolute error’ (MAE) and the cor-
responding standard deviation (σ) measure of the predicted 
residuals to judge the external predictivity of the models. 
Note that MAE =

1

n
×
∑��

�
Yobs − Ypred

��
�
, where Yobs and Ypred 

are the respective observed and predicted response values 
of the test set comprising n number of compounds. The 
response range of training set compounds has been 
employed here to define the threshold values. Furthermore, 
the authors have proposed the application of the ‘MAE 
based criteria’ on 95% of the test set data by removing 5% 
data with high predicted residual values precluding the 
possibility of biased prediction quality due to any outlier 
prediction. The following criteria for MAE prediction are 
followed:
i. Good predictions: in easier terms, an error of 10% of the 

training set range should be acceptable, while an error 
more than 20% of the training set range should be a very 
high error. Thus, the criterion for good predictions is as 
follows:

Here, σ value indicates the standard deviation of absolute 
errors for the test data. For a normal distribution pattern, 
mean ± 3σ covers 99.7% of the data points.

 ii. Bad predictions: a value of MAE more than 15% of the 
training set range is considered high, while an error 
higher than 25% of the training set range is judged as 
very high. Thus, prediction is considered bad when

MAE ≤ 0.1 × training set range and (MAE + 3�)

≤ 0.2 × training set range.

Table 2  (continued)

Parameters Equation Description

Standard deviation of error of prediction ( SDEP)
SDEP =

√
PRESS

n

The value of standard deviation of error of prediction 
( SDEP ) is calculated from PRESS . n refers to the 
number of observations

Mean absolute error ( MAE) MAE =
1

n
×
∑��

�
Yobs − Ypred

��
�

This is also known as average absolute error (AAE) 
and is considered a better index of errors in the 
context of predictive modeling studies
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Predictions which do not fall under either of the above 
two conditions may be considered as of moderate quality. 
This criterion is applied for judging the quality of test set 
prediction when there are at least 10 data points signifying 
statistical reliability and there is no systemic error in model 
predictions.

Randomisation of response (Y-scrambling)–Randomisa-
tion is an assessment to ensure the developed QSAR model 
is not due to chance, thereby giving an idea of model robust-
ness (Rücker et al. 2007). In this technique, validation met-
rics are checked by repetitive permutation of the response 
data (Y) of n compounds in the training set with respect to 
the X (descriptor) matrix which is kept unchanged. The cal-
culations are repeated with randomized activities, followed 
by a probabilistic examination of the results. Every run will 
yield approximations of R2 and Q2 , which are recorded. For 
an acceptable QSAR model, the average correlation coeffi-
cient ( Rr ) of randomized models should be less than the 
correlation coefficient ( R ) of a non-random model. The dif-
ference between mean-squared correlation coefficients of the 
randomized ( R2

r
 ) and that of the non-random ( R2 ) models 

MAE > 0.15 × training set range or (MAE + 3𝜎) > 0.25 × training set range.

c a n  b e  o b t a i n e d  t h r o u g h  R2
p
 c a l c u l a t i o n 

( R2
p
= R2 ×

√
R2 − R2

r
 ). A robust QSAR model should have 

R2
p
 value less than 0.5. At the ideal condition, the average 

value of R2 for the randomized models should be zero, i.e., 
R2
r
 should be zero. Consequently, in such a case, the value of 

R2
p
 should be equal to the value of R2 for the developed 

QSAR model. Thus, as proposed by Todeschini, the cor-
rected formula of R2

p
(c

R

2
p
) is c

R

2
p
= R ×

√
R2 − R2

r
 (Todes-

chini 2010).

Classification‑based QSAR validation metrics

In a binary classification model, several validation metrics 
are utilized to evaluate the model's performance in terms of 
accurate qualitative prediction of the dependent variable. 
Classification models are generally assessed using a statisti-
cal method that is based on the Bayesian approach (Ghosh 
et al. 2020). A binary classification model is typically a 
two-class model, i.e., positive and negative, or active and 
inactive. The results obtained can be arranged in a contin-
gency table (also known as confusion matrix) (Table 3). The 

Table 3  Contingency table 
or confusion matrix for 
classification modeling

Experimental Total

Active Inactive

Active True positive (TP) False positive (FP) TP+FP
Predicted Inactive False negative (FN) True negative (TN) FN+TN
Total TP+FN FP+TN N = 

TP+FP+FN+TN

Table 4  Validation metrics for 
classification modeling

P
r
(a) : relative observed agreement between the predicted classification of the model and the known clas-

sification; P
r
(e) : hypothetical probability of chance agreement

Sl No. Classification metric Equation

1 Sensitivity Sensitivity =
TP

TP+FN

2 Specificity Specif icity =
TN

TN+FP

3 Precision Precision =
TP

TP+FP

4 Accuracy Accuracy =
TP+TN

TP+FN+TN+FP

5 F-measure F − measure(%) =
2

1

Precision
+

1

Sensitivity

6 G-means G − means =
√
Specif icityXSensitivity

7 Cohen’s Kappa (κ) Pr(a) =
(TP+TN)

(TP+FP+TN+FN)

P
r
(e) =

{(TP+FP)×(TP+FN)}+{(TN+FP)×(TN+FN)}

(TP+FN+FP+TN)2

Cohen
�

sK =
Pr (a)−Pr (e)

1−Pr (e)

8 Mathews correlation coefficient 
(MCC)

MCC =
(TP×TN)−(FP×FN)

√
(TP+FP)×(TP+FN)×(TN+FP)×(TN+FN)
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statistical metrics explaining the quality of a classification 
model are given below and in Table 4. 

In classification QSAR modeling, the compounds are 
classified into four main categories: a) true positives (TP), b) 
true negative (TN), c) false positive (FP), and d) false nega-
tive (FN) (Table 3). Researchers have used a variety of sta-
tistical tests to assess the classifier model performance and 
classification capability. Sensitivity (Sn) is the percentage of 
active compounds correctly predicted and is expressed as the 
ratio of true-positive results to the total number of positive 
data. Specificity (Sp) is the ratio of true-negative results to 
the total number of negative data. Accuracy (Acc) implies 
the fraction of correctly predicted compounds. The precision 
indicates the accuracy of a predicted class (ratio between the 
true positives and total positives) and F-measure refers to 
the harmonic mean of Recall (or Sensitivity) and Precision. 
Higher values for recall and precision give higher values for 
F-measure, thereby implying better classification.

G-means is a combination term that includes Sn and Sp 
into a single parameter merged via the geometric mean. This 
allows an easy assessment of the model’s ability to distin-
guish between active or inactive samples.

Cohen’s kappa (κ) can be utilized to determine the con-
cordance between classification (predicted) models and 
known classifications (Cohen 1960). It is a measure of the 
degree of agreement. It returns value from − 1 (total disa-
greement) to 0 (random classification) to 1 (total agreement).

Mathews correlation coefficient (MCC) measures the 
quality of binary classifications and compares different 
classifiers. In any case, where the number of positive and 
negative compounds is not equal, the terms sensitivity, 
specificity, and accuracy are not reliable. MCC uses all four 
values (TP, TN, FP, and FN) and is directly calculated from 
the confusion matrix to provide a more-balanced prediction 
evaluation. Like Cohen’s kappa, the value for MCC also 
ranges from − 1 to 1.

Prediction reliability detection tools

As discussed earlier, the process of QSAR modeling con-
sists of three important steps: model development, model 
selection, and model interpretation. The model develop-
ment process involves various feature selection practices 
including stepwise-multiple linear regression (S-MLR), 
genetic algorithm, genetic function approximation, etc. 
Model selection is based on the identification of the fin-
est model (based on validation metric values) from a set 
of alternative models. When it comes to the reliability of 
QSAR/QSPR models, validation is essential. After a model 
has been selected, several internal and external validation 
metrics are assessed which help in demonstrating the actual 

predictive performance of the chosen model. Several groups 
of researchers in QSAR suggested external validation to be 
the gold standard in demonstrating the predictive ability of 
a model (Golbraikh and Tropsha 2002; Gramatica and San-
gion 2016; Gramatica 2020). Multiple modeling in consen-
sus form has been introduced to achieve a lower degree of 
predicted residuals for query compounds (Roy et al. 2015b; 
Khan et al. 2019a; Roy et al. 2019). In the following sec-
tions, we will discuss various tools from the DTC Labo-
ratory (https:// sites. google. com/ site/ kunal royin dia/ home/ 
qsar- model- devel opment- tools) that help understand the 
prediction ability of one or more QSAR models.

(i) Double cross-validation (version 2.0) tool

The most common scheme of external validation is by 
introducing the hold-out method. Here, the original dataset 
is divided into training and test sets, where the training set is 
used for model-building purposes followed by model selec-
tion based on internal validation metrics, and the test set is 
used for model validation through external validation met-
rics. This approach ensures that the test set is never applied 
during the model-building procedure and it remains unseen 
by the developed model. However, a single training set does 
not confirm feature optimization, since a fixed training set 
composition leads to a bias in feature selection. This issue is 
more apparent in the case of MLR models than partial least-
squares (PLS) or principal component regression (PCR) 
models which are more robust and generalized methods. 
Baumann and Baumann (Baumann and Baumann 2014) dis-
cussed the concept of double cross-validation (DCV) which 
Roy and Ambure implemented in a tool (Roy and Ambure 
2016) where the training set is further divided into ‘n’ num-
ber of calibration and validation sets. The tool is freely avail-
able from http:// dtclab. webs. com/ softw are- tools and http:// 
teqip. jdvu. ac. in/ QSAR_ Tools/ DTCLab/. The algorithm 
comprises two nested cross-validation loops (Bates et al. 
2021), namely, the outer loop and the inner loop (Fig. 2). 
The outer loop consists of data points that are split arbitrarily 
into disjoint subsets known as training set compounds and 
test set compounds. The training set is utilized in the inner 
loop for model development and model selection, and the 
test set is used exclusively for checking model predictiv-
ity. The training set in the inner loop is further split into k 
number of calibration and validation sets in the inner loop 
by applying the k-fold cross-validation technique (Wainer 
and Cawley 2021). In the k-fold cross-validation method, 
the training data are initially segregated into k subsets fol-
lowed by preparing k-iterations of calibration and validation 
sets. At each reiteration, different subset of data is excluded 
and used as validation set, while the remaining k-1 subsets 
are used as calibration sets. The data are passed through a 
stratification process, i.e., data rearrangement which helps 

https://sites.google.com/site/kunalroyindia/home/qsar-model-development-tools
https://sites.google.com/site/kunalroyindia/home/qsar-model-development-tools
http://dtclab.webs.com/software-tools
http://teqip.jdvu.ac.in/QSAR_Tools/DTCLab/
http://teqip.jdvu.ac.in/QSAR_Tools/DTCLab/
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maintain data uniformity (each fold is representative of the 
whole dataset). Each k-fold calibration set is then used to 
develop multiple linear regression (MLR) models, while the 
respective validation sets are applied to find the prediction 
errors. The tool provides two methods of feature selection: 
stepwise-multiple linear regression (S-MLR) (Maleki et al. 
2014; Ojha and Roy 2018) and genetic algorithm-MLR (GA-
MLR) (Leardi 2001). The prediction error is checked using 
mean absolute error  (MAE95%) (Roy et al. 2016). There is 
also a provision for the generation of PLS models in the tool. 
Furthermore, the models in the inner loop are selected based 
on three major criteria as follows:

i) The models with the lowest MAE value (on the valida-
tion set) are selected.

ii) Consensus predictions of the top model are selected 
based on the MAE value of the validation set.

iii) Searching out the best descriptor combination from the 
top models.

Researchers found the DCV approach to be reliant and 
useful and thus successfully employed in various applica-
tions, for example, quantitative structure–property relation-
ship (QSPR) modeling for sweetness potency of organic 
chemicals (Ojha and Roy 2018), developing nano-QSAR 
models for  TiO2-based photocatalysts (Mikolajczyk et al. 
2018), inhalational toxicity modeling (Nath et al. 2022), 
modeling of diagnostic agents (De et al. 2019; De et al. 
2020, 2022; De and Roy 2020, 2021), etc.

 (ii) Intelligent consensus predictor tool

A well-validated QSAR model engages different classes 
of descriptors, which accentuate many features of molecular 
structures. Individual QSAR models may exaggerate a few 

important features, undervalue other features, and overlook 
some significant characteristics features. Roy et al. (2018b) 
proposed an “intelligent” selection of multiple models that 
would enhance the quality of predictions of query com-
pounds (Roy et al. 2018b). This software helps judge the 
performance of consensus predictions compared to their 
quality obtained from the individual MLR models based 
on the MAE-based criteria (95%). The tool “Intelligent 
Consensus Prediction” is available from http:// dtclab. webs. 
com/ softw are- tools and http:// teqip. jdvu. ac. in/ QSAR_ Tools/ 
DTCLab/. The tool takes multiple individual models (M1, 
M2, M3, etc.) as input derived using a different combination 
of descriptors from the training set. There are four ways of 
consensus prediction explained in the work:

(i) Consensus model 0 (CM0): it provides a simple aver-
age of predictions from all input individual models.
(ii) Consensus model 1 (CM1): it is the average of predic-
tions from all individual qualified models. It is calculated 
from the arithmetic average of predicted response values 
attained from the ‘n’ qualified models for test compounds 
rather than from all existing individual models.
(iii) Consensus model 2 (CM2): it is the weighted aver-
age prediction (WAP) from all qualified individual mod-
els. In CM2, the average is evaluated by giving a proper 
weightage to the qualified models for a particular test set 
compound.
(iv) Consensus model 3 (CM3): compound-wise best 
selection of predictions from qualified individual mod-
els. The best model for a particular test compound is 
selected based on its cross-validated mean absolute error 
( MAECV) . A model with the lowest value MAECV is the 
best for a particular test set compound.

Fig. 2  Schematic diagram of 
double cross-validation algo-
rithm (colour figure online)

http://dtclab.webs.com/software-tools
http://dtclab.webs.com/software-tools
http://teqip.jdvu.ac.in/QSAR_Tools/DTCLab/
http://teqip.jdvu.ac.in/QSAR_Tools/DTCLab/
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The tool further provides additional selection criteria 
which include:

(a) Euclidean distance cut-off: this is used to find a fitting 
model to predict the test set compound, where 10 most 
similar compounds are selected based on Euclidean 
Distance score. The user can set a Euclidean cut-off 
ranging from 0 to 1 to restrict the selection of only 
those training set compounds with a Euclidean distance 
score less than or equal to the set cut‐off value.

(b) Applicability domain: AD helps to check whether the 
test/query compound is in the chemical space of the 
model or not. A simple standardization approach is 
used for AD determination.

(c) Dixon Q test: this test can be employed to spot and 
remove a response outlier out of selected similar train-
ing set compound.

The complete calculation method is demonstrated in the 
published article by Roy et al. and the methodology is given 
in Fig. 3. The ICP method has found good application in the 
prediction of pharmaceuticals (Khan et al. 2019a), organic 
chemicals and dyes (Roy et al. 2019; Khan and Roy 2019; 
Ghosh and Roy 2019; Ojha et al. 2020), determining aquatic 
toxicity (Hossain and Roy 2018), inhalational toxicity (Nath 
et al. 2022), polymer properties (Khan et al. 2018), etc.

 (iii) Prediction Reliability Indicator tool

A QSAR model is developed based on the physicochemi-
cal features of an appropriately designed training set having 
experimentally derived response data. In contrast, the model 
is validated using one or more test set(s) for which the exper-
imental response data are available. The suitability of this 
model for a completely new data set (true external set) for 
providing a reliable prediction is quite an interesting study. 

Fig. 3  “Intelligent Consensus 
Prediction” algorithm

Fig. 4  Methodology applied for scoring test/query compounds in “Prediction Reliability Indicator” tool
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Roy et al. (2018a, b) have developed a new scheme (Fig. 4) 
to define the reliability of predictions from QSAR models 
for new query compounds and implemented the method in 
a new tool called “Prediction Reliability Indicator” freely 
available from http:// dtclab. webs. com/ softw are- tools and 
http:// teqip. jdvu. ac. in/ QSAR_ Tools/ DTCLab/. This tool is 
applicable for predictions from MLR and PLS models. The 
work aimed at formulating a set of rules/criteria that will 
ultimately empower the user to estimate the quality of pre-
dictions for individual test (external) compounds. Prediction 
of test/external sets can have varying quality. It might not 
be good predictions in all cases, while the model can show 
moderate to bad/unreliable predictions for some of the exter-
nal set compounds. By keeping the variation of prediction 
quality, the authors have hypothesized three rules/criteria 
which might assist in classifying the quality of predictions 
for individual test/external set compounds into good, moder-
ate, and poor/unreliable ones. We have now discussed the 
three rules briefly in the following segment:

(a) Rule/criterion 1: the scoring is based on the quality 
of leave-one-out predictions of the closest 10 training 
compounds to a test/external compound. Here, 10 most 
similar compounds are identified for each test/query 
compound (based on Euclidean distance similarity), 
followed by which mean of absolute LOO prediction 
error ( MAELOO ) is calculated for the selected clos-
est 10 compounds. For a test/query compound whose 
MAELOO is lowest corresponding to its closest train-
ing compounds is predicted well and gets the highest 
prediction score (Prediction Score = 3). Test/query 
compounds that have medium MAELOO values with 
corresponding close training compounds should get a 
moderate score (Prediction Score = 2), and those test 
compounds with corresponding close training com-
pounds having high MAELOO values should get the 
least score (Prediction Score = 1). The MAE-based 
criteria (Roy et al. 2016) are applied here for scoring 
the compounds which involve MAELOO and standard 
deviation ( �LOO ) of the absolute prediction error values.

(b) Rule/criterion 2: scoring based on the similarity-based 
AD using standardization method. The applicability 
domain (AD) of a model plays an important role in 
identifying uncertainty in the prediction of a specific 
chemical (test/query) by that model. This is based on 
how similar is the test/query compound with those in 
the training set. When a test/query compound is similar 
to a small fraction or none of the training compounds, 
the prediction is considered unreliable or fails to fall 
under the training set AD. Here, a simple AD based on 
the standardization approach (Roy et al. 2015a, b) is 
employed.

(c) Rule/Criterion 3: scoring based on the proximity of 
predictions to the training set observed/experimental 
response mean. Earlier, the quality of fit or prediction 
of compounds is better when compounds possess 
experimental response values (training and test com-
pounds) close to the training set observed response 
mean. Thus, in rule/criterion 3, the authors have pro-
posed to assess the prediction quality of a test com-
pound based on the closeness of predicted response 
value to the training set observed/experimental 
response mean. The predicted response value ( Y test

pred
 ) of 

each test compound is first measured using the training 
set model, and then, this Y test

pred
 value is compared with 

the training set experimental response mean ( Y train
mean

 ) and 
the corresponding standard deviation ( �train ). The scor-
ing is based on the following manner:

(i) A test compound with Y test
pred

 value falling within the 
range inside Y train

mean
± 2�train , that is, (Y train

mean
+ 2�train) ≥ 

Y test
pred

  ≥ (Y train
mean

− 2�train ), can be assumed to be well (good) 
predicted by the model and thus have a score 3.

(ii) A test compound with Y test
pred

 value falling within the 
range (Y train

mean
+ 3�train) ≥ Y test

pred
  ≥ (Y train

mean
− 3�train ) and 

(Y train
mean

+ 2�train) < Y test
pred

  < (Y train
mean

− 2�train ) can be presumed 
to be predicted moderately by the model and thus gets a 
score 2.

(iii) A test compound with Y test
pred

 value falling within the 
range (Y train

mean
+ 3�train) < Y test

pred
  < (Y train

mean
− 3�train ) can be 

assumed to be predicted poorly by the model and thus gets 
a score 1.

Furthermore, after these three criteria are checked, a 
weighting scheme is employed to compute a composite score 
for judging the prediction quality of each test compound 
using all three individual scores. The composite score is 
defined as follows:

Here, scorerule1, scorerule2 , and scorerule3 represent the 
scores obtained after applying respective rules, whereas W1

,W2 , W3 indicate the weightage (automatic or user-provided) 
given to each of the three individual scores. The PRI tool 
offers a unique composite score which can act as a marker of 
prediction quality of true external test compound. This tool 
has found application for the prediction of external set/query 
compounds in many areas, viz., endocrine disruptor chemi-
cals (Khan et al. 2019b), metal oxide nanoparticles (De et al. 
2018), organic chemicals (Khan and Roy 2019; Khan et al. 
2019c; De et al. 2020; 2022; Nath et al. 2022), etc.

Composite score =W1 × scorerule1

+W2 × scorerule2

+W3 × scorerule3.

http://dtclab.webs.com/software-tools
http://teqip.jdvu.ac.in/QSAR_Tools/DTCLab/
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 (iv) Small dataset modeler (version 1.0.0) tool

Various specialized datasets involving nanomaterials, 
properties of catalysts, radiosensitizer molecules, etc. have 
smaller number of data points where the division of data 
into training and test sets may not produce robust and pre-
dictive models. A small dataset with 25–50 compounds 
cannot be used for conventional double cross-validation 
as dividing the data set into training and test sets and fur-
ther into calibration and validation sets is not possible. 
Ambure et al. have developed a new tool called the Small 
Dataset Modeler, version 1.0.0 (http:// dtclab. webs. com/ 
softw are- tools and http:// teqip. jdvu. ac. in/ QSAR_ Tools/ 
DTCLab/) solely for small datasets which includes a dou-
ble cross-validation approach to develop a model for a 
small number of data points without training and test sets 
division of the dataset (Ambure et al. 2019) (Fig. 5). Here, 
the whole input set (containing n number of compounds) 
goes into a loop where it is repeatedly split up into calibra-
tion and validation sets (same as in the inner loop of 
DCV). The best possible combinations (k) are tried to 
obtain using validation sets of r compounds and calibra-
tion sets of n–r compounds. The tool asks for the number 
of compounds (i.e., r) in the validation set from the user 
based on which all probable combinations of calibration 
and validation sets are produced. The Multiple Linear 
Regression (MLR) models are generated using the calibra-
t ion  se t  compounds  employ ing  the  Genet ic 

Algorithm-Multiple Linear Regression (GA-MLR) method 
(Devillers 1996; Venkatasubramanian and Sundaram 
2002) of variable selection, while the validation sets are 
employed to judge the predictive ability of the models. 
Numerous important internal ( R2,R2

adj
,Q2

LMO
,MAELOO,

r
2

m
(LOO) metrics) and external ( Q2

F1
,Q2

F2
, r2

m
(test),CCC,

MAEtest ) validation metrics are measured in the exhaustive 
DCV method for all the chosen models. The tool is 
designed in such a way that it also develops Partial Least 
Squares Regression (PLS-R) models based on the descrip-
tors selected in MLR models. The final top model selec-
tion can be done in any five of the following recommended 
ways:

(i) Any model (MLR/PLS) with the smallest MAE (95%) 
in the validation set is chosen.
(ii) Any model (MLR/PLS) with the smallest MAE (95%) 
in the modeling set is chosen.
(iii) Any model (MLR/PLS) with the lowest 
Q2

Leave−Many−Out
 (modeling set) is chosen.

(iv) Implementing consensus predictions using the best 
models that are chosen depending on the MAE (95%) 
in the validation sets. Consensus predictions can be of 
two types: (a) Using a simple arithmetic average of pre-
dictions of the best models. (b) Using a weighted aver-
age of predictions (WAP) by assigning proper weights 
to the top chosen models depending on the mean abso-

Fig. 5  Methodology behind 
the “Small Dataset Modeler” 
(version 1.0.0) tool to perform 
QSAR modeling for a small set 
of data points

http://dtclab.webs.com/software-tools
http://dtclab.webs.com/software-tools
http://teqip.jdvu.ac.in/QSAR_Tools/DTCLab/
http://teqip.jdvu.ac.in/QSAR_Tools/DTCLab/
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lute error obtained from leave-one-out cross-valida-
tion,MAEcv(95%).
(v) A pool of exclusive descriptors from the best models 
with the smallest MAE(95%) obtained from the valida-
tion set is again employed to build models. In the case of 
MLR, the best descriptor combinations are put through 
the Best Subset Selection method. However, in the case 
of a PLS model, descriptors nominated in the top models 
are pooled together for a PLS run.

The method proposed in the “Small Dataset Modeler” 
tool confirms internal divisions of small datasets within the 
DCV technique without taking any test set into account. The 
approach of “Small Dataset Modeler” tool integrates data 
curation, exhaustive DCV technique, and ideal modeling 
techniques entailing consensus predictions to develop mod-
els, principally for a small set of data points. The methodol-
ogy behind the “Small Dataset Modeler” tool is schemati-
cally presented in Fig. 5. Small dataset modeling has found 
use in environmental toxicity modeling including acute 
toxicity of antifungal agents toward fish species (Nath et al. 
2021) and soil ecotoxicity (Lavado et al. 2022), radiosensi-
tization modeling (De and Roy 2020), modeling of Hepatitis 
C virus inhibitor protein (Ejeh et al. 2021), and modeling 
anesthetics causing GABA inhibition (Stošić et al. 2020).

(v) Read-Across-v3.1 tool

The read-across methodology has gained immense atten-
tion in recent years, because it is a non-testing approach 

that can be utilized for data-gap filling. The basic aim of 
the read-across technique is to predict endpoint information 
for one or more chemicals (i.e., the target chemicals) using 
data from the same endpoint from another substance (the 
source chemicals) using the similarity principle. The method 
is widely used as an alternative tool for hazard assessment to 
fill data gaps (ECHA 2011). Read-across based predictions 
seem to be more fitting for small data sets (limited source 
compounds). Hence, it has provided promising results in 
nanosafety assessment possessing limited data. Chatterjee 
and co-workers (2022) developed a new prediction-oriented 
quantitative read-across approach based on certain similarity 
principles. The reported work verifies the efficiency of the 
newly developed read-across algorithm in filling nanosafety 
data gaps. A tool has been developed to facilitate the imple-
mentation of the approach (Fig. 6) for quantitative read-
across which is available from https:// sites. google. com/ jadav 
purun ivers ity. in/ dtc- lab- softw are/ home. The tool allows 
the users to optimize different hyperparameters includ-
ing similarity kernel functions and distance and similarity 
thresholds to get the best quality of quantitative predictions. 
Mainly, three types of similarity estimation techniques were 
introduced involving Euclidean distance, Gaussian kernel 
function, and Laplacian kernel function. The algorithm 
developed in this study was optimized using three small 
nanotoxicity datasets (n ≤ 20). The algorithm is based on 
two basic steps: (a) finding the 10 most similar training 
compounds for each query or test compound; (b) calculat-
ing the weighted average prediction of test set compounds 
from the most similar training set compounds. Different 

Fig. 6  Quantitative read-across algorithm

https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home
https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home
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hyperparameters like sigma and gamma values in Gauss-
ian and Laplacian kernel functions have been optimized. 
The effect of the number of close training compounds on 
the prediction quality has been evaluated; 2–5 close training 
compounds can efficiently predict the toxicity of query com-
pounds. Another feature incorporation in the tool involves 
a distance threshold for the Euclidean distance similarity 
estimation and a similarity threshold for the Gaussian and 
Laplacian kernel function similarity estimations. This gen-
erated better prediction at the distance threshold of 0.4–0.5 
and a similarity threshold of 0.00–0.05. This algorithm is 
easy to use, proficient, and an expert independent alternative 
method for the nanoparticle toxicity prediction which can 
further assist in data-gap filling and prioritization. Version 
3.1 of this tool also computes classification-based validation 
metrics and generates receiver operating curve (ROC) for 
predictions which can be used to estimate the uncertainty of 
predictions. The tool is also applicable for several endpoints 
other than nanotoxicity, for example activity/toxicity/prop-
erty of organic compounds in general.

Future perspectives

Over the past few decades, the QSAR methodology has 
received both praise and criticism in connection to its reli-
ability, limitations, successes, and failures. The above dis-
cussion of the aforementioned tools from the DTC Labora-
tory provides methods and information relating to QSAR 
model development and validation, pointing out current 
trends, unresolved problems, and persistent challenges asso-
ciated with evolution of QSAR. Furthermore, there are few 
scopes of further refining the present tools like inclusion 
of computation of Golbraikh and Tropsha’s (Golbraikh and 
Tropsha 2002) criteria in the Double Cross Validation tool 
and computation of leave-many-out cross-validation ( Q2

LMO
 ) 

criteria for both the Double Cross Validation tool and Small 
Dataset Modeler tool (PLS version), etc. Additionally, there 
is an opportunity to incorporate an uncertainty measure of 
predictions in the read-across tool which will improve the 
reliability for quantitative predictions of untested molecules.

Conclusion

The QSAR domain has been expanded substantially in 
the past few years as databases and their applications have 
grown. As the field of QSAR evolves through decades, it is 
necessary to evaluate the effectiveness of the QSAR models 
in predicting the behavior of new molecules. A QSAR model 
stands on the pillars of various validation metrics used to 
assess the quality of a predictive model that portrays the true 

picture of the prediction errors. The present review explains 
various internal and external validation metrics necessary for 
model predictivity assessment. Furthermore, a brief explana-
tion of various innovative QSAR modeling tools developed 
by Drug Theoretics and Cheminformatics (DTC) laboratory 
(https:// sites. google. com/ site/ kunal royin dia/ home/ qsar- 
model- devel opment- tools) is given for better selection and 
development of models. These tools are aimed at addressing 
various features like selection of training set, model develop-
ment methodology, model selection techniques, the use of 
multiple models, scoring of query compounds, etc. These 
improvisations helped in enhancing the quality of predictions 
of QSAR models. The tools highly assist in the reliability 
estimation of untested chemicals when experimental data are 
unavailable. However, most of these tools cannot be used for 
classification-based/graded data, but are well suited for quan-
titative models like MLR and PLS regression. Furthermore, 
the tools have a major role in different fields for predicting 
chemicals associated with the pharmaceutical industry, cos-
meceuticals, polymer chemistry, diagnostic agents, dyes, 
nano-chemistry, food chemistry, etc.
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