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Preface 

The presented work in this dissertation is spread over a span of four and half years. The current 

dissertation employed, numerous in silico techniques to study the potential leads against Alzheimer’s 

disease. Alzheimer’s disease (AD) is a progressive neuropathological disorder, found in the most 

common form of dementia, which causes severe brain deterioration and cognitive function loss. AD is 

a degenerative ailment that is thought to begin decades before symptoms appear. Clinicians are only 

able to identify even the first signs of AD after significant damage has already been done to crucial 

biological components. The root cause of AD is still uncertain, which is one of the main reasons for 

being incurable, while various hypotheses, such as, cholinergic hypothesis, amyloid hypothesis and tau 

hypothesis, oxidative stress hypothesis etc. have been proposed. At present only symptomatic treatment 

is available, which is based on several hypotheses that were found to be associated with AD. Based on 

these hypotheses  twelve biological targets were studied in this work, where twelve main biological 

targets, namely, AChE, BuChE, BACE1, 5-HT6, CDK-5, Gamma (γ)-secretase, Glutaminyl Cyclase 

(QCs), GSK-3β, NMDA receptor, amyloid-beta plaques (Aβ), PDE 10A and MAO-B enzyme are 

targeted to find appropriate treatment in AD. 

In the modern world, drugs that only target one enzyme or receptor are thought to be insufficient for 

the treatment of complex diseases, whose causes are frequently multifactorial, including 

neurodegenerative disorders. An emerging approach is to design a drug that is capable of hitting 

multiple biological targets. Such molecules are named multi-target-directed ligands (MTDLs). This 

strategy is challenging to implement, but it is far superior to earlier approaches such as multiple-

medication therapy or multiple-compound medication because the MTDLs approach avoids any 

potential drug-drug interactions as well as the complications associated with the simultaneous use of 

numerous drugs, which may have varied solubility, absorption, bioavailability, distribution, and 

metabolism rate. An emerging area of pharmaceutical science called polypharmacology is involved in 

developing drugs that can target numerous disease pathways and multiple targets at once. The 

fundamental of polypharmacology is to study and recognize the interactions between potential drugs 

and different target proteins. Though, studying the drug-protein interactions at the experimental level 

is highly challenging, expensive, and time-consuming. In silico or computational methods play an 

important role in finding MTDLs, saving both cost and time. In the present thesis work, numerous in 

silico techniques were employed to study the potential leads against AD. The main objective was to 

use different in silico approaches to find and improve potential anti-Alzheimer's leads against several 

crucial targets involved in AD. Along with the single-target drug designing approach, we have also 

focused on identifying or designing dual-binding site AChE inhibitors, as well as multi-target 

inhibitors. Further, we have explored the selectivity issue of inhibitors against AChE over BuChE, 

which is a commonly observed issue while designing molecules against enzymes. 

Furthermore, the development of inhibitors against AD is a challenging procedure due to the 

complication of the molecular pathways involved in the progression of the disease. Computer‐Aided 

Drug Design (CADD) uses computer power, three‐dimensional graphics, mathematics, and statistics to 

understand and predict the binding mode and energy of small molecule inhibitors with potential targets. 

The most common in-silico techniques employed by medicinal chemists to help them rationalize the 

selection of hit compounds and to perform hit‐to‐lead optimization include structure‐based design like 

molecular docking and dynamics and ligand‐based design like quantitative structure‐activity 
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relationships (QSAR), chemical Read-Across and pharmacophore mapping. Among these 

methodologies, the quantitative structure-activity relationship (QSAR) and molecular docking have 

great applications in the area of in-silico search. The QSAR methods are essential for the exploration 

of important structural features and prediction of the biological activity of novel compounds based on 

mathematical and statistical relations. The idea of QSAR is based on the concept that endpoint values 

of compounds change systematically with modification of the structural attributes. In the present thesis 

work, numerous in silico techniques were employed to study the potential leads against AD. The main 

objective was to use different in silico approaches to find and improve potential anti-Alzheimer's leads 

against several crucial targets involved in AD. Along with the single-target drug designing approach, 

we have also focused on identifying or designing dual-binding site AChE inhibitors, as well as multi-

target inhibitors. Further, we have explored the selectivity issue of inhibitors against AChE over 

BuChE, which is a commonly observed issue while designing molecules against enzymes. Although 

we used a variety of in silico methods, such as QSAR, molecular docking, pharmacophore modeling, 

virtual screening, and so on, the majority of our work is focused on developing predictive and 

statistically robust QSAR models. The QSAR approach is used extensively in the lead optimization 

step of any drug development effort to reduce time, money, and, most importantly, animal sacrifice. A 

QSAR model is used to identify the structural features responsible for the activity as well as to achieve 

selectivity. Additionally, we have also developed the quantitative structure activity-activity relationship 

(QSAAR) and selectivity-based models to explore the most important features contributing to the dual 

inhibition against the respective targets. Furthermore, the model provides significant information for 

designing new compounds with improved activity, and it is used to predict the activity of a query or 

newly designed compound. 

The following studies have been performed in this dissertation: 

A Multi-layered Variable Selection Strategy for QSAR Modeling of Butyrylcholinesterase Inhibitors. 

Exploring 2D-QSAR for prediction of Beta-secretase 1 (BACE1) inhibitory activity against 

Alzheimer’s disease. 

Cheminformatic modeling of β-amyloid aggregation inhibitory activity against Alzheimer's disease. 

Chemometric modeling of structurally diverse carbamates for the inhibition of acetylcholinesterase 

enzyme (AChE) in Alzheimer’s disease 

In silico modeling for dual inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase 

(BuChE) enzymes in Alzheimer’s disease 

Multi-target QSAR modeling for the identification of novel inhibitors against Alzheimer's disease 
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The work has been presented in this dissertation under the following sections: 

 

Chapter 1 : Introduction 

Chapter 2 : Present work 

Chapter 3 : Materials and methods 

Chapter 4 : Results and discussions 

Chapter 5 : Conclusion 

                     References 

 Appendix : Reprints 

 

In the “Introduction” section, the basic information is provided on Alzheimer’s disease, its present 

status, diagnosis, and the factors associated with the disease. This section also includes current 

approaches to design MTDLs, detail information on the computational methods implemented in this 

work and a short review on QSAR studies that were performed on anti-Alzheimer’s agents. The sources 

of the employed datasets and the planned work have been discussed in the ‘Present Work’ section. The 

detailed information associated to the descriptors and the methodologies has been provided in the 

section ‘Materials and Methods’, while the results have been thoroughly discussed in ‘Results and 

Discussions’ section. Finally, ‘Conclusion’ has been incorporated followed by ‘References’. The 

studies thus performed have been published in different reputed international journals and also 

presented in different national and international conferences which have been included under the 

section ‘Reprints’. Though, the work done and presented in this dissertation constitutes a small part of 

the broad spectrum of envisaged work. Considering the stipulated time limit, only some representative 

and relevant studies could be performed. Many other interesting aspects arising out of this work could 

have been investigated in a far more meaningful way, which might be planned in future. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 
 

 

 

 

 

 

  

  

 

 

  

 

 

 

 

 

 

 

 

 

  

 



                                                                                                                               Abbreviations                                                                                                                                                                                                    

 

 

 
v 

 

  

Abbreviations 
2D QSAR Two dimensional QSAR 

3D QSAR Three dimensional QSAR 

4D QSAR Four dimensional QSAR 

5D QSAR Five dimensional QSAR 

5-HT6                  5-hydroxytryptamine 6 

6D QSAR Six dimensional QSAR 

7D QSAR Seven dimensional QSAR 

7-MEOTA           7-mehtoxytacrine 

AChE  Acetylcholinesterase 

AChEIs  AChE inhibitors 

AD   Alzheimer’s disease 

ADMET  Adsorption, distribution,     

metabolism, excretion and 

toxicity 

AE  Absolute error 

ANN   Artificial neural network 

APP  Amyloid precursor protein 

AUC   Area under the curve 

Aβ   Amyloid-beta 

BACE1 Beta (β)-site amyloid precursor 

protein cleaving enzyme 1 

BuChE                 Butyrylcholinesterase 

CADD   Computer aided drug design 

CCC  Concordance correlation   

                             Coefficient 

CDK2  Cyclin-dependant kinase 2 

CDK5  Cyclin-dependant kinase 5 

CK1                     Casein kinase 1 

CNS  Central nervous system 

CoMFA  Comparative molecular field 

analysis 

CoMSIA  Comparative molecular similarity 

indices 

DF   Discriminant function 

DTDLs  Dual-target directed ligands 

E-state   Electrotopological state 

ETA   Extended topochemical atom 

FDA   Food and drug administration 

G/PLS   Genetic partial least squares 

GA  Genetic algorithm 

GFA   Genetic function approximation 

GQSAR  Group based quantitative 

structure activity relationship 

GSK-3β   Glycogen synthase kinase 3β 

HBA   Hydrogen bond acceptor 

HBD   Hydrogen bond donor 

HYD  Hydrophobic 

KNIME  Konstanz Information Miner 

LBDD  Ligand-based drug design 

LFER   Linear free energy relationships 

LMO  Leave-many-out 

LOF   Lack of fit 

LOO   Leave-one-out 

LR   Linear Regression 

MAE  Mean absolute error 

MAO-B  Monoamine oxidase-B 

MLR   Multiple linear regression 

MMPs  Matched molecular pairs 

MOE Molecular operating environment 

software 

MAPK                 Mitogen-activated protein kinases 

MSA  Molecular spectrum analysis 

MTDD  Multi-target drug designing 

MTDLs  Multi-target-directed ligands 

NMDA  N-methyl-D-aspartate 

OECD Organization for economic co-

operation and development 

PCA   Principal Component analysis 

PDB  Protein data bank 

PDE 10A             Phosphodiesterase 10A 

PLS   Partial least squares 

PRESS   Predicted residual sum of squares 

PSEN1                 Presenilin 1 

QAAR Quantitative activity-activity 

relationship 

QCs                      Glutaminyl Cyclase 

QSAR  Quantitative structure-activity 

relationship 

QSPR Quantitative structure-property 

relationship 

QSTR  Quantitative structure-toxicity 

relationship 

RA  Ring aromatic 

RDD  Rational drug design 

REACH Registration, evaluation, 

authorisation and restriction of 

chemicals 

RMSD  Root mean square deviation 

rmsep  Root mean square error in 

prediction 

ROC  Receiver operating characteristics 

curve 

ROS                     Reactive oxygen species 

RTO  Regression through origin 

SBDD  Structured-based drug design 

SD   Standard deviation 

SDEP  Standard deviation of error of 

prediction 

SDF  Structure data format/file 

SEE   Standard error of estimate 

S-MLR Stepwise- multiple linear 

regression 

SVM   Support vector machine 

TSMs                   target-specific medicines 

VS   Virtual screening 

WHIM Weighted holistic invariant 

molecular descriptor 

WHO   World health organization



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Table of Contents 

 

Chapter 1: Introduction .................................................................................................... 1-35 

1.1. Alzheimer’s disease- a multi-factorial disease ..................................................................... 1 

1.1.1. History and the major hallmarks .......................................................................................... 1 

1.1.2. Current status (statistics) ...................................................................................................... 1 

1.1.3. Signs and symptoms ............................................................................................................ 2 

1.1.4. Multiple factors linked with AD .......................................................................................... 3 

1.1.5. Diagnosis and treatment....................................................................................................... 5 

1.1.6. Different biological targets focused in this study ................................................................ 7 

1.1.7. Current approaches to design multi-target directed ligands (MTDLs) in AD ................... 14 

1.2. Computer-aided drug design (CADD) .............................................................................. 18 

1.2.1. Quantitative structure-activity relationship (QSAR) ......................................................... 18 

1.2.2. Other in silico methods employed ..................................................................................... 25 

1.3. Review: QSAR studies performed on anti-Alzheimer’s compounds .................................... 26 

    1.4. Activity data sources, and freely available CADD software and tools……………….33 

Chapter 2: Present work ................................................................................................. 36-40 

2.1. Datasets employed .......................................................................................................... 38 

2.1.1. Dataset I (study 1) .............................................................................................................. 38 

2.1.2. Dataset II (study 2) ............................................................................................................ 39 

2.1.3. Dataset III (study 3) ........................................................................................................... 39 

2.1.4. Dataset IV (study 4) ........................................................................................................... 39 

2.1.5. Dataset V (study 5) ............................................................................................................ 40 

2.1.6. Dataset VIA-V (study 6) .................................................................................................... 40 

Chapter 3: Materials and methods ................................................................................. 41-90 

3.1. Study 1-A Multi-layered Variable Selection Strategy for QSAR Modeling of 

Butyrylcholinesterase Inhibitors ....................................................................................... 41 

3.2. Study 2- Exploring 2D-QSAR for prediction of Beta-secretase 1 (BACE1) 

inhibitory activity against Alzheimer’s disease ................................................................ 46 

3.3. Study 3- Cheminformatic modeling of β-amyloid aggregation inhibitory activity 

against Alzheimer's disease .............................................................................................. 60 

3.4. Study 4- Chemometric modeling of structurally diverse carbamates for the 

inhibition of acetylcholinesterase enzyme (AChE) in Alzheimer’s disease ..................... 64 

3.5. Study 5- In silico modeling for dual inhibition of acetylcholinesterase (AChE) and 

butyrylcholinesterase (BuChE) enzymes in Alzheimer’s disease ..................................... 81 

3.6. Study 6- Multi-target QSAR modeling for the identification of novel inhibitors 

against Alzheimer's disease .............................................................................................. 85 

Chapter 4: Results and discussions .............................................................................. 91-259 

4.1. Study 1- A Multi-layered Variable Selection Strategy for QSAR Modeling of 

Butyrylcholinesterase Inhibitors ....................................................................................... 91 

4.2. Study 2- Exploring 2D-QSAR for prediction of Beta-secretase 1 (BACE1) inhibitory 

activity against Alzheimer’s disease ............................................................................... 116 

4.3. Study 3- Cheminformatic modeling of β-amyloid aggregation inhibitory activity 

against Alzheimer's disease ............................................................................................ 138 



 

 

4.4. Study 4- Chemometric modeling of structurally diverse carbamates for the inhibition 

of acetylcholinesterase enzyme (AChE) in Alzheimer’s disease ....................................... 161 

4.5. Study 5- In silico modeling for dual inhibition of acetylcholinesterase (AChE) and 

butyrylcholinesterase (BuChE) enzymes in Alzheimer’s disease ...................................... 187 

4.6. Study 6- Multi-target QSAR modeling for the identification of novel inhibitors against 

Alzheimer's disease ....................................................................................................... 214 

 

Chapter 5: Conclusion ................................................................................................. 260-265 

5.1. Study 1- A Multi-layered Variable Selection Strategy for QSAR Modeling of 

Butyrylcholinesterase Inhibitors ..................................................................................... 261 

5.2. Study 2- Exploring 2D-QSAR for prediction of Beta-secretase 1 (BACE1) inhibitory 

activity against Alzheimer’s disease ............................................................................... 261 

5.3. Study 3- Cheminformatic modeling of β-amyloid aggregation inhibitory activity 

against Alzheimer's disease ............................................................................................ 262 

5.4. Study 4- Chemometric modeling of structurally diverse carbamates for the inhibition 

of acetylcholinesterase enzyme (AChE) in Alzheimer’s disease ....................................... 262 

5.5. Study 5- In silico modeling for dual inhibition of acetylcholinesterase (AChE) and 

butyrylcholinesterase (BuChE) enzymes in Alzheimer’s disease ...................................... 263 

5.6. Study 6- Multi-target QSAR modeling for the identification of novel inhibitors against 

Alzheimer's disease ....................................................................................................... 264 

    5.7. Overall conclusion…………………………………………………………………265 

 

References ..................................................................................................................... 266-288 

 

Appendix: Reprints 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 
CHAPTER - 1 

 
 

 

 

 

 

 

 

 

 

 

 

 

INTRODUCTION 
 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 1 Introduction 

 

 

 
1 

 

  

 

Chapter 1: Introduction 
 

1.1. Alzheimer’s disease (AD)-a multi-factorial disease 

Alzheimer's disease (AD) is a complex, progressive neurological disease, which contributes to about 

60–80% of all dementia cases1. Most people are unsure about the distinction between Alzheimer's and 

dementia. Dementia is a broad term that refers to a set of symptoms1-2. Dementia is characterized by 

concerns with memory, language, problem-solving, and other intellectual abilities that limit a person's 

ability to carry out daily activities3. Dementia has various causes such as AD, cerebrovascular disease, 

Lewy body disease, Frontotemporal lobar degeneration (FTLD), Parkinson’s disease (PD), 

Hippocampal sclerosis (HS), and mixed pathologies2. AD is the most prevalent type of dementia1-3. The 

initial signs of the disease may be a constant decline in loss of short-term memory and intellectual 

functions, repeatedly accompanied by abnormal behavior such as aggression and depression, and lastly, 

the ability to perform basic activities of daily living (ADLs), which ultimately lead to death1-3. 

1.1.1. History and the major hallmarks 

Dr. Alois Alzheimer, a German psychiatrist, noticed the progressive decline in cognitive abilities such 

as memory loss, language problems, and unpredictable behavior in Auguste D., one of his female 

patients, in 19014-5. Dr. Alois investigated and studied her brain tissues after she died in 1906 and 

discovered two types of aberrant deposits inside and between nerve cells, which are now known as 

amyloid plaques and neurofibrillary tangles, respectively4-5. Dr. A. Alzheimer named this disorder 

“presenile dementia”, first in 1906. Afterward, Dr. Emil Kraepelin, a coworker of Dr. Alzheimer 

suggested the name “Alzheimer’s disease” instead of “presenile dementia”4-5. More than a century after 

the disease was first described, the two fundamental pathology hallmarks continue to be the primary 

explanation for its pathophysiology. Other prominent markers include brain atrophy, dementia, and 

inflammation. 

1.1.2. Current status (statistics) 

It is challenging to predict how many deaths are caused by AD each year due to the way the causes of 

death are recorded. Statistics show that AD is the fifth leading cause of death for people aged 65 and 

above, and the sixth main cause of death worldwide2, 5. However, it might be too responsible for many 

more fatalities than what has been reported in official sources. Among elderly people, AD is a 

significant contributor to the morbidity-a state of poor health and disability. Before dying from 

Alzheimer's, a person has years of morbidity as the disease advances. According to preliminary data 

from the Centers for Disease Control and Prevention (CDC)2, 5, excess mortality (the difference between 

the observed and projected number of deaths for a specific period) was extremely high in 2020 

compared to prior years, particularly among older persons. Most of these increased deaths happened 

among vulnerable aged persons suffering from AD and other dementias2, 5. Preliminary CDC records 

show that in 2020, there were at least 42,000 more deaths from AD and other dementias than there were 

on average in the five years before 20202, 5. This is about 16% higher than expected2, 5. Furthermore, 

the number of COVID-19 deaths for which the death certificate stated more than one condition as a 

cause of death was also counted by the CDC: in 4% of death certificates stating COVID-19 as the main 

reason for death, AD was also indicated as one of the various reasons of death, and in 11% of death 

certificates identifying COVID-19 as the prime cause of demise, there was also a record of an 

unspecified form of dementia2, 5. AD was identified as one of several reasons for death for 8% of 
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patients over the age of 85 who died from COVID-19, whereas vascular dementia was indicated for 

20%2, 5. As a result, we anticipate that the substantial impact of this epidemic on Alzheimer's death 

patterns will be evident in the coming years. According to the World Alzheimer Report 20102, 5, 35.6 

million people were living with dementia worldwide. Further, according to the World Alzheimer Report 

20152, 5, it is estimated that around the world, there have been ≈9.9 million new cases of dementia in 

2015, i.e., one case was reported every 3 seconds, and there were around 46.8 million people worldwide 

living with dementia. According to the World Alzheimer Report 20215, there were around 55 million 

people worldwide living with dementia, and the figure is expected to exceed 80 million in 2030 and 

152 million in 2050 worldwide. 

1.1.3. Signs and symptoms 

AD is estimated to start 20 years or more before it manifests symptoms2, 5-6. It begins with undetectable 

alterations in the brain of the individual who is affected [2, 5-6]. Individuals only begin to notice 

symptoms such as memory loss and language difficulties after years of brain changes. Symptoms occur 

as a result of nerve cell damage or destruction in areas of the brain involved in intellectual functions, 

learning, and memory (cognitive abilities)2, 5-6. Other sections of the brain's neurons are also damaged 

as the disease progresses 2, 5-6. Neurons in areas of the brain that allow a person to walk and swallow 

become impaired with time. Individuals become bedridden and demand 24-hour care. Alzheimer's 

disease is fatal in the end. The onset of symptoms in more than 90% of AD patients occurs after the age 

of 60, and the disease becomes more common as people get older2, 5-6. The consequences of such AD-

related factors differ from person to person. Rarely, do patients with early-onset AD experience AD 

symptoms at 30, 40, or 50 years old2, 5-6. AD is a developing healthcare concern, with increased life 

expectancy as the primary risk cause. The disease prevalence is expected to more than double over the 

next several decades in the absence of adequate prevention and treatment strategies. Complex AD 

pathogenesis and progression are influenced by various pathophysiological events occurring 

sequentially in the brain depicted in Figure 1.1. 
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Figure 1.1. Complex AD pathogenesis and progression are influenced by various pathophysiological 

events occurring sequentially in the brain. 

1.1.4. Multiple factors linked with AD 

1.1.4.1. Genetic factors 

AD can be genetic as an autosomal dominant disease with nearly perfect penetrance. The disease's 

autosomal dominant type is caused by mutations in three genes: the AAP gene on chromosome 21, the 

Presenilin 1 (PSEN1) gene on chromosome 14, and the Presenilin 2 (PSEN2) gene on chromosome 17-

9. The formation and aggregation of the beta-amyloid peptide may increase as a result of APP mutations. 

PSEN1 and PSEN2 mutations cause beta-amyloid aggregation by interfering with gamma-secretase 

processing7-9. Most cases of early-onset AD and 5 to 10% of all cases are caused by mutations in these 

three genes7-9. Apolipoprotein E is an additional genetic marker that raises the risk of AD7-9. It is a lipid 

metabolism regulator with an affinity for beta-amyloid protein7-9. The APOE isoform e4 gene, which 

is located on chromosome 19, has been linked to more sporadic and familial types of AD that manifest 

after age 657-9. The existence of one APOEe4 allele does not always result in AD, but roughly 50% of 

people with one APOE-e4 allele have AD, and 90% of people with two alleles develop AD7-9. The age 
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of disease onset decreases with each APOEe4 allele. The APOEe4 allele is a significant risk factor for 

developing AD7-9. Both familial and sporadic types of AD have been linked to variations in the sortilin 

receptor SORT1 gene, which is crucial for moving APP from the cell surface to the Golgi-endoplasmic 

reticulum complex 

1.1.4.2. Non-genetic factors 

Although various hypotheses have been proposed to explain AD, none of them can pinpoint the precise 

aetiology of the disease5, 7-9. The most prevailing theory for treating AD is the cholinergic hypothesis, 

which refers to the enzymes acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE)5, 7-9. A 

healthy brain needs acetylcholine to accomplish cognitive processes, making it a crucial 

neurotransmitter5, 7-9. BuChE is a sister enzyme of AChE 5, 7-9. The usual ratio of BuChE to AChE in 

the brain can change from 0.6 to 11 in AD when the activity level of the AChE enzyme decreases and 

the level of BuChE activity increases5, 7-9. These facts have led to the dual inhibition approach for these 

enzymes being suggested to improve the efficacy of the therapeutic strategy and improve the 

indications5, 7-9. Therefore, AChE and BuChE inhibitors have become significant tools in the treatment 

of AD. Though the effects of the enzymes appear mainly to be symptomatic, but have possible 

neuroprotective effects. Currently, four cholinesterase inhibitors, like tacrine, donepezil, galantamine, 

and rivastigmine (FDA-approved) are used for the symptomatic treatment of AD. Senile or amyloid-

beta (Aβ) plaques and neurofibrillary tangles are the two main hallmarks of AD, as formerly known5, 7-

9. These two key hypotheses named the amyloid hypothesis and the tau hypothesis was established in 

light of these characteristics. According to the amyloid hypothesis, Aβ accumulation is a basic cause 

of AD5, 7-9. In normal brain physiology, APP is cleaved by β, γ, and α secretase enzymes yielding 40 

soluble amino acid peptides5, 7-9.  But, in the case of AD, a two-step proteolytic process is initiated by 

the Swedish double mutation at the BACE1 (β-secretase) followed by γ-secretase (catalytic subunits 

presenilin 1 and 2) yielding a 42 insoluble amino acid peptide called amyloid-β (Aβ), and consequently 

forming β-amyloid plaque5, 7-9. According to the tau hypothesis, neurofibrillary tangles are formed when 

tau proteins are hyperphosphorylated5, 7-9. This ultimately results in the transport mechanism of the 

neuron failing due to the disintegration of microtubules5, 7-9. Furthermore, dysregulation in several 

protein kinases, including glycogen synthase kinase 3 (GSK3), mitogen-activated protein kinases 

(MAPK), casein kinase 1 (CK1), and cyclin-dependent kinase 5 (CDK5), which can act as effective 

targets, contributes to the hyperphosphorylation of tau proteins5, 7-9. According to the myelin hypothesis, 

AD may potentially be led on by the breakdown of myelin with aging in the brain. It is thought that 

further harm is caused by the local release of iron and cholesterol during myelin breakdown. According 

to the oxidative stress theory, the pathophysiology of neuronal death in AD may be caused by the brain 

experiencing chronically elevated levels of oxidative stress. Anti-oxidants can therefore be used in this 

situation to eliminate reactive oxygen species (ROS) or stop their synthesis. One of the potential targets 

is a monoamine oxidase (MAO-B), which is known to be involved in the formation of ROS, which 

directly destroys neuronal cells. Moreover, the mitochondria-targeted antioxidants have also 

demonstrated efficacy against Aβ plaques in an animal investigation, while humans (with mild to 

moderate AD) have shown better cognitive performance and behavioral impairments. Important targets 

of AD that are based on the above-mentioned hypotheses are shown in Figure 1.2. 
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Figure 1.2. Proposed targets for the design and development of drugs against AD. 5-HT6R: 5-

hydroxytryptamine-6 receptor; Aβ: beta-amyloid; AChE: Acetylcholinesterase; CDK5/p25: Cyclin-

dependant kinase 5/p25; CK1: Casein kinase 1; Dyrk1A: Dual-specificity tyrosine phosphorylation-

regulated kinase 1A; GSK3: Glycogen synthase kinase-3; VAChT: Vesicular acetylcholine transporter. 

1.1.5. Diagnosis and treatment 

It has been shown that the early brain damage associated with AD starts to manifest far before the onset 

of the clinical symptoms2, 5. The diagnosis of AD is based primarily on the patient's medical history, 

the collateral histories of their family, and clinical observations on the presence or absence of distinctive 

neurological and cognitive characteristics2, 5. Structure imaging, functional imaging, and molecular 

imaging are among the brain imaging or neuroimaging technologies employed in AD research2, 5. 

Molecular imaging techniques are one of the most active study fields among the aforementioned 

technologies that could help detect AD early on, that is, even before changes to the structure or activity 

of the brain. Molecular imaging agents now used in Alzheimer's disease research (see Table 1.1) 

include Pittsburgh Compound-B (PiB, 2-(4-[11C] methylaminophenyl)-6-hydroxybenzothiazole), F-

flutemetamol, F-florbetapir, and F-florbetaben2, 5. Undeniably, worldwide researchers have made 

significant efforts to the identification of novel strategies for the treatment of AD. AChE enzyme 

inhibitors (Donepezil, Galantamine, Tacrine, and Rivastigmine) and NMDA receptor blockers 

(Memantine) are the only two kinds of drugs available for the treatment of AD (see Figure 1.3)2, 5. 

Very recently, Aducanumab (Brand name: Aduhelm) was approved by FDA for the treatment of AD 

(see Table 1.1)10. It is an amyloid beta-directed monoclonal antibody that targets aggregated forms of 

amyloid beta found in the brains of people with AD to reduce its buildup10. It was developed by Biogen 

and Eisai10. Additionally, the availability of more recent atypical neuroleptics and serotonin-modulating 

antidepressants has increased hope for effective therapy of AD10. The therapeutic efficacy of these 

substances is still somewhat limited, despite their usage in medicine. As a result, throughout the last 



Chapter 1 Introduction 

 

 

 
6 

 

  

decade, the emphasis has switched to the development of a new therapeutic strategy for the treatment 

of AD. New hope for the treatment of AD has been provided by the development of a 7-mehtoxytacrine 

(7-MEOTA) derivative based on the multi-target-directed ligand. 

Table 1.1. A list of pharmaceuticals and neuroimaging agents that have received FDA approval for 

diagnosis and treating symptoms of Alzheimer's disease, respectively. 

Serial No. Name 
Brand name 

(NDA* number) 

Molecular 

target 

Approved for 

disease  stage 

Year of FDA 

approval 

Drugs for symptomatic treatment 

1 Donepezil 
Aricept 

(NDA 20-690) 
AChE All stages 1996 

2 Rivastigmine 
Exelon 

(NDA 20-823) 
AChE Mild to moderate 2000 

3 Galantamine 
Razadyne 

(NDA 21-169) 
AChE Mild to moderate 2001 

4 Memantine 
Namenda 

(NDA 21-487) 

NMDA 

receptor 
Moderate to severe 2003 

5 
Donepezil + 

Memantine 

Namzaric 

(NDA 206-439) 

AChE + 

NMDA 

receptor 

Moderate to severe 2014 

6 Aducanumab 
Aduhelm 

(NDA 761178) 
β-Amyloid Moderate to severe 2021 

Imaging agents for diagnosis 

1 18F-florbetapir 
Amyvid 

(NDA 202008) 
Aβ plaques - 2012 

2 18F-flutemetamol 
Vizamyl 

(NDA 203137) 
Aβ plaques - 2013 

3 18F-florbetaben 
Neuraceq 

(NDA 204677) 
Aβ plaques - 2014 

*NDA: New Drug Application 
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Figure 1.3. List of approved drugs and molecules in clinical trials. 

1.1.6. Different biological targets focused in this study 

1.1.6.1. Acetylcholinesterase (AChE) and Butyrylcholinesterase (BuChE) enzyme 

The well-known “cholinergic hypothesis” relates neuronal degeneration with the loss of cholinergic 

neurotransmission. This is the oldest hypothesis of AD progression, according to which, a reduced 

synthesis of neurotransmitters acetylcholine (terminated by acetylcholinesterase (AChE) and 

butyrylcholinesterase (BuChE))11-12 results in neuroinflammation and large scale aggregation of β-

amyloid. Even though the distinctive features of neurodegeneration in Alzheimer's brains are well 

known, one of the current difficulties is related to the lack of solid evidence regarding the crucial factors 

that give rise to the pathogenesis of this disease, creating a great challenge for the efficient treatments 

of AD. The current treatment strategy for AD patients is the use of AChE enzyme inhibitors, which 

give only symptomatic relief. However, recent studies indicated a long-lasting effect in a certain 

percentage of patients. There are accumulating shreds of evidence that AChE and BuChE have 

secondary non-cholinergic functions including the processing and deposition of β-amyloid (Aβ). 

BuChE and AChE could play a role in the Aβ metabolism and during an early step in the development 

of the senile plaque, as revealed by the finding that AChE and BuChE accelerate Aβ deposition. 

Considering the non-classical BuChE and AChE functions, their relationships with AD hallmarks and 

the assumed role of the peripheral anionic site in all these functions, the dual binding site ChE inhibitors 

may acquire importance for the AD treatment. On the other hand, the interference of AChE inhibitors 

with Aβ processing is not a general rule for this class of compounds with the involvement of other 

features such as chemical structure and/or genetic regulation11-12. The recent development of highly 

selective BuChE inhibitors (2-Phenylbenzofuran derivatives)11-12 will allow testing these new agents in 

patients with AD to find out whether they represent an advantage or not for the treatment of patients 

with AD as compared with selective (Donepezil) or relatively non-selective (Rivastigmine, and 

Galantamine) ChE inhibitors presently in use11-12. There is a shred of rising evidence that both AChE 

and BuChE may be important in the development and progression of AD11-12. Structural features of 

both enzymes suggest the differences in their substrate specificity; AChE is highly selective for ACh 
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neurotransmitter hydrolysis, while BuChE is capable of metabolizing several different neuroactive 

peptides including ACh etc11-12. The substrate diversity is identified by the amino acid sequences of the 

ChE (AChE and BuChE) enzymes that determine the 3D size and shape of their respective receptors11-

12. In the case of AChE, the available space for ligand binding is limited by the presence of two large 

amino acids, phenylalanine (Phe295 and Phe297), but in BuChE, these two amino acids are replaced 

by two smaller amino acids, valine, and leucine, creating greater space that permits binding of various 

larger molecules [11-12]. The substituted amino acids must affect the size and hydrophobic nature of 

the active site11-12.  

1.1.6.2. Amyloid-beta (Aβ) plaques 

AD is distinguished by the formation of aberrant neuritic plaques and neurofibrillary tangles in the 

brain [13-14]. Neuritic plaques are hemispheric minuscule plaques with an extracellular amyloid beta-

peptide core surrounded by increased axonal terminals. A transmembrane protein known as an amyloid 

precursor protein (APP) produces beta-amyloid peptide (β-AP) as a byproduct13-14. In the brain, 

generally, the β-AP is cleaved from APP by the action of three proteases christened alpha (α), beta (β), 

and gamma (γ)-secretase13-14. APP is normally cleaved by alpha or beta-secretase, and the resulting 

microscopic fragments are not toxic to neurons13-14. Though, successive cleavage by beta and then 

gamma-secretase outcomes in 42 amino acid peptides called beta-amyloid-42 peptide. Raise in the 

levels of beta-amyloid 42 leads to the accumulation of amyloid which causes neuronal toxicity by the 

deposition at the synaptic site in the brain13-14. Over normal APP breakdown, beta-amyloid 42 promotes 

the formation of aggregated fibrillary amyloid protein13-14. The APP gene is positioned on chromosome 

21, which is associated with familial AD13-14. In AD, amyloid deposition happens around meningeal 

and neural vessels, as well as a gray matter13-14. Multifocal gray matter deposits aggregate to become 

milliary structures known as plaques13-14. Though some people without dementia had amyloid plaques 

detected during brain scans, some people with dementia did not.  

1.1.6.3. Beta (β)-site amyloid precursor protein cleaving enzyme 1 (BACE1 or β-secretase1) 

BACE1 (β-secretase) is the first protein that acts on amyloid precursor protein (APP) in the production 

of amyloid-β (Aβ)15-16. Due to its evident rate-limiting function, BACE1 seems to be a prime target to 

prevent Aβ generation in AD15-16. The BACE1 enzyme has long been observed as an important 

therapeutic target for AD in the development of inhibitor drugs for the reduction of Aβ15-16. The cloning 

and identification of β-secretase were first reported in 1999 which energized research on both the 

protease and its inhibitor drugs. Presently, β-secretase is a major drug target for AD, and the 

development of its inhibitor drugs is being pursued in many research laboratories around the world15-

16. Heparan sulphite and its derivatives were reported as BACE1 enzyme inhibitors [15-16]. 

Furthermore, other oligosaccharides and their analogs have also been reported to inhibit the BACE1 

enzyme and reduce the Aβ deposition15-16. Enoxaparin has been reported to lower Aβ plaque deposition 

and recover cognitive function in AD-transgenic mice15-16. 

1.1.6.4. 5-hydroxytryptamine receptor 

Serotonin (5-hydroxytryptamine, 5-HT), a monoamine neurotransmitter, has been found to have an 

important function in the CNS in regulating cognitive behavior, sensory and affective processes, 

autonomic responses, and motor activity17-18. The behavioral elements of AD development are 

influenced by serotonergic neuron degeneration and 5-HT neurotransmitter hypofunction17-18. In 

particular, 5-HT concentration was shown to be significantly lower in the hippocampus area of affected 

brains. 5-HT receptors have been classified into seven families based on transducer processes, spanning 

from 5-HT1 to 5-HT717-18. The pathophysiology of AD has been associated with these kinds of 
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serotonergic receptors, including 5-HT6 receptors, which are implicated in learning and memory. This 

is corroborated by the finding that the 5-HT6 receptor gene's single nucleotide polymorphism C267T 

is a risk factor in the genesis of AD. Notably, apolipoprotein E epsilon 4, a crucial factor in the 

development of AD, is not dependent on the genetic polymorphism C267T, which is involved in the 

late onset of AD17-18. The function of several neurotransmitters, including glutamate and acetylcholine, 

which are crucial for memory and learning, is regulated (more precisely, down-regulated) by 5-HT6 

receptors17-18. 5-HT3 receptors have been discovered in the hippocampus17-18. Serotonin reduces 

cholinergic tone via interacting with 5-HT3 receptors located in the hippocampus17-18. The reduced 

cholinergic tone during AD may also contribute to the course of the disease17-18. Thus, 5-HT3 receptor 

antagonism may be advantageous in Alzheimer's patients. Furthermore, stimulation of 5-HT4 receptors 

has been shown to enhance acetylcholine release simultaneously decreasing Aβ toxicity17-18. However, 

5-HT1, 5-HT2, and 5-HT7 receptor dysfunction may potentially be involved in the etiology of AD17-18. 

1.1.6.5. Gamma-secretase enzyme 

One of the key pathogenic hallmarks of AD is the formation of amyloid-beta (Aβ) peptide, which is 

mediated by the crucial enzyme named gamma-secretase (γ-secretase)19-20. Gamma-Secretase is a 

protease enzyme that slices the transmembrane domain of the amyloid protein precursor (APP) to 

produce the amyloid β-peptide (Aβ), an aggregation-prone product that accumulates in the brain 

throughout AD19-20. As data from previous studies revealed that Aβ is a crucial characteristic 

responsible for Alzheimer's pathogenesis, γ-secretase is regarded as an important target for the 

development of disease-modifying therapies19-20. Peptide aldehyde type calpain and proteasome 

inhibitors were the first reported γ-secretase inhibitors (GSIs) to be disclosed, as γ-secretase has proven 

to be a promising target for the prospective treatment of AD19-20. Although current research indicates 

that gamma-secretase plays crucial functions in cellular signaling, medications that control the 

formation of Aβ by reducing gamma-secretase activity may be an effective treatment for AD19-20. 

1.1.6.6. Glutaminyl Cyclase enzyme (QC) 

Glutaminyl cyclase (QC) is one of the zinc-dependent aminoacyltransferase enzymes which transforms 

the N-terminal glutamate residue of A3-40/42 into the analogous pyroglutamate state (pE-A3-40/42) 

through intramolecular cyclization21-22. Since QC is more abundantly generated in the brains and 

cerebrospinal fluid (CSF) of AD patients compared to normal brains, it is possible to detect QC in the 

early stages of AD. QC inhibitors effectively decreased the levels of pE-Aβ and Aβ plaques in the brain, 

thereby reestablishing cognitive function in an AD mouse model and improving memory problems in 

AD mice21-22. In the phase 2 clinical trial, varoglutamstat is the first small molecule QC inhibitor21-22. 

According to phase 2a investigations, the varoglutamstat therapy group exhibited considerably better 

working memory, lower levels of synaptotoxicity and neurogranin, as well as improvements in several 

other scientific biomarkers21-22. Another powerful QC inhibitor (diphenyl-conjugated imidazole) shows 

good blood-brain barrier (BBB) penetrability and enhanced activities in AD model mice21-22. 

Furthermore, N-Methyltriazole-based inhibitor was identified by the pharmacophore and model-based 

on in silico approaches and in vitro screening with improved cognitive behavior in an animal model21-

22. These findings support the use of QC inhibition as a feasible disease-modifying treatment for 

Alzheimer's disease. 
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1.1.6.7. Phosphodiester enzymes (PDEs) 

The primary function of the broad family of enzymes known as PDEs is to hydrolyze the 3′-

phosphodiester link in cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate 

(cGMP), which are involved in signal-transduction pathways23-24. Due to their ability to modify cAMP 

and cGMP levels, they play a significant role in the pathways that are crucial for many pharmacological 

processes, including cell function23-24. The hippocampus-expressed cAMP response element binding 

protein (CREB) is regulated by cAMP/cGMP and promotes neuronal survival via pathways related to 

synapse strengthening and synaptic plasticity23-24. CREB positively regulates memory consolidation 

and performance by upregulating brain-derived neurotrophic factor (BDNF)23-24. Acute 

neuroinflammation has been shown to impact learning and memory-related CREB signaling in the 

hippocampus of mice via tumor necrosis factor (TNF)-dependent processes [23-24]. Furthermore, Aβ 

reduces BDNF levels via a mechanism involving transcription factor CREB downregulation. It is 

widely understood that most of the drugs that interfere with neurodegenerative enhancement, including 

cognition enhancers, target a specific neurotransmitter23-24. PDE inhibition contributes to 

neurodegeneration by enhancing cGMP and/or cAMP intracellular availability23-24. Although PDEs are 

extensively expressed in the human brain, cAMP and cGMP levels can influence neurodegenerative 

processes23-24. From a broad perspective, PDE-inhibitors could enhance cognition by controlling neural 

transmission by altering presynaptic neurotransmitter release and postsynaptic intracellular processes 

after extracellular neurotransmitter interaction23-24. As a result, researchers have found the PDE family 

to be an appealing multipotential target for numerous disease pathologies. PDEs are a large group of 

enzymes comprised of 11 isoenzyme families (PDE1 to PDE11), which differ from one another in terms 

of substrate specificity and affinities, kinetic characteristics, tissue and subcellular distributions, 

regulatory mechanisms, and drug and modulator susceptibility23-24. These isoforms catalyze the 

hydrolysis of cAMP and cGMP, which are involved in the proliferation, differentiation, apoptosis, gene 

expression, visual transduction, inflammation, and metabolic pathways23-24. These isoenzyme families 

have been discovered to have above 40 PDE isoforms (encoded by 21 genes), with some specific to 

cAMP (i.e. PDE4, PDE7, and PDE8) and others unique to cGMP (i.e. PDE5, PDE6, and PDE9), while 

others can operate on both cAMP and cGMP (i.e. PDE1, PDE2, PDE3, and PDE11)23-24. The presence 

of different isoforms in PDE families was discovered in experimental animals in the 1970s23-24. As a 

result of the abundance of isoforms and subtypes in this enzyme family, isoform/subtype-specific 

inhibitors should be created, which is a difficult task in drug research23-24. However, a significant effort 

has recently been made to develop novel PDEIs as subtype-selective medicines addressing a variety of 

disorders using experimental and computational approaches23-24. Furthermore, phosphodiesterase 

inhibitors (PDEIs) have a beneficial impact on cognition improvement through information processing, 

memory, memory, and executive functioning23-24. There are few clinical studies on the effects of PDE-

inhibitors on cognitive function in AD, and the majority of the available data was obtained from 

preclinical animal models of AD, such as transgenic mice or central Aβ insertion23-24. Clinical 

experiments revealed that hippocampus mRNA expression of PDE4D and 8B was altered in age-related 

memory-impaired participants as well as in patients with mild to moderate AD23-24. The findings of 

behavioral preclinical and clinical studies revealed that PDE7 improved memory function in AD 

patients and altered PDE7A mRNA expression in the AD brain23-24. Heckman et al. 201725 proposed 

that inhibiting PDE4D isoform subtypes is an appropriate target for AD treatments. As a potential new 

target for AD therapy, PDEIs may prove useful. More than ten medications have been given market 

approval thus far. The most successful PDE5 inhibitor, sildenafil (Viagra), is used to treat ED, 

demonstrating the therapeutic potential of PDE targeting23-24. Furthermore, the PDE4 inhibitor 

Rolipram has been shown to improve cognitive performance in AD mice, which substantially supports 
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and promotes the development of PDE inhibitors for the treatment of AD. In addition to pre-clinical 

investigations, several PDEIs are currently in clinical trials for cognitive enhancement, particularly 

related to AD, as stated in Table 1.2. 

Table 1.2. List of the PDEs inhibitors in clinical trials (completed/ recruited/terminated) for the 

treatment of AD or associated diseases. 

Clinical Trial 

Identifier 

Drug Target Disease/condition Phase Completion 

Date/year 

NCT04854811 Roflumilast PDE4 Memory and Functional 

Recovery 

II (Recruiting) April 1, 2024 

NCT04658654 Roflumilast PDE4 Mild Dementia Patients II (Recruiting) October 1, 

2023 

NCT05297201 CPL500036  PDE10A Parkinson Disease II (Recruiting) March 1, 

2023 

NCT01429740 PF-0999 PDE2 Schizophrenia I (completed) 2011 

NCT01530529 PF-05180999 PDE2 Healthy volunteers I (completed) 2012 

NCT02584569 TAK-915 PDE2 Healthy volunteers I (completed) 2015 

NCT01409564 Cilostazol PDE3 Alzheimer’s disease IV (completed) 2011 

NCT02491268 Cilostazol PDE3 Mild cognitive 

impairment 

II (Recruiting) 2015 

NCT01433666 Roflumilast PDE4 Dementia II (completed) 2011 

NCT02051335 Roflumilast PDE4 Memory impairment, 

Alzheimer’s disease 

I (completed) 2014 

NCT02835716 Roflumilast PDE4 Alzheimer disease Preclinical 

(Recruiting) 

2016 

NCT02013310 HT-0712 PDE4 Age-associated memory 

impairment 

II (completed) 2013 

NCT00880412 Etazolate PDE4 Alzheimer’s disease II (completed) 2009 

NCT03030105 BPN14770 PDE4 Alzheimer’s disease I (not 

recruiting 

participants) 

2017 

NCT02840279 BPN14770 PDE4 Alzheimer’s disease I (completed) 2016 

NCT02648672 BPN14770 PDE4 Alzheimer’s disease I (completed) 2016 

NCT00455715 Sildenafil PDE5 Schizophrenia IV (completed) 2007 

NCT01941732 Sildenafil PDE5 Parkinson’s disease IV (completed) 2013 

NCT02450253 Tadalafil PDE5 Dementia, vascular II (recruiting)  2017 

NCT00930059 PF-04447943 PDE9 Alzheimer’s disease II (completed) 2009 
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NCT00988598 PF-04447943 PDE9 Alzheimer’s disease I (completed) 2009 

NCT01097876 PF-04447943 PDE9 Healthy I (completed) 2010 

NCT02240693 BI-409306 PDE9 Alzheimer’s disease II (recruiting) 2014 

NCT02337907 BI-409306 PDE9 Alzheimer’s disease II (recruiting) 2014 

NCT02197130 PF-02545920 PDE10 Huntington’s disease II (completed) 2014 

NCT02037074 EVP-6308 PDE10 Schizophrenia I (completed) 2014 

NCT01900522 ITI-214 PDE1 Schizophrenia I (terminated) 2013 

NCT00362024 MK-0952 PDE4 Alzheimer’s disease II (terminated) 2006 

NCT01215552 HT-0712 PDE4 Healthy elderly 

volunteers 

I (terminated) 2010 

NCT02162979 Sildenafil PDE5 Parkinson’s disease II (terminated) 2007 

NCT02342548 PF-02545920 PDE10 Huntington’s disease II (terminated) 2015 

NCT02477020 TAK-063 PDE10 Schizophrenia II (terminated) 2015 

NCT01952132 OMS643762 PDE10 Schizophrenia II (terminated) 2013 

**Agents in clinical trials for the treatment of AD and related diseases in 2022 (from clinicaltrials.gov accessed 

on 05/09/2022) 

1.1.6.8. N-methyl-D-aspartate (NMDA) receptor 

NMDA receptor-mediated excitotoxicity plays an imperative part in the advancement of AD26-27. 

Excess glutamate-mediated NMDA receptor over-activation appears to result in the formation of 

amyloid plaques, which leads to neuronal death26-27. NMDA receptors become over-activated after Aβ 

aggregation and NFT formation in AD, resulting in Ca2+ overflow into the cytoplasm26-27. The vital 

enzyme CREB (cyclic AMP response element binding protein) is activated by Ca2+ influx, which leads 

to mitochondrial dysfunction and signal suppression that lowers phospho-CREB levels26-27. The 

synthesis of pro-survival molecules like BDNF (brain-derived neurotrophic factor) is decreased when 

phospho-CREB is downregulated, making cells more susceptible to oxidative stress-induced cellular 

malfunction and neuronal death26-27. All of the aforementioned activities are synergistically mediated 

by nitric oxide, which stimulates the Aβ protein to produce more glutamate26-27. Overexpression of Aβ 

reduces glutamate absorption by glial cells, which increases glutamatergic excitotoxicity26-27. 

Memantine, a non-competitive NMDA receptor antagonist approved for moderate to severe AD 

treatment in the United States and Europe under the brand name Namenda, may have the potential to 

mitigate other neurological disorders such as vascular dementia (VD) and Parkinson's disease (PD)26-

27. Memantine has been shown to have favorable effects on vascular and neurodegenerative processes 

in several animal models of neurodegenerative disease. Memantine blocks the NMDA glutamate 

receptors to restore the glutamatergic system and improve cognitive and memory deficiencies26-27. 

Despite the relatively minor nature of its side effects, Memantine has been demonstrated to produce 

only a slight decrease in clinical deterioration in AD and VD, and hence efforts are being made to 

design new and more potent Memantine-based therapeutics to potentially provide higher efficacy. 
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1.1.6.9. Cyclin-dependent kinases 5 (CDK5) 

The set of enzymes known as cyclin-dependant kinases (CDKs) regulates the cell cycle's activities and 

takes the role of apoptosis28-29. Although managing the cell cycle is the primary biological role of CDKs, 

some CDKs, including CDK5, are also involved in governing cell differentiation in neural cells28-29. 

CDK5 is expressed in post-mitotic cells of the central nervous system and it plays a vital role during 

neuronal differentiation28-29. It is a unique member of the family since it requires association with a p35 

activator for activation instead of cyclins28-29. Since p35 is a neuronal-specific activator, CDK5 activity 

is only found in neurons. Deregulation of CDK5 activity has been linked to several neurodegenerative 

disorders, including Alzheimer's28-29. The calcium-dependent cysteine protease calpain cleaves the 

protein p35 into the active fragment p25, which is then shown to accumulate in the brains of AD 

patients, which causes this dysregulation28-29. Despite the lack of a clear mechanism, it is thought that 

CDK5/p25 has considerably more catalytic activity than CDK5/p35 and that the hyperactive CDK5/p25 

complex causes tau proteins to be phosphorylated excessively, which leads to the formation of 

neurofibrillary tangles, which are thought to be the cause of neuronal cell toxicity28-29. Tau is a 

microtubule-associated protein that helps to stabilize microtubules, which are crucial for nutrition 

transport within neurons28-29. The hyperphosphorylation of tau proteins by hyperactive kinases such as 

CDK5/p25 promotes self-aggregation, which leads to microtubule disintegration and, finally, the 

collapse of the neuron's transport system28-29 (showed in Figure 1.4). Therefore, targeting such kinases 

is a feasible option for reversing aberrant tau hyperphosphorylation.  

1.1.6.10. Glycogen synthase kinase 3β (GSK-3β) 

Glycogen synthase kinase 3 (GSK-3β) is a proline-directed serine/threonine protein kinase that has also 

been linked to tau pathology in AD30-31. GSK-3β plays a role in apoptosis, gene expression, and cell 

architectural maintenance30-31. It associates with microtubules and is highly expressed in healthy brain 

tissue30-31. GSK-3β is thought to be important in the aberrant hyperphosphorylation of tau and 

neurodegeneration (illustrated in Figure 4) in AD. It is unclear how GSK-3β functions exactly at the 

molecular level in AD30-31. Recently, Jin et al.32 proposed that truncation of GSK-3β by Ca2+/calpain-I 

may contribute to tau hyperphosphorylation and neurofibrillary degeneration in AD. 
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Figure 1.4. Hyperphosphorylation of tau proteins and the formation of neurofibrillary tangles. 

1.1.6.11. Monoamine oxidase B (MAO-B) 

Different evidence suggests that specific MAO-B inhibition is significant in the treatment of AD and 

Parkinson's disease33-35. In addition to playing a crucial role in the metabolism of neuroactive and 

vasoactive amines in the peripheral tissues and central nervous system, MAO-B is a protein that is an 

essential component of the outer mitochondrial membrane, which catalyzes the oxidative deamination 

of biogenic and xenobiotic amines33-35. MAO-B is also responsible for the generation of reactive oxygen 

species which directly harms nerve cells33-35. MAO-B-produced hydrogen peroxide can be transformed 

into highly hazardous hydroxyl radicals via the Fenton reaction when it comes into contact with iron33-

35. Additionally, these hydroxyl radicals can release methylene hydrogens from polyunsaturated fats in 

brain membrane phospholipids, resulting in the initiation of lipid peroxidation and cell death33-35. 

Furthermore, it has been identified that MAO-B levels are rising with age, implying a role in natural 

aging-related cognitive decline and the possibility of its participation in the development of 

neurological illnesses such as Alzheimer's33-35. 

1.1.7. Current approaches to design multi-target directed ligands (MTDLs) in AD 

1.1.7.1. Dual binding site: ‘AChEIs’ targeting Aβ aggregation 

AChE has been identified as a potential target in recent studies, even though AChE inhibitors (AChEIs) 

may not be a viable treatment for AD [36]. Under the MTDLs design strategy, the majority of research 

is currently being directed toward the development of AChEIs with "dual binding sites”37. These 

AChEIs have been proven to dramatically boost cognitive performance by concurrently blocking the 

catalytic site and peripheral anionic sites (PAS), which are both active sites for the AChE enzyme38. It 

may raise a question on how a drug with two binding sites may be referred to as a multi-target 

inhibitor39. The rationale is that inhibitors with substantial binding at both the PAS and catalytic triad 
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sites are effective against AChE-induced Aβ aggregation40. Accordingly, AChE not only metabolizes 

ACh but also contributes to the development of Aβ plaque. This discovery sparked an interest in 

developing hybrid compounds that inhibit both the cholinergic effect and AChE-induced Aβ 

aggregation at the same time41. Numerous in vitro and in silico studies37-44 have been carried out, and 

it has been revealed that a number of possible AChE dual-binding site inhibitors exist [42]. Munoz-

Ruiz et al. designed a series of indole-tacrine heterodimers as strong dual-binding site inhibitors by 

combining the indole ring (PAS binding unit) and the 1,2,3,4-tetrahydroacridine fused ring or the 

tacrine moiety (catalytic triad site binding unit)43. More examples of the investigated scaffolds as dual 

binding site AChE inhibitors include derivatives of 2-(aminoalkyl)-isoindoline-1, 3-dione, 6,7-

dimethoxy-2H-2-chromenone, 6,7-dimethoxycoumarin, and many more44. 

1.1.7.2. Dual-target directed ligands (DTDLs) designing 

Dual-target-directed ligands (DTDLs) are capable of concurrently binding to two targets, and their 

development strategy typically entails the generation of hybrid molecules45. In most cases, important 

substructures from two distinct compounds that are acting on two different targets are combined to 

generate hybrid molecules46. These compounds are crucial for their respective activities. Novel Tacrine-

Melatonin, Tacrine-Ferulic Acid, Tacrine-8-hydroxyquinoline, and Tacrine-Lipocrine are just a few 

examples of the hybrid compounds designed to combine AChE inhibition and anti-oxidant effects in a 

single molecule45-52. More research has been done to discover the chemical building blocks that were 

used to design MAO-B-AChE dual inhibitors, such as carbamate derivatives of hydroxy amino-indans 

and phenethylamines, coumarin derivatives, N-substituted pyrazoline derivatives, etc47. Additionally, 

research has been done on the synergistic effects of combining the inhibitory characteristics of BACE1 

and AChE in a single molecule48-50. The dual inhibition of BACE1-AChE was also discovered to be a 

property of coumarin derivatives and diterpenoids from Aralia cordata51-52. 

1.1.7.3. Multi-target-directed ligands (MTDLs) designing  

Multi-target-directed ligands (MTDLs), a novel trend in drug design and discovery, have emerged since 

the year 200053-54. Such a strategy looks to be especially useful in the treatment of complex disorders 

like AD. Caproctamine, one of the earliest examples of purposefully developed MTD, demonstrated 

synergistic cholinergic activity against AD by antagonizing presynaptic muscarinic acetylcholine M2 

autoreceptors and inhibiting the AChE enzyme53-54. This technique has been gradually used in AD drug 

discovery over the last two decades, and many papers have highlighted the advantages of the MTD 

approach over classical target-specific medicines (TSMs) and their combinations, while rarely 

emphasizing its limitations and shortcomings53-54. But so far, this strategy has fallen short of 

expectations and has only produced two clinical candidates (ladostigil and NP-61), both of which were 

unsuccessful in clinical trials53-54. Due to the consistently disappointing findings of clinical studies, 

novel candidate medications generally seem to be a long way from being approved (Table 1.3). The 

evaluation of clinical trials needs to be changed, thus there is a big demand for it. It is also recommended 

that continuous outcome measurements and discrete clinical state ratings be integrated to boost 

statistical power in clinical trials relative to any single endpoint, in addition to a more exact allocation 

of patients to trial groups. In Figure 1.5, we have highlighted nine major targets linked with AD, which 

are AChE, β-amyloid aggregation, BACE-1, GSK-3β, MAOs, metal ions in the brain, NMDA receptor, 

5-hydroxytryptamine (5-HT) receptors, the third subtype of histamine receptor (the H3 receptor), and 

phosphodiesterase (PDEs). Additionally, eleven multi-target design strategies have been categorized 

by the involvement of AChE (AChE and BACE-1, AChE and GSK-3β, AChE and MAOs, AChE and 
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metal ions, AChE and NMDA receptor, AChE and 5-HT receptors, AChE and H3 receptor, AChE and 

PDEs) and without the involvement of AChE (BACE-1 and GSK-3β, MAO-B and metal ions, PDEs 

and metal ions), which were reported in recent years53-54 for improvement of AD therapy. 

 

Figure 1.5. Brief connections between AD and nine major targets, and eleven multi-target design 

strategies based on the targets. (Note: Red arrow denotes the multi-target strategies involving AChE 

and the Black arrow denotes the multi-target strategies without AChE involvement). 

Table 1.3. Multitarget therapies for AD treatment in clinical trials (https://clinicaltrials.gov/, Date of 

data collection: 06/10/2022). 

Clinical Trial 

Identifier 

Drug Phase Mechanism of action on targets 

NCT02913664 Losartan+amlodipine+atorvastatin III Angiotensin Ⅱ receptor blocker: 

losartan 

Calcium channel blocker: amlodipine 

Cholesterol agent: atorvastatin 

NCT03533257 AMX0035 (sodium phenylbutyrate 

and tauroursodeoxycholic acid 

combination) 

II Chemical chaperone to inhibit 

endoplasmic reticulum stress 

responses. (Sodium phenylbutyrate) 

Naturally occurring bile acid to tackle 

mitochondrial dysfunction. 

(tauroursodeoxycholic acid) 

NCT02547818 

NCT04570644 

ALZT-OP1 (Combination of cromolyn 

and ibuprofen) 

III 

II 

Mast cell stabilizer (cromolyn) 

Anti-inflammation (ibuprofen) 

https://clinicaltrials.gov/
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NCT03790709 

NCT04314934 

NCT02756858 

ANAVEX2-73 (Blarcamesine) III 

III 

II 

Sigma-1 receptor agonist 

M1 receptor agonist and M2 receptor 

antagonist 

GSK-3β inhibitor 

NCT03393520 

NCT02446132 

NCT04464564 

NCT04408755 

AVP786 (Combination of 

dextromethorphan and quinidine) 

III 

III 

III 

III 

Sigma-1 receptor agonist 

(dextromethorphan) 

NMDA receptor antagonist 

(dextromethorphan) 

NCT03620981 

NCT03594123 

NCT03548584 

NCT03724942 

Brexpiprazole III 

III 

III 

III 

D2 receptor agonist 

5-HT receptor agonist 

NCT02008357 Gantenerumab and solanezumab III Monoclonal antibody directed at 

plaques and oligomers (Ganenerumab) 

Monoclonal antibody directed at 

monomers (Solanezumab) 

NCT04063124 Dasatinib+Quercetin (Combination 

therapy) 

II Tyrosine kinase inhibitor (Dasatinib) 

Flavonoid with antioxidant and anti-

Aβ fibrilization properties (Quercetin) 

NCT02033941 Grapeseed Extract II Polyphenolic compound with 

antioxidant property 

Anti-oligomerization 

NCT03062449 L-serine II Synthesis of sphingolipids and 

phosphatidylserine 

The precursor of D-serine, a co-agonist 

of NMDARs. 

NCT03867253 ORY-2001 (Vafidemstat) II LSD1 inhibitor 

MAO-B inhibitor 

NCT02085265 Telmisartan+Perindopril II Angiotensin Ⅱ receptor blocker 

(Telmisartan) 

Angiotensin-converting enzyme 

inhibitor (Perindopril) 

NCT03748303 Allopregnanolone I Growth hormones to promote 

neurogenesis 

Positive allosteric GABAARs 

modulators 

5-HT: 5-hydroxytryptamine; GABAARs: γ-aminobutyric acid type A receptors; GSK-3β: glycogen synthase kinase 3; LSD1: Lysine-specific histone demethylase 

1A; MAO-B: monoamine oxidase B; NMDA: N-methyl-D-aspartate; NMDARs: N-methyl-D-aspartate. 
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1.2. Computer-aided drug design (CADD) 

Although drug research is a time-consuming and expensive process, computational biology and 

bioinformatics methodologies have simplified the initial identification of potential therapeutic 

compounds. Such computational biology strategies have become extremely relevant, from lead 

identification to optimization. In this regard, computational approaches such as quantitative structure-

activity relationship (QSAR), chemical Read-Across (RA), pharmacophore modeling, molecular 

docking, Molecular Dynamic (MD) Simulations, etc. are playing imperative roles in the design and 

discovery of new compounds with enhanced therapeutic activity55-60. For decades, chemoinformatics 

and molecular modeling approaches have been utilized to identify and optimize novel compounds with 

improved therapeutic potential in various fields55-60. In silico modeling is currently used in the 

conventional drug discovery process, and such methods are typically used in the search for novel 

therapeutics or the optimization of the therapeutic action of a chemical series during the early stages of 

drug development55-60. Computational methodologies have given several potential drug molecules 

against the predictable and promising targets against AD55-60. Many molecules have been discovered to 

be excellent lead compounds (including flavonoids, carbamates, pyridonepezil, and coumarin 

derivatives) that can be propagated against AD61. Numerous molecules have entered various stages of 

clinical trials, including MK-8931 (against β-secretase, Merck), TAK-070 (against β-secretase, Takeda 

Pharmaceuticals), and LMTX (against tau hyperphosphorylation, TauRx Inc.)61. 

1.2.1. Quantitative structure-activity relationship (QSAR) 

Quantitative structure-activity relationships (QSARs) is a statistical approach to finding the consistent 

relationship between the biological activity (dependent variable) of compounds and their structural 

arrangements and chemical property (independent variables)62. The chemical domain space refers to 

the chemical information, which is derived in terms of descriptors (independent variables) utilizing 

various software tools. The dependent variable acquired from an experiment stands as the endpoint and 

is modeled using the general Equation 1.1 that is given below. There are different regression and 

pattern recognition techniques (S-MLR, GA, etc.) that can be used for variable selection and QSAR 

model development62. The developed model for the QSAR is used particularly in chemoinformatics, 

drug discovery and to evaluate the biological activity of new chemical compounds, apart from these it 

is also used for toxicological and ecotoxicological evaluations of specific chemicals within the meaning 

of risk management62.  

𝐵𝑖𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦/𝑡𝑜𝑥𝑖𝑐𝑖𝑡𝑦 =  𝑓 (𝑆𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒, 𝑃ℎ𝑦𝑠𝑖𝑐𝑜𝑐ℎ𝑒𝑚𝑖𝑐𝑎𝑙 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠)             

Equation 1.1  

The modeling method may be referred to as quantitative structure-activity relationship (QSAR), 

quantitative structure-toxicity relationship (QSTR), quantitative structure-property relationship 

(QSPR), or other terms depending on the type of endpoint modeled. The term "activity" itself may often 

be employed as additional descriptors, as in the cases of "quantitative structure-activity-activity 

relationship" (QSAAR), etc. Only the QSAR aspects of modeling have been taken into consideration 

when writing this chapter. The selection of data (chemical/biological) is one of the most crucial 

elements in the accomplishment of any. Two separate types of data information, namely biological data 

(endpoints) and chemical data in terms of molecular descriptors, are needed for the development of 

QSAR models. Before using any modeling methodology for model development, the feature selection 

approach is then employed to choose the appropriate number of meaningful and informative 

descriptors. The flowchart for the development of the QSAR model is given in Figure 1.6. 
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Figure 1.6. Schematic outlining the process for the development of a QSAR model. 
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1.2.1.1. Biological data 

The biological data represent experimental endpoints, such as activity values (IC50, etc.). The dose-

response curve yields the activity values. The concentration values IC50, and EC50 are effective 

quantities that inhibit and affect 50% of the test population. The dosage values are presented in molar 

units and then transformed to a negative logarithmic scale, where a higher number on the positive scale 

corresponds to more activity, and conversely. The following points are to be noted while choosing any 

biological data for QSAR modeling: 

1. The QSAR model should have a specified endpoint following Organization for Economic Co-

operation and Development (OECD) Guideline No. 163. The endpoint predicted by the 

model should be transparent. Only those compounds should be used to develop models that 

have defined activities. Another crucial feature is that the compounds selected to build the 

model must have the same mode of action. 

2. The dependent variables should fall within a logarithmic scale of at least three to four units. 

Since the conventional metrics of validation (R2, Q2, and R2pred) are response range-based 

parameters, effort should be made to ensure that the data points are consistent and there are no 

gaps64-66. 

3. All molecules should be evaluated under the same experimental conditions using the same 

bioassay methodology. 

4. Before using the dataset, it must be properly curated. The data points containing information 

concerning activity cliffs should also be carefully considered67. 

5. The researcher should carefully select the data when working with small data sets. Working 

with limited data sets is a significant challenge for QSAR modeling. The absence of 

experimental observational activities, such as activities, is the cause of the lack of data points68. 

1.2.1.2. Molecular descriptors 

Molecular descriptors are numerical terms that characterize specific information about a studied 

molecule. They are the “numerical values associated with the chemical constitution for correlation of 

chemical structure with various physical properties, chemical reactivity, or biological activity”. 

Descriptors can be classified in multiple ways. In general, there are several types of descriptors like 

structure-explicit descriptors (topological), structure-implicit (hydrophobicity and electronic), and 

cryptic descriptors (quantum chemical). It is interesting to point out that the majority of QSAR 

researchers prefer to classify the types of descriptors concerning their dimensions. From a broader 

perspective, descriptors (specifically, physicochemical descriptors) can be classified into two major 

groups: (1) substituent constants and (2) whole molecular descriptors.  Before the development of a 

QSAR model, it is necessary to convert the chemical structural information into numerical values. 

These numerical values are referred to as ‘descriptors’ in QSAR studies, which are connected with the 

chemical constitution to correlate chemical structure with various physical characteristics, chemical 

reactivity, or biological activity69. The characteristics of an ideal molecular descriptor have been 

summarized as follows: 

1. For a given end point, a descriptor must be correlated with the structural characteristics of the 

chemicals and have an inconsiderable association with other descriptors. 

2. A descriptor should apply to a diverse class of compounds. 

3. A descriptor that can be computed easily and does not rely on investigational outcomes is 

preferable to one that is computationally intensive and largely reliant on experimental data. 
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4. Even if the structural variations are minor, a descriptor should produce dissimilar values for 

structurally diverse compounds. This implies that the descriptor should have a low degree of 

degeneracy. A descriptor should be continuous, meaning that slight structural changes should 

result in modest changes in the descriptor's value, along with having low degeneracy. 

5. To encode the desired properties of the investigated molecules, the descriptor must be 

physically interpretable. 

6. Another useful feature is the ability to visually represent descriptor values by mapping them 

directly to the chemical structure69. These conceptions are logical only when descriptor values 

can be linked with chemical structural properties. 

In a QSAR analysis, a ‘dimension’ serves as a constraint that governs the nature of the study. In 

predictive model development, the term ‘dimension’ is approximately related to the complexity of the 

modeling technique which directly explains the degree of descriptors. The molecular descriptors can 

be categorized based on dimensions as represented in Table 1.469. 

Table 1.4. Discussion on the categorization of the molecular descriptors based on dimensions with 

suitable examples. 

Dimensions of 

descriptors 

Discussion Examples 

0D descriptors The class of 0D descriptors includes all molecular 

descriptors for which no information on molecule 

structure or atom connectivity is required.  

Constitutional indices, 

molecular property, atom, 

and bond count. 

1D descriptors The 1D descriptors include all molecular descriptors 

that may be computed from sub-structural information 

about the molecule. These descriptors are frequently 

expressed as fingerprints, which are binary vectors in 

which 1 denotes the existence of a specified substructure 

and 0 indicates its absence.  

Fragment counts 

fingerprints. 

2D descriptors The 2D descriptors are molecular descriptors based on a 

graph theoretical representation of the molecule. 

Various structural and/or physicochemical property 

indices are also included in this class of molecular 

descriptors. 

Topological, structural, and 

physicochemical parameters 

including thermodynamic 

descriptors. 

3D descriptors 3D descriptors, also known as geometrical descriptors 

are generated from the geometrical representation of the 

molecules, or the x–y–z Cartesian coordinates of the 

atoms.  

Electronic, spatial 

parameters, WHIM 

descriptors, 3D-MoRSE 

descriptors, GETAWAY 

descriptors, etc.  

4D descriptors 4D-descriptors are generated from the produced energy 

between molecules which are embedded into the grid 

and probe. 

Volsurf, GRID, Raptor, etc. 

derived descriptors. 

5D descriptors 5D descriptors take into account induced-fit parameters 

and aim to develop a ligand-based virtual or pseudo-

receptor model. 

Flexible-protein docking. 
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1.2.1.3. Division of the dataset  

A rational splitting of a dataset into a training and a test set is one of the most important steps to develop 

a QSAR model. Generally, a training set is used to develop a model and the test set, also known as the 

validation set, is used to check the predictive ability of the developed model. Since the training set is 

used to develop the model, it is usually given a larger number of compounds than the test set. The 

complete dataset is divided so that the test set compounds fall within the chemical space of the training 

set, i.e., the training set represents the test set. The techniques for dividing the dataset may include (1) 

Euclidean distance (diversity-based)70, (2) Kennard-Stone71, (3) k-means clustering72, (4) sorted 

response73, etc. 

1.2.1.4. Feature selection  

The presence of insignificant descriptors may reduce the model’s robustness and interpretability. 

Therefore, variable selection has become one of the important aspects in developing a QSAR model in 

which the important descriptors are selected to build the model; conversely, the removal of the 

insignificant descriptors results in the improvement of the predictive ability of the model. Since it would 

take too long to run the computations, the entire descriptor pool cannot be used for modeling. For 

regression-based modeling, approaches such as stepwise selection (S-MLR)74, Genetic algorithm (GA) 

method74, Factor analysis (FA)74, and so on should be used to select an adequate number of descriptors. 

1.2.1.5. Development of QSAR model 

The model should be established using a specified algorithm, and the description of the modeling 

algorithm should be consistent, according to OECD Guideline No. 274-76. This includes the 

formalizations applied to the preprocessing of data, dataset division, feature selection, and data 

modeling74-76. The OECD recommends several commonly used linear modeling algorithms, including 

principal component analysis (PCA), principal component regression (PCR), ordinary least squares 

(OLS), multiple linear regression (MLR), and partial least squares (PLS). Using a mechanistic basis or 

an evolutionary method, such as a genetic algorithm (GA), as well as methods like principal component 

analysis (PCA) or factor analysis (FA), etc., is also suggested by the OECD guideline for undertaking 

a priori feature selection74-76. There are three basic types of model-building tools in QSAR: regression-

based approaches, classification-based approaches, and machine learning74-76. The regression-based 

methodology is used when a response (endpoint) and independent (descriptors) variable values are 

accessible74-76. The classification-based strategy is for ordered response data where the response is 

accessible in a Boolean form such as active/inactive and positive/negative (as in the case of linear 

discriminant analysis, logistic regression, and cluster analysis)74-76. Since the machine learning method 

does not explicitly follow programmed instructions, it builds and develops its learning depending on 

available data (as in the case of an artificial neural network, Bayesian neural network, decision tree, 

and random forest protocol)74-76. 

 

 

6D descriptors 6D descriptors are derived by combining information 

from 5D descriptors with the representation of various 

solvation circumstances. 

Quasar. 

7D descriptors 7D descriptors are derived using real receptor or target-

based receptor model data.  

- 
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1.2.1.6. Validation of QSAR models 

The basic objective of the validation of QSAR models is to check the reliability of the developed models 

in terms of their predictive ability and reproducibility using different validation parameters77-88. The 

robustness of the developed model is judged based on the statistical quality of the model, the 

corresponding metrics include determination coefficient (R2), explained variance (Ra
2), standard error 

of estimate (s), F-value, normality distribution test, variance inflation factor (VIF)77-88. The validation 

of the models is done using two approaches: one is based on the training set, known as internal quality 

assessment or validation, the corresponding metrics include cross-validated correlation coefficient (Q2), 

predicted residual sum of squares (PRESS), and the other is based on the test set, known as external 

validation, the corresponding metrics include R2
pred (Q2F1), Q2F2 and Q2F3, etc77-88. Additional validation 

parameters include modified r2
m (rm

2
(LOO), rm

2
(test)) and overall model predictivity (rm

2
(overall)) (threshold 

value in all cases of different validation is = 0.5)77-88 and Y-randomization77-88. The reliability of the 

developed model is based on the prediction ability of the model through various validation parameters 

for untested compounds77-88. One particular model may not be enough to predict the whole test set of 

compounds, which means one QSAR model may be the best model for the prediction of a test 

compound while other models may be the best predictor for another test compound77-88. In this regard, 

developed intelligent consensus predictor (ICP) tool to improve the prediction of the external test 

through the “intelligent” selection of multiple models77-78. This software judges the performance of the 

consensus predictions and compares them with the prediction quality obtained from the individual 

(MLR/PLS) models based on MAE-based criteria (MAE95%)77-88. The applicability domain (AD)77-88, 

which is a theoretical region in chemical space defined by the model descriptors and modeled response, 

is an important criterion to check, which enables judging the reliability of the predictive performance 

of a model77-88. Other validation tests/metrics such as Golbraikh and Tropsha’s criteria, concordance 

correlation coefficient, etc. are also extensively used for model validation purposes77-88. 

1.2.1.7. Checking domain of applicability of developed models 

The applicability domain of a QSAR model has been described as the response and chemical structure 

space that is defined by the nature of the chemicals in the training set. If a new compound falls within 

the Applicability domain of the developed model, only then the developed model can predict the 

compound precisely. QSAR developers must have information about the applicability domain of the 

developed model to identify interpolation (true predictions) or extrapolation (less reliable predictions) 

(as per OECD guideline no. 3)63. Three key factors such as structural data, physicochemical 

characteristics, and response space influence a model's applicability domain. QSAR models can be 

developed for specific chemical classes working through the same mechanism of action due to the 

potential involvement of several mechanistic bases in different regulatory endpoints. It is possible for 

a single general QSAR model to fail to discriminate across chemical classes on occurrence, making it 

impossible to offer a precise estimate for a given chemical class63. To achieve the global applicability, 

the OECD recommends using (a) several predictive models against the endpoint on diverse domains of 

applicability shared to provide a global estimation or (b) using a statistical technique that provides 

global modeling attributes across multiple mechanisms of action concerning the same endpoint. By 

comparing the chemical domain concerning each specified regulatory endpoint, one can compare the 

domain of applications of the QSAR models that are currently available and identify the data gaps63. In 

our studies, we have checked the applicability domain of the developed model employing the DModX 

(distance to model X) approach at a 99% confidence level using SIMCA-P software79.  
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1.2.1.8. Mechanistic interpretation of the QSAR model  

As per the OECD guideline 5, the researcher should provide the mechanistic interpretation of the 

developed model if possible. Because it is not always possible to provide a mechanistic explanation of 

a particular QSAR model, the principle advises that the Modeller should publish if such knowledge is 

available, thus encouraging future study on that endpoint. The precise knowledge of the mechanism of 

action of chemicals toward a process can influence the design and development of the desired 

innovative analogs80. 

1.2.1.9. A few significant issues in QSAR 

Several conditions must be met before experimental data can be prepared for QSAR analysis. Typically, 

the concentrations or dosages required for a defined response, such as IC50 values, are applied as the 

response for activity-based QSAR analysis62-65. The concentration values should be expressed in a 

molar unit and a negative logarithmic scale so that a higher value represents higher activity or toxicity62. 

To determine the statistical soundness of a QSAR model, there should be a high degree of freedom64-

65. As a consequence, the number of observations used to develop a model should be significantly higher 

than the number of independent variables employed in the modeling. Even if using a suitable number 

of training compounds is vital even in the case of machine learning approaches, this element is less 

crucial for more reliable procedures64-65. The difficulty of modeling small datasets is a common 

challenge for QSAR researchers because there may not always be enough experimental observations 

for all endpoints. Multiple linear regression (MLR) is a popular approach for regression-based QSARs, 

but it has various drawbacks, including intercorrelation between descriptors, bias in descriptor selection 

due to a predetermined composition of the training set, inability to handle many descriptors in the 

model, and so on62-65. A more reliable modeling method, such as partial least squares (PLS), which 

reduces the original set of descriptors into a smaller number of latent variables (LVs) that are functions 

of the original descriptors, can be used to prevent this problem. Working with a dataset having a small 

number of data points requires special consideration. In these circumstances, a double cross-validation 

strategy might be useful. This approach uses two loops to carry out the validation. The training set is 

further divided into "n" calibration and validation sets in the inner loop, resulting in various 

compositions that are then utilized for model development and model selection, whilst the test set in 

the external loop is simply used for model assessment62-65. Another strategy involves using consensus 

predictions, which have been shown in various studies to be more accurate than predictions from 

individual models since the former account for the contribution of the greatest number of significant 

descriptors62-65. Additionally, this strategy can provide more chemical space coverage. An intelligent 

consensus modeling technique has recently been proposed in light of the possibility that not all query 

chemicals will respond predictably to predictions from a single QSAR model. It also is crucial to 

estimate the accuracy of predictions for unknown molecules, which may not be completely dependent 

on the applicability domain62-65. 

1.2.1.10. Applications of QSAR  

In general, the chemicals modeled using the QSAR can be categorized into three main types that are as 

follows, 1) chemicals with health benefits, such as drugs, pharmaceuticals, food ingredients, etc., 2) 

chemicals involved in industrial/laboratory processes like solvents, reagents, etc., and 3) the chemicals 

posing hazardous outcome, such as persistent organic pollutants (POPs), volatile organic solvents, 

toxins, xenobiotics, carcinogens, etc81-83. The use of QSAR in the rational monitoring of the activity, 

property, and toxicity of the aforementioned chemicals makes it beneficial in a wide range of 

applications81-83. QSAR applications can be classified into three main categories drug design, materials 
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science, and predictive toxicity81-83. The principal use of QSAR modeling in the field of drug discovery 

and design is the screening of a large number of potential lead compounds that are active against the 

target enzyme81-83. Moreover, it is also used in lead optimization and the prediction of pharmacological 

pharmacokinetic profiles i.e. absorption, distribution, metabolism, and excretion (ADME) properties of 

pharmaceuticals81-83. In materials science, the QSAR technique can be used to investigate a variety of 

properties for different kinds of materials, including metal oxide nanoparticles, ionic liquids, polymers, 

fullerenes, surfactants, and many more81-83. In the field of toxicology, QSAR techniques are used to 

predict a variety of toxicity endpoints for in vitro cell cultures or in vivo animal experiments81-83. 

Chemical toxicity evaluation entails assessing systemic toxicity as well as monitoring eco-toxicological 

hazards. Drugs and pharmaceuticals can cause toxicity to certain organ systems, such as hepatotoxicity, 

nephrotoxicity, and so on, and these drugs can also cause eco-toxicity81-83. Additionally, QSAR has 

been found to be useful in agricultural sciences where chemical toxicity potential is a key component, 

such as fungicidal activity. QSAR is well-accepted as an alternative to animal testing as well as it is 

also used for regulatory purposes because of its broad applicability and reliability81-83. 

1.2.2. Other in silico methods employed 

1.2.2.1. 3D QSAR Pharmacophore mapping 

A pharmacophore model is an assembly of steric and electronic features essential to ensure optimal 

supramolecular interactions with a particular biological target and to activate or inhibit its biological 

response84-86. A pharmacophore model represents the binding patterns of bioactive molecules with the 

target binding site, through different 3D arrangements of conceptual interaction features accounting for 

different types of non-covalent interactions84-86. These interaction types could be hydrogen bonding 

interactions, hydrophobic interactions, metal interactions, aromatic contact, charge transfer 

interactions, etc84-86. Features employed by major different programs for the development of 

pharmacophore models are as follows: hydrogen bond donor (HBD), hydrogen bond acceptors (HBA), 

positive and negative charge features, hydrophobic features, ring aromatic, steric constraints features, 

etc84-86. A pharmacophore model can be developed either in a ligand-based (using a set of defined 

molecules) approach through superimposing a set of active molecules and extracting common chemical 

features that are important for their bioactivity, or in a structure-based (using the active site of the 

protein structure) approach, by probing possible interaction points between the macromolecular target 

and ligands84-86. The common steps involved in the development of a significant pharmacophore model 

are as follows: in the case of ligand-based pharmacophore model generation: selection of molecules 

with defined activity, conformational search, feature extraction and representation, pattern 

identification and scoring and validation (internal and external); in case of structure-based 

pharmacophore model development: active site identification, complementary image construction, 

generation of queries, searching and hit analysis and validation [84-86]. Pharmacophore models have 

been used broadly in virtual screening, de novo design, and other applications such as lead optimization 

and multitarget drug design84-86. Various automated pharmacophore generators have been developed, 

including commercially and free available tools and software such as Biovia Discovery studio87, 

Schrodinger software88, PharmaGIST online tool (https://bioinfo3d.cs.tau.ac.il/PharmaGist/), 

LigandScout89, etc. 
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1.2.2.2. Molecular docking study 

Molecular docking is one of the functional methods of structure-based drug discovery (SBDD) that 

predicts the binding affinities between small molecules and macromolecular targets90-92. Molecular 

docking is generally carried out in two major stages:  first, to predict the stable conformation and 

orientation of the ligand, and second, to evaluate the binding affinity and binding orientation of the 

ligand within active sites90-92.  The information obtained from the docking analysis can be used to 

suggest the binding orientation, binding energy, free energy, interaction energy, and stability of 

complexes for the discovery of novel compounds90-92. Molecular docking has a broad range of uses and 

applications in drug discovery, such as lead optimization, chemical mechanism studies, structure-

activity studies, finding potential leads by virtual screening, assisting X-ray crystallography in the 

fitting of substrates and inhibitors to electron density, providing binding hypotheses to make easy 

predictions and combinatorial library design90-92. According to the degrees of flexibility of the 

molecules, docking methods are divided into three classes such as rigid docking, semi-flexible docking, 

and flexible docking90-92. There are four basic steps involved the molecular docking, which is as 

follows, 1) target selection and preparation, 2) ligand selection and preparation, 3) molecular docking, 

and 4) molecular docking analysis. There are some tools and online servers such as AutoDock Vina93, 

Schrodinger software [88], Molegro virtual docker software 6.0 (MVD)94, Biovia Discovery Studio87, 

idock (https://github.com/HongjianLi/idock), “Achilles” Blind Docking Server (https://bio-

hpc.ucam.edu/achilles/), FlexX95 and Smina software (https://sourceforge.net/projects/smina/), which 

are mostly used for high throughput docking simulations. 

1.2.2.3. Virtual screening 

There are many publicly or commercially available databases that can be used for computational drug 

discovery applications since high throughput technologies for biological screening and compound 

synthesis have recently become available. Virtual screening techniques are increasingly being 

recognized as the most cost-effective and time-saving approach to introducing new chemical entities 

into the pharmaceutical market to address the economic pressure on the pharma industry. A ligand-

based method96 and a receptor-based approach96 can both be used as the framework for virtual chemical 

database screening. Pharmacophore mapping is a ligand-based virtual screening technique that can be 

used to efficiently identify novel potential lead compounds. A pharmacophore model identifies the key 

chemical properties underlying the bioactivities of the compounds under investigation. Furthermore, in 

receptor-based virtual screening, molecular docking is used to identify compounds based on their 

binding energy and interaction patterns with the target protein. Additionally, one can perform virtual 

screening simply based on some criteria, such as Lipinski’s rule of 5, central nervous system (CNS) 

drug-like properties, or any other user-defined physicochemical properties. 

1.3. Review: QSAR studies performed on anti-Alzheimer’s compounds 

Since 1996, QSAR analyses of anti-AD drugs have been published. Before 2000, almost all QSAR 

investigations were conducted against the AChE enzyme, with only a few reports on muscarinic or 

nicotinic agonists. This could be because the FDA approved two AChE inhibitors, tacrine in 1993 and 

donepezil in 1996 (Figure 1.3 and Table 1.1), where donepezil was discovered through chemical 

modeling and QSAR research. This might have encouraged numerous researchers to conduct QSAR 

on AChE inhibitors. The discovery of additional AD complexity led to the identification of numerous 

other related targets. Table 1.5 contains the representative set of QSAR findings97-130 that have been 

examined against numerous AD targets. As previously stated, the first QSAR investigations were only 

reported against targets based on the cholinergic hypothesis. But since the last ten years, many new 

https://github.com/HongjianLi/idock
https://bio-hpc.ucam.edu/achilles/
https://bio-hpc.ucam.edu/achilles/
https://sourceforge.net/projects/smina/
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targets have been identified and are currently being investigated. Most of the QSAR investigations are 

focused on targets with cholinergic (AChE), amyloid (β and γ secretase), and tau hyperphosphorylation 

(GSK3β, CDK5) bases. Other targets such as the 20S proteasome, prolyl oligopeptidase, glutaminyl 

cyclase, histamine H3 receptor, monoamine oxidase B, caspase 3, 5-HT6R, Dyrk1A, etc. have also been 

subjected to QSAR analysis, although the number of studies on these targets is limited, maybe because 

there is insufficient information or it is unclear how these targets specifically contribute to AD. The 

appropriate diagnosis and comprehensive treatment of AD are now the two most important concerns 

that must be overcome in the near future, and the QSAR technique has enormous promise in doing so. 

As previously stated, early detection is very important since brain deterioration occurs before clinical 

symptoms manifest. It is advised to conduct more QSAR studies to investigate biomarkers or imaging 

agents since there have only been a few QSAR studies on biomarkers reported to date. Additionally, 

the QSAR method can be effectively used to analyze selectivity problems like those seen with protein 

kinases. It assists in understanding the structural requirements for achieving or improving activity 

against the desired target enzyme as well as selectivity over undesirable enzymes with comparable 

active sites. Additionally, it has been noted that the majority of QSAR investigations have been for a 

single biological target, even though AD is a complex disease that involves the concurrent dysfunction 

of multiple biological targets. Consequently, one of the main objectives is the rational design of novel 

leads as versatile inhibitors for various targets related to AD. 
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Table 1.5. QSAR studies performed on anti-Alzheimer’s compounds since 1996. 

Author 

name and 

year of 

publication 

QSAR method 

performed 
Chemical scaffold 

Name of the 

Target 
Importance of the study 

Based on the cholinergic hypothesis 

Tong et al. 

(1996)97 
CoMFA 

1-benzyl-4-[2-(N-benzoylamino) 

ethyl]piperidine derivatives; N-

benzylpiperidine benzisoxazoles 

derivatives 

AChE 

The CoMFA model revealed a close relationship between the activity of 

these N-benzylpiperidines and the steric and electronic variables that 

influence their biological activity. 

Recanatini et 

al. (1997)98 
2D-QSAR 

Physostigmine analogues; 1,2,3,4 

tetrahydroacridines; Benzylamine analogue 
AChE 

(1) Hydrophobicity is important in both the physostigmine and 

benzylamine-derived groups. 

(2) Electronic effects are key in the interactions carried out by the variable 

part of benzylamine analogs. 

Kaur et al. 

(2000)99 
2D-QSAR 

Derivatives of physostigmine, Tacrine, 

donepezil, huperzine A etc. 
AChE 

The presence of log P in the majority of QSAR models revealed that all 

derivatives were hydrophobic. 

Nicolotti et 

al. (2004)100 

2D-QSAR 

CoMFA 

MoQSAR 

300 nicotinic agonists from diverse chemical 

classes 

Nicotinic 

receptor 

(nAChR) 

The descriptors log P, MR, and low inter-correlated WHIM indices were 

used to describe highly active molecules. 

Shen et al. 

(2007)101 

CoMFA 

CoMSIA 
2-substituted 1-indanone derivatives AChE 

The contour map revealed that the binding affinity might be increased by 

replacing the small protonated nitrogen moiety with a more hydrophobic 

and bulky group with a highly partial positive charge. 

Solomon et 

al. (2009)102 
2D-QSAR N-aryl derivatives 

AChE; 

BChE 

Thermodynamic descriptors and charge descriptors are key contributors to 

potency, according to developed models. 
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Gupta et al. 

(2011)103 
2D-QSAR 

Dual binding inhibitors via high-throughput 

in vitro screening of a library consisting of 

56,000 compounds 

AChE 
The potency is largely influenced by electrotopological, two 

thermodynamic, and an electronic descriptor. 

Decembrino 

de Souza et 

al. (2012)104 

HQSAR 4-(diethylamino)methyl]-phenol derivatives 
AChE; 

 BChE  

The significance of numerous structural fragments to the activity levels of 

this group. 

Kumar et al. 

(2020)105 
2D-QSAR Diverse scaffold BuChE 

Hydrophobic, ring aromatic, and hydrogen bond acceptors/donors 

responsible for the enhancement of the activity were identified. 

Kumar et al. 

(2020)106 

2D-QSAR 

GQSAR 
Structurally Diverse Carbamates AChE 

Structural features appearing in the models are responsible for the 

enhancement of the inhibitory activity against the AChE enzyme 

Based on the amyloid hypothesis 

Keerti et al. 

(2005)107 
2D-QSAR Benzodiazepine derivatives γ-secretase 

A high lipophilicity and low molar refractivity of a compound allows for 

the maintenance of robust activity. 

Al-Nadaf et al. 

(2010)108 
2D-QSAR 129 compounds with diverse scaffolds 

β-secretase 

or BACE1 

This research resulted in the identification and synthesis of novel 

pyridinium-based compounds with low µM BACE inhibitors. 

Meek et al. 

(2012)109 
Binary QSAR 3-hydroxyanthranilic acid derivatives 

Aβ 

aggregation 

Whether a substance will be active or inactive can be predicted using a 

binary QSAR model. 

Valasani et al. 

(2013)110 
2D-QSAR Frentizole, benzothiazole-urea derivatives ABAD 

Novel small compounds with improved BBB crossing capacity, such as 

benzothiazole phosphonate and frentizole phosphonate derivatives, were 

developed. 

Kumar et al 

(2019)111 
2D-QSAR Diverse scaffold BACE1 

Heteroatoms (nitrogen, oxygen, etc.) present within an aromatic nucleus 

and the structural features such as hydrophobic, ring aromatic, and 

hydrogen bond acceptor/donor are responsible for the enhancement of the 

BACE1 enzyme inhibitory activity 
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Kumar et al. 

(2020)112 
2D-QSAR Diverse scaffold 

Aβ 

aggregation 

Features obtained from the developed models (2D-QSAR and 3D-

pharmacophore) and molecular docking can be helpful for the design of 

novel inhibitors against β-amyloid aggregation. 

Based on the tau hyperphosphorylation hypothesis 

Martinez et al. 

(2005)113 
CoMFA 

2,4-disubstituted thiadiazolidinones 

(TDZDs) 
GSK-3 

The interaction of TDZDs with GSK-3β was revealed to be dependent on 

molecular electrostatic field interaction. 

Lather et al. 

(2008)114 

2D-QSAR, 

3D-QSAR 
Indirubin derivatives GSK-3β 

The hydrophobic groups could be positioned at specific locations on the 

phenyl ring of the indirubin-like molecules to increase their bioactivity. 

Park et al. 

(2010)115 
3D-QSAR 

neutral phenylthiazolylhydrazide 

(PTH) derivatives 

Tau 

aggregation-n 

inhibitor 

The PTH structure is shaped like a tweezer, and the biological activity of 

the PTH depends on the relative orientation of the two aromatic rings 

linked to both ends. 

Fang et al. 

(2011)116 
3D-QSAR 

benzofuran-3-yl-(indol-3-yl) maleimides 

derivatives 
GSK-3β A new lead identification procedure was suggested. 

Haq et al. 

(2011)117 

CoMFA, 

CoMSIA 
Thienyl triazoles derivatives CDK5/p25 

The steric complementarity of the area close to the phenyl ring linked with 

the thiadiazine ring could be fine-tuned to increase the selectivity of the 

ligands. 

QSAR studies of imaging agents utilized in the diagnosis 

Wang et al. 

(2005)118 
2D-QSAR Benzothiazole (BTA) derivatives Aβ plaques 

Due to its smallest dipole moment, 3'-125I-BTA had the highest initial brain 

uptake among the four Aβ probes. 

Kim et al. 

(2007)119 

CoMFA 

CoMSIA 

ThioT analogs; 

stilbene derivatives 
Aβ plaques 

It has been found that positive electrostatic interaction and positively 

charged or electron-donating substituents improve the binding affinity of 

ThioT derivatives around the sulfur atom of the benzothiazole ring system. 

Kovac et al. 

(2010)120 
3D-QSAR 

Vesamicol derivatives; 

benzovesamicol derivatives 
VAChT 

Further research should be done on (+)-(S, S)-5-FBVM as a possible radio 

ligand. 
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Cisek et al. 

(2012)121 
2D-QSAR Benzothiazole derivatives Aβ plaques 

Binding selectivity can be modulated by polarizability and 

hydrophobicity. 

 

QSAR studies on miscellaneous targets 

Zhu et al. 

(2006)122 

CoMFA, 

CoMSIA 
Tripeptide aldehyde inhibitors 

20S 

proteasome 

The developed 3D-QSAR models can be utilized to guide the development 

of new 20S proteasome inhibitors. 

Pripp (2006)123 2D-QSAR 
POP inhibitory peptides derived from β-

casein 

Prolyl 

oligopeptidas

e (POP) 

This research is important for the advancement of functional foods as a 

supplement to pharmacological drugs. 

Dastmalchi et 

al. (2008)124 
2D-QSAR Arylbenzofuran derivatives 

Histamine H3 

receptors 

The role of charge transfer interactions in the ligand-receptor interaction 

was suggested by developed QSAR models. 

Firoozpour et 

al. (2012)125 
2D-QSAR Diverse scaffolds Caspase-3 

The identified independent variables influencing the caspase-3 inhibitory 

activity were the atom-centered fragment type CR2X2, electronegativity, 

polarizability, atomic radius, and lipophilicity of the molecule. 

Hajjo et al. 

(2012)126 
2D-QSAR Diverse scaffolds 5-HT6R 

QSAR models were used for virtual screening to discover potential 5-

HT6R actives. 

Bharate et al. 

(2013)127 
2D-QSAR Meridianin analogs Dyrk1A 

According to the findings, the kier Chi4 path/cluster, total lipole, VAMP 

polarisation ZZ component, dipole moment Z component, and log P all 

play significant roles in inhibiting Dyrk1A. 

Multi-target QSAR studies 

Prado-Prado et 

al. (2012)128 
3D mt-QSAR Diverse scaffold  

More than 

500 FDA-

approved 

targets 

The obtained model will assist with the prediction of novel drugs that have 

activity against several AD targets. 
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Speck-Planche 

et al. (2013)129 

mt-QSAR 

(LDA) 
Diverse scaffold 

5 proteins 

targets 

associated 

with AD 

New molecular entities were suggested and a model was used to quickly 

and efficiently identify the fragments in charge of the activity against the 

five targets. 

Kumar et al. 

(2020)130 
2D-QSAR Diverse scaffold 

AChE; 

BuChE 

Ring size, −CH2- groups, secondary aromatic amines, and aromatic 

ketones contribute to AChE inhibition. 

Distances between nitrogens, X-C(=X)-X and R--CR-X, secondary 

aromatic amides contribute to BuChE inhibition. 

5-HT6R: 5-hydroxytryptamine-6 receptor; Aβ: beta-amyloid; AChE: Acetylcholinesterase; ABAD:Aβ-binding alcohol dehydrogenase; BChE: Butylcholinesterase; CDK5/p25: Cyclin-dependant kinase 5/p25; 

CK1: Casein kinase 1; Dyrk1A:Dual-specificity tyrosine phosphorylation-regulated kinase 1A; GSK3: Glycogen synthase kinase-3; VAChT: Vesicular acetylcholine transporter. 
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1.4. Activity data sources, and freely available CADD software and tools 

One of the main elements of the study needed to perform the various tasks involved in in-silico studies is a 

software tool. A publicly available software tool allows any researcher to execute, copy, and share the tool 

with the scientific community. Table 1.6 contains a collection of freely available databases and in silico 

software applications. 

Table 1.6. The Weblinks of tools and servers in alphabetical order. 

Acronyms Weblinks 

Achilles Blind Docking 

Server 

https://bio-hpc.ucam.edu/achilles/ 

ACD-Chemsketch https://www.acdlabs.com/resources/freeware/chemsketch/download.php 

AMBER18 https://ambermd.org/GetAmber.php 

AutoDock Vina http://vina.scripps.edu/ 

Avogadro version 1.2 https://avogadro.cc/news/avogadro-1-2-0-released/ 

Biovia discovery studio https://discover.3ds.com/discovery-studio-visualizer-download 

Binding Database https://www.bindingdb.org/bind/index.jsp 

CHARMM-GUI 

Glycolipid Modeler 

http://www.charmm-gui.org/?doc=input/glycan 

Chiron online server https://dokhlab.med.psu.edu/chiron/login.php 

ChemDraw Ultra12v https://en.freedownloadmanager.org/users-

choice/Chemdraw_Ultra_7.0_Free_Download.html 

ClustalW https://www.genome.jp/tools-bin/clustalw 

ClustalX http://www.clustal.org/clustal2/ 

DISPHOS 1.3 server https://dabi.temple.edu/disphos/pred/predict 

ERRAT https://servicesn.mbi.ucla.edu/ERRAT/ 

ChEMBL database https://www.ebi.ac.uk/chembl/ 

FlexX https://www.biosolveit.de/FlexX/ 

Gaussview program https://gaussian.com/gaussview6/ 

GROMACS 5.1.2 http://manual.gromacs.org/documentation/5.1.2/download.html 

GlycoEP server https://bio.tools/glycoep 

HMMER tool http://hmmer.org/ 

HHsearch tool https://github.com/soedinglab/hh-suite 

Hyperchem http://www.hyper.com/ 

Idock tool https://github.com/HongjianLi/idock 

https://bio-hpc.ucam.edu/achilles/
https://bio.tools/glycoep
http://hmmer.org/
https://github.com/soedinglab/hh-suite
http://www.hyper.com/
https://github.com/HongjianLi/idock
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I-TASSER server web 

server 

https://zhanglab.ccmb.med.umich.edu/I-TASSER/ 

 

LigandScout tool https://ligandscout.software.informer.com/ 

MODELLER 9.23 https://salilab.org/modeller/9.23/release.html 

Molegro Molecular 

viewer 

http://molexus.io/molegro-molecular-viewer/ 

Molegro virtual docker 

software 

http://molexus.io/molegro-virtual-docker/ 

MolProbity web server http://molprobity.biochem.duke.edu/ 

 

MMTK software http://dirac.cnrs-orleans.fr/MMTK.html 

NAMD 2.13 https://www.ks.uiuc.edu/Development/Download/download.cgi?PackageName=NAM

D 

NCBI database https://www.ncbi.nlm.nih.gov/ 

NetPhos 3.1 sever http://www.cbs.dtu.dk/services/NetPhos/ 

NetSurfP-2.0 sever http://www.cbs.dtu.dk/services/NetSurfP/ 

OGTSITE server http://csb.cse.yzu.edu.tw/OGTSite/ 

PaleAle 5.0 server http://distilldeep.ucd.ie/paleale/quickhelp.html 

PeptideMass online 

server 

https://web.expasy.org/peptide_mass/ 

PEPFOLD3 server https://bioserv.rpbs.univ-paris-diderot.fr/services/PEP-FOLD/ 

PharmaGIST online tool https://bioinfo3d.cs.tau.ac.il/PharmaGist/ 

PileUp tool http://www.dbbm.fiocruz.br/cgc/pileup.html 

pmemd.cuda module in 

AMBER18 tool 

https://ambermd.org/GPUHowTo.php 

PROCHECK https://www.ebi.ac.uk/thornton-srv/software/PROCHECK/ 

Profilescan http://130.88.97.239/bioactivity/newpfscan.html 

profile-profile alignment 

tool FFAS03 

http://ffas.godziklab.org/ffas-cgi/cgi/ffas.pl 

 

PubChem https://pubchem.ncbi.nlm.nih.gov/ 

PyMol tool https://pymol.org/dsc/ 

PyRx 0.8 https://pyrx.sourceforge.io/ 

https://zhanglab.ccmb.med.umich.edu/I-TASSER/
https://ligandscout.software.informer.com/
https://salilab.org/modeller/9.23/release.html
http://molexus.io/molegro-molecular-viewer/
http://molprobity.biochem.duke.edu/
http://dirac.cnrs-orleans.fr/MMTK.html
https://bioserv.rpbs.univ-paris-diderot.fr/services/PEP-FOLD/
https://bioinfo3d.cs.tau.ac.il/PharmaGist/
http://www.dbbm.fiocruz.br/cgc/pileup.html
https://ambermd.org/GPUHowTo.php
https://www.ebi.ac.uk/thornton-srv/software/PROCHECK/
http://ffas.godziklab.org/ffas-cgi/cgi/ffas.pl
https://pubchem.ncbi.nlm.nih.gov/
https://pymol.org/dsc/
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QSAR model https://dtclab.webs.com/software-tools 

SAM tool https://compbio.soe.ucsc.edu/sam.html 

Schrodinger software https://www.schrodinger.com/ 

Sima software https://sourceforge.net/projects/smina/ 

 SANCDB https://sancdb.rubi.ru.ac.za/ 

SwissDock server http://www.swissdock.ch/ 

Swiss model web server https://swissmodel.expasy.org/ 

UCSF Chimera https://www.cgl.ucsf.edu/chimera/ 

Verify3D https://servicesn.mbi.ucla.edu/Verify3D/ 

Verification Server https://servicesn.mbi.ucla.edu/SAVES/ 

vROCS (OpenEye) https://docs.eyesopen.com/applications/rocs/vrocs/vrocs.html 

Yasara server http://www.yasara.org/minimizationserver.htm 

YinOYang 1.2 server http://www.cbs.dtu.dk/services/YinOYang/ 

ZINC15 database https://zinc15.docking.org/ 

https://compbio.soe.ucsc.edu/sam.html
https://sourceforge.net/projects/smina/
http://www.swissdock.ch/
https://swissmodel.expasy.org/
https://servicesn.mbi.ucla.edu/Verify3D/
https://servicesn.mbi.ucla.edu/SAVES/
https://docs.eyesopen.com/applications/rocs/vrocs/vrocs.html
http://www.cbs.dtu.dk/services/YinOYang/
https://zinc15.docking.org/
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Chapter 2: Present work 

Alzheimer’s disease (AD) is a progressive neuropathological disorder, found in the most common form of 

dementia, which causes severe brain deterioration and cognitive function loss1-2. AD is a degenerative 

ailment that is thought to begin decades before symptoms appear. Clinicians are only able to identify even 

the first signs of AD after significant damage has already been done to crucial biological components3. 

Despite the challenge of researchers to definitively identify the initial trigger that leads apart a series of 

harmful processes, a lot of studies have identified essential components in AD pathogenesis3-4. According 

to evidence from autosomal dominant and sporadic types of AD, amyloid plaques and tau protein-based 

neurofibrillary tangles can develop for up to 20 years before the onset of clinical dementia5. The staging of 

AD pathological abnormalities during the preclinical stage of the disease is facilitated by the recent growth 

of imaging and fluid biomarkers for AD pathogenesis3-5. AD is a developing healthcare concern, with 

increased life expectancy as the primary risk factor3-5. Disease prevalence is expected to more than double 

over the next several decades in the absence of adequate prevention and treatment alternatives3-5. About 

200 clinical studies have been conducted to date to identify disease-modifying treatments for AD, but these 

efforts have generally failed, with many failures being attributable to ineffectiveness or excessive toxicity3-

5. Every failed clinical study of a novel molecular entity (NME) takes a significant amount of time and 

money. Repurposing medications that have already been approved by the Food and Drug Administration 

(FDA) for a different indication, however, is less expensive, involves known potential toxicities, and has a 

greater success rate (30%) than developing an NME3-6. Significant effort has been devoted in recent years5-

7 to identify therapies that halt neurodegeneration in AD, but we are still far from finding exact treatment 

techniques6-7. The early diagnosis and treatment of AD is now a fast-developing field of both scientific and 

clinical research because current treatments only help with the symptoms of the disease. There are now 

only five approved drugs for the treatment of cognitive symptoms of Alzheimer`s disease. Among them, 

four drugs are acetylcholinesterase enzyme (AChE) inhibitors (Tacrine, Rivastigmine, Galantamine, and 

Donepezil), and the remaining one drug is non-competitive glutamate (NMDA) receptor antagonist 

(Memantine “FDA approved”)6-7. Their use is only symptomatic, and no treatment has been proven to slow 

or stop the progression of the disease6-7. The long-term effects of AChE inhibitors have recently been 

postulated to be due to these medications interfering with the metabolism of amyloid precursor protein 

(APP)6-7. The cause and progression of AD are still not well understood. The search for treatments in the 

field of neurodegenerative disorders is extremely active, yet there is still no cure for AD. 

Furthermore, the development of inhibitors against AD is a challenging and difficult procedure due to the 

complication of the molecular pathways involved in the progression of the disease83-85. Computer‐Aided 

Drug Design (CADD) uses computer power, three‐dimensional graphics, mathematics, and statistics to 

understand and predict the binding mode and energy of small molecule inhibitors with potential targets83-

85. The most common in-silico techniques employed by medicinal chemists to help them rationalize the 

selection of hit compounds and to perform hit‐to‐lead optimization include structure‐based design like 

molecular docking and dynamics and ligand‐based design like quantitative structure‐activity relationships 

(QSAR), chemical Read-Across and pharmacophore mapping83-85. Among these methodologies, the 

quantitative structure-activity relationship (QSAR) and molecular docking have great applications in the 

area of in-silico search. The QSAR methods are essential for the exploration of important structural features 

and prediction of the biological activity of novel compounds based on mathematical and statistical 

relations83-85. The idea of QSAR is based on the concept that endpoint values of compounds change 

systematically with modification of the structural attributes83. 
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In the present thesis work, numerous in silico techniques were employed to study the potential leads against 

AD. The main objective was to use different in silico approaches to find and improve potential anti-

Alzheimer's leads against several crucial targets involved in AD. Along with the single-target drug 

designing approach, we have also focused on identifying or designing dual-binding site AChE inhibitors, 

as well as multi-target inhibitors. Further, we have explored the selectivity issue of inhibitors against AChE 

over BuChE, which is a commonly observed issue while designing molecules against enzymes. Although 

we used a variety of in silico methods, such as QSAR, molecular docking, pharmacophore modeling, virtual 

screening, and so on, the majority of our work is focused on developing predictive and statistically robust 

QSAR models. The QSAR approach is used extensively in the lead optimization step of any drug 

development effort to reduce time, money, and, most importantly, animal sacrifice. A QSAR model is used 

to identify the structural features responsible for the activity as well as to achieve selectivity. Additionally, 

we have also developed the quantitative structure activity-activity relationship (QSAAR) and selectivity-

based models to explore the most important features contributing to the dual inhibition against the 

respective targets. Furthermore, the model provides significant information for designing new compounds 

with improved activity, and it is used to predict the activity of a query or newly designed compound. 

2.1. Datasets employed  

For performing the requisite in silico studies, several datasets were collected from various reliable sources 

(i.e., literature and online database) as mentioned in Table 2.1. 

Table 2.1. Datasets employed in the present work. *Ncompds: Number of compounds in the dataset 

Datasets Alzheimer’s disease targets Ncompds* Class of compounds Reference 

I Butyrylcholinesterase (BuChE) 1130 Diverse classes 
 Journal 

Article131-184 

II Beta-secretase 1 (BACE1) 98 Diverse classes 
Online 

Database185 

III Amyloid-beta (Aβ) plaques 314 Diverse classes 
Online 

Database185 

IV Acetylcholinesterase (AChE) 78 Carbamate derivatives 
Journal 

Articles186 

V 

AChE  997 

Diverse classes 
Journal 

Articles187-299 BuChE 716 

Selectivity (AChE- BuChE) 198 

VI-A 5-hydroxytryptamine 6 (5-HT6) 80 

Diverse classes 
Online 

Database185 
VI-B AChE 1733 

VI-C BuChE 2507 
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VI-D BACE1 905 

VI-E Amyloid-beta (Aβ) plaques 262 

VI-F Cyclin Dependent Kinase 5 (CDK-5) 225 

VI-G Gamma-secretase enzyme 217 

VI-H Glutaminyl Cyclase (QCs) 132 

VI-I Glycogen synthase kinase-3β 159 

VI-J Monoamine oxidase B (MAO-B) 170 

VI-K N-methyl-D-aspartate (NMDA) 356 

VI-L Phosphodiester 10A (PDE 10A) 289 

VI-M Dual (AChE and BACE1) 43 

VI-N Dual (AChE and β-amyloid) 83 

VI-O Dual (AChE and BuChE) 113 

VI-P Dual (AChE and MAO-B) 52 

VI-Q Dual (BACE1 and GSK-3β) 20 

VI-R Dual (BuChE and BACE1) 51 

VI-S Dual (BuChE and β-amyloid) 23 

VI-T Dual (BuChE and MAO-B) 48 

VI-U Dual (AChE and GSK-3β) 21 

VI-V Dual (BuChE and GSK-3β) 21 

 

 2.1.1. Dataset I (study 1) 

In this study, the activity values of a set of 1130 diverse classes of compounds against the BuChE enzyme 

were collected from previously published papers131-184 for the development of the QSAR model. The 

experimental activity values of the dataset compounds were expressed as IC50 values (nM) and converted 

to pIC50values for model development purposes. The data taken from the above-mentioned sources were 

checked and filtered by the criteria of a defined endpoint, and the same experimental procedures, following 

the OECD guidelines. The main of this study was to identify the structural requirements which are essential 

for BuChE enzyme inhibitory activity. Furthermore, we have also performed a molecular docking study 

with the most active, moderately active, and least active compounds from the whole dataset. 
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2.1.2. Dataset II (study 2) 

In this study, a set of 98 heterocyclic compounds (BACE1 enzyme inhibitors) were collected from the 

BindingDB database185 for the development of the QSAR model. The experimental IC50 values (nM) of the 

dataset compounds were converted into pIC50 values for model development purposes. These molecules 

employed similar bioassay protocols and conditions (FRET bioassay) for determining the biological activity 

against the BACE1 enzyme. The main purpose of this study was to identify the structural requirements 

which are essential for BACE1 enzyme inhibitory activity and to predict the activity of unknown 

compounds against the BACE1 enzyme. Additionally, we have performed pharmacophore mapping using 

the above dataset to reveal the structural requirements for the inhibitory activity and to categorize the 

compounds into more active and less active classes against the BACE1 enzyme. Furthermore, we have 

performed a molecular docking study with the most active and least active compounds from the whole 

dataset and tried to justify the contributions of different descriptors/features as evident in the 

QSAR/pharmacophore model. 

2.1.3. Dataset III (study 3) 

In this study, a set of 314 heterocyclic compounds (β-amyloid aggregation inhibitors) were collected from 

the BindingDB database185 with defined β-amyloid aggregation inhibitory activity for QSAR model 

development. The experimental IC50 values (nM) of the dataset compounds were converted into pIC50 

values for model development purposes. The dataset compounds utilized in this study followed the same 

experimental protocol (Thioflavin T (ThT) spectrofluorometric assay method). The main purpose of this 

study is to determine the essential structural features which are responsible for the inhibition of β-amyloid 

aggregation. Moreover, we also performed pharmacophore modeling using the above dataset to reveal the 

structural requirements for inhibitory activity against β-amyloid aggregation and also to categorize the 

compounds into active and less active classes. Furthermore, we performed a molecular docking study with 

the most active and least active compounds from the dataset and tried to justify the contributions of different 

descriptors/features obtained from QSAR/pharmacophore models. 

2.1.4. Dataset IV (study 4) 

In this study, the activity values of a congeneric series of 78 carbamate derivatives against the AChE 

enzyme were collected from the previously published literature186. The activity values for all the compounds 

were measured using the same experimental method (Ellman assay) by the same research group. The 

activity values of all the dataset compounds expressed as IC50 (µM) values were converted to the negative 

logarithm of IC50 (i.e., pIC50) values for model development. In GQSAR model development, the 

designation of common scaffold and substitution sites is a prerequisite step. There are three substitution 

sites R1, R2, and R3 in the congeneric series used in the G-QSAR study. In the GQSAR methodology, every 

dataset molecule is considered a set of fragments, and the fragmentation scheme is either template-based 

or user-defined. Once the common scaffold and substitution sites are defined, various descriptors are 

calculated for each fragment of the molecule. Now using an appropriate variable selection method, the 

significant descriptors representing the particular substituent sites are selected. The main purpose of this 

study was to identify the structural features responsible for the enhancement of the inhibitory activity 

against the AChE enzyme. Furthermore, we have performed the pharmacophore mapping using the above 

dataset to unveil the structural requirements for the inhibitory activity. Additionally, molecular docking 

studies were performed to understand the molecular interactions involved in binding, and the results are 

then correlated with the requisite structural features obtained from the QSAR and pharmacophore models. 
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2.1.5. Dataset V (study 5) 

In the current work, we have used two different datasets against two important targets, namely AChE 

(number of compounds = 997) and BuChE (number of compounds = 761) enzymes collected from 

previously published literature187-299. In both the datasets, some compounds have inhibitory activities both 

against AChE and BuChE enzymes (number of compounds 198), therefore, we have used the difference of 

activities against AChE and BuChE enzymes as the dependent variable (AChE-BuChE) for modeling 

selectivity, and the third dataset has been prepared. The datasets comprise diverse classes of heterocyclic 

compounds, and the experimental activity of each compound is expressed in IC50 (nM) value, derived 

following the same bioassay protocol (modified colorimetric Ellman assay. For the model's development, 

we have converted the IC50 values to pIC50 values as customary in QSAR analysis. Before descriptor 

calculation, we carefully checked all structures in the datasets for the development of significant 2D-QSAR 

models. Additionally, we have also implemented the molecular docking studies using the most and least 

active compounds from the datasets and tried to rationalize the influences of different descriptors/features 

as apparent from the 2D-QSAR models. 

2.1.6. Dataset VIA-V (study 6) 

The activity data against twelve major targets of AD were collected from the BindingDB database185. 

Initially, 80 inhibitors against 5-hydroxytryptamine receptor 6 (5-HT6) following cell-based Radio ligand 

binding assay, 1733 compounds against acetylcholinesterase (AChE) enzyme following modified 

colorimetric Ellman assay, 2507 compounds against butyrylcholinesterase (BuChE) enzyme following 

modified colorimetric Ellman assay, 905 inhibitors against beta-secretase 1 (BACE1) enzyme following 

FRET (fluorescence resonance energy transfer) assay, 262 β-amyloid aggregation inhibitors following 

Thioflavin T-based fluorometric assay, 225 compounds against Cyclin Dependent Kinase 5 (CDK-5) 

protein following Scintillation proximity assay, 217 inhibitors against gamma-secretase enzyme following 

cell-based sandwich ELISA assay, 132 compounds against Glutaminyl Cyclase (QCs) enzyme following 

Continuous Spectrometric Assay, 159 inhibitors against glycogen synthase kinase-3 beta (GSK-3β) enzyme 

following Kinase-Glo reagent based luminescence assay, 170 compounds against Monoamine oxidase B 

(MAO-B) enzyme following Fluorometric method, 356 compounds against N-methyl-D-aspartate 

(NMDA) receptor following Fluorescence-based assay, 289 compounds against Phosphodiester 10A (PDE 

10A) enzyme following TR-FRET assay. The datasets comprise diverse classes of heterocyclic compounds, 

and the experimental activity values are quantified in IC50 (nM). Before proceeding with the development 

of the regression models, we executed preliminary dataset preparation and data curation (chemical and 

biological) strategy using a KNIME workflow (available from https://dtclab.webs.com/software-tools). 

After dataset curation, screening of the activity datasets was performed to find the common compounds 

having dual inhibitory activity against the listed targets. Accordingly, we have found that the 43 compounds 

with dual inhibitory activities both against AChE and BACE1 enzymes, 83 compounds against AChE and 

β-amyloid, 113 compounds against AChE and BuChE enzymes, 52 compounds against AChE and MAO-

B enzymes, 20 compounds against BACE1 and GSK-3β enzymes, 51 compounds against BuChE and 

BACE1enzymes, 23 compounds against BuChEI and β-amyloid, 48 compounds against BuChE and MAO-

B enzymes, 21 compounds against AChE and GSK-3β enzymes and 21 compounds against BuChE and 

GSK-3β enzymes were retained and used for the development of the respective QSAAR and selectively 

based models. The activity endpoint values (IC50) were converted to the negative logarithmic scale, pIC50, 

as customary in QSAR modeling. In addition, we also executed molecular docking analyses with the most 

and least active molecules from the datasets, attempting to explain the influences of different properties as 

seen in the 2D-QSAR models.

https://dtclab.webs.com/software-tools
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Chapter 3: Materials and methods 

In this section, details about the all the datasets and procedures have been described that were employed to 

carry out several in silico studies, namely, QSAR, molecular docking, pharmacophore mapping, and virtual 

screening. Along with the methodology, all the software tools (including in-house developed) have been 

mentioned that were employed in our studies. Note that all the in-house developed QSAR relevant software 

tools and in-house designed Konstanz Information Miner (KNIME) workflows mentioned in this thesis are 

available at http://teqip.jdvu.ac.in/QSAR_Tools/ and http://dtclab.webs.com/software-tools. 

3.1. Study 1-A Multi-layered Variable Selection Strategy for QSAR Modeling of Butyrylcholinesterase 

Inhibitors 

3.1.1. QSAR methodology 

3.1.1.1. Dataset selection 

In this study, a PLS-regression-based QSAR model was developed for BuChEI using diverse classes of 

compounds (n =1130) collected from previously published papers131-184 to identify the structural 

requirements which are essential for BuChE enzyme inhibitory activity. The experimental activity values 

of the dataset compounds were expressed as IC50 values (nM) and converted to pIC50values for model 

development purposes. The data taken from the above-mentioned sources were checked and filtered by the 

criteria of a defined endpoint, and the same experimental procedures, following the OECD guidelines300. 

All the structures were drawn using the ChemDraw ultra 12.0 software (Available from: 

https://chemistry.com.pk/software/free-download-chemdraw-ultra-12/). Then each molecular structure was 

cleaned and hydrogens were added using Marvin view ChemAxon tool (Available from:  

https://chemaxon.com/products/marvin) and the structures were saved as MDL.mol format. 

3.1.1.2. Descriptor calculation and data pretreatment 

Molecular descriptors are mathematical representations of molecular structure information obtained by a 

well-specified algorithm. The descriptors were calculated using two software tools, namely, Dragon 

software version 7301 and PaDEL-descriptor 2.20 software302. In this work, only 2D descriptors were 

calculated covering constitutional, ring descriptors, connectivity index, functional group counts, atom-

centered fragments, 2D atom pairs, atom type E-states, molecular properties(using Dragon software version 

7), and extended topochemical atom (ETA) indices (using PaDEL-Descriptor software). Additionally, data 

pretreatment was performed to remove inter-correlated descriptors from the dataset using the tools 

Pretreatment V-WSP version 1.2 (available at http://dtclab.webs.com/software-tools). 

3.1.1.3. Dataset division 

In this present study, the aim was to develop a QSAR model which is statistically robust and capable of 

making accurate and reliable predictions. Therefore, the developed QSAR model was validated using new 

chemical entities, i.e., a test set to check the predictive capacity of the developed models. The whole data 

set was divided into an internal set (training set) and an external set (test set) using the “Modified k-medoid” 

clustering technique (available at http://dtclab.webs.com/software-tools). The clustering technique 

categorizes a set of compounds into clusters so that the compounds present in the same cluster are similar 

https://chemistry.com.pk/software/free-download-chemdraw-ultra-12/
http://dtclab.webs.com/software-tools
http://dtclab.webs.com/software-tools
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to each other. On the other hand, when two compounds belong to two different clusters, they are expected 

to be dissimilar. The representative compounds within a cluster are called medoids. This technique tends 

to select k from most middle compounds as the initial medoid. Eight clusters were generated for the BuChEI 

dataset containing 1130 compounds. We have selected approximately 25% of compounds from each cluster 

for the test set and the remaining 75% of compounds were selected for the training set. The training set was 

used for model development and the test set was used for model validation purposes. 

3.1.1.4. Multi-layered variable selection and QSAR model development 

The selection of important and meaningful descriptors from a large pool is a crucial step in QSAR model 

development. The selection of significant descriptors from a large initial pool is important to reduce the 

noise in the input. Thus, a multi-layered variable selection strategy was employed before the development 

of the final model using stepwise regression (using a suitable stepping criterion, e.g., ‘F-for-inclusion ‘and 

‘F-for-exclusion’ based on partial F-statistic) followed by genetic algorithm (GA) followed by again 

stepwise regression and finally, best subset selection. For this purpose, first, we have run stepwise 

regression using the whole pool of descriptors and kept the model descriptors aside. Next, we have run 

again stepwise regression using the remaining pool (after removing the descriptors obtained from the first 

run stepwise regression) of descriptors and selected the model descriptors. In this way, we have selected 80 

descriptors from the initial pool of 600 descriptors (Layer-I). After the first layer of descriptor selection, 

we developed some models using a genetic algorithm (GA) (available at http://dtclab.webs.com/software-

tools) and selected 57 descriptors (Layer-II) from 80 descriptors. After that, top 20 descriptors were selected 

using the stepwise regression technique (Layer-III) again. Using these 20 descriptors, we have run the best 

subset selection using a tool developed in our laboratory (available at http://dtclab.webs.com/software-

tools) to develop a 15 descriptor model which was selected based on Mean Absolute Error (MAE) based 

criteria303-304. Although many groups of authors reported different variable selection strategies, we have 

followed here stepwise regression followed by GA followed by stepwise regression, and finally, the best 

subset selection method as reported previously also305-308. The final model was developed by employing 

PLS-regression methodology to avoid intercorrelation among the modeled descriptors using Minitab 

software (Available from: http://www.minitab.com/en-US/default.aspx). Multi-layered variable selection 

strategy is schematically represented in Figure 3.1. 

http://dtclab.webs.com/software-tools
http://dtclab.webs.com/software-tools
http://dtclab.webs.com/software-tools
http://dtclab.webs.com/software-tools
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Figure 3.1. Schematic representation of multi-layered variable selection strategy. 

3.1.1.5. Statistical validation metrics 

In the present work, a PLS-regression-based QSAR model was developed for the inhibitory activity of the 

BuChE enzyme. The developed model was validated using both internal and external validation parameters.  

The internal statistical parameters used in this study are the determination coefficient (R2) and leave-one-

out cross-validated correlation coefficient (Q2
(LOO)). The determination coefficient (R2) represents how 

much variability of a factor can be explained by its relationship to another factor, it is computed as a value 

between 0 (0 percent) and 1 (100 percent). The higher value of this parameter indicates a better fit of the 

model. But these parameters are not good enough to evaluate the robustness and predictivity of a significant 

model. Thus, we have employed additional statistical validation parameters such as R2
Pred (external 

prediction variance) or Q2F1 and Q2F2 to assure the significance of the developed model. Additionally, a Y-

randomization test, checking applicability domain criteria, etc. were performed to investigate the robustness 

of the developed model. The main objective of the Y-randomization test is to ascertain whether the 

developed model is obtained by chance or not. The Y-randomization test was performed using the Simca-

P software (Available from: https://umetrics.com/kb/getting-started-simca-p) by randomly reordering (100 

permutations) the dependent variable. The validation parameter of the model obtained under such 

conditions should be of poor quality. The value of the R2
yrand intercept should not exceed 0.3 and the value 

of the Q2
yrandintercept should not exceed 0.05309. 
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3.1.1.6. Applicability domain (AD) assessment 

The Applicability domain of a QSAR model has been described as the response and chemical structure 

space that is defined by the nature of the chemicals in the training set. If a new compound falls within the 

Applicability domain of the developed model, only then the developed model can predict the compound 

precisely. It is extremely useful for QSAR developers to have information about the applicability domain 

of the developed model to identify interpolation (true predictions) or extrapolation (less reliable 

predictions)310-311. Here, we have checked the applicability domain of the developed model employing the 

DModX (distance to model X) approach at a 99% confidence level using SIMCA-P software (Available 

from: https://umetrics.com/kb/getting-started-simca-p). 

3.1.1.7. Randomization of the PLS model 

The purpose of the Y-randomization test is to identify and quantify chance correlations between the 

dependent variable and the descriptors309. Here, the term chance correlation means that the real model may 

contain descriptors that are statistically well correlated to Y, but in reality, there is no cause-effect 

relationship encoded in the respective correlations with Y because they are not related to the mechanism of 

action [309].  The Y-randomization test consists of several runs for which the original descriptor matrix X 

is kept fixed, and only the vector Y is randomized309. The validation parameter of the model obtained under 

such conditions should be of poor quality and without real meaning309-310. The value of the R2
yrand intercept 

should not exceed 0.3 and the value of the Q2
yrand intercept should not exceed 0.05309. In the present study, 

for the training set, the X data remained constant and the data Y were shuffled randomly. Here, we have 

generated the randomized model using 100 permutations. The schematic work flow for the development of 

the QSAR model against BuChE inhibitors is shown in Figure 3.2. 
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Figure 3.2. Schematic work flow of QSAR model development against BuChE inhibitors (BuChEI). [PLS 

= Partial least squares, SR = Stepwise regression, BSS = Best subset selection]. 

3.1.2. Docking studies 

Molecular docking is a technique to understand drug-biomolecular interactions for the rational drug design 

and discovery as well as for the mechanistic study by placing a molecule (ligand) into the desired binding 

site of the target definite region of the protein/enzyme (receptor) mainly in a non-covalent manner to form 

a stable complex of potential efficacy and specificity312. The docking process includes two basic stages: 

prediction of the ligand conformation as well as its position and orientation within these sites (usually 

referred to as pose) and assessment of the binding affinity. The evidence obtained from the docking study 

can be used to suggest the binding orientation, binding energy, free energy, interaction energy, and stability 

of complexes. In the current study, we have employed molecular docking studies to comprehend the 

interactions between the BuChE enzyme (the structure of the protein was retrieved from Protein Data Bank 

with PDB ID: 6EZ2, available from: https://www.rcsb.org/structure/6EZ2) and the selected BuChE enzyme 

inhibitors. In this context, we have applied the CDOCKER module of receptor-ligand interaction available 

in BIOVIA Discovery Studio client 4.1 (available from: https://3dsbiovia.com/resource-

center/downloads/). Before the docking experiment, we defined the active site of the enzyme using the 

protocol Receptor-Ligand Interaction section using the option “define site from receptor cavities” in the 

BIOVIA Discovery Studio client 4.1 platform. The selected inhibitors were subjected to ligand preparation 

to find a series of ligand conformers. Each orientation was used in the CDOCKER module for molecular 

docking using CHARMm-based interaction energy using a rigid receptor313. The poses are sorted according 

to CHARMm interaction energy, and the top scoring (most negative, thus favorable to binding) poses are 

kept. 
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3.2. Study 2- Exploring 2D-QSAR for prediction of Beta-secretase 1 (BACE1) inhibitory activity against 

Alzheimer’s disease 

3.2.1. QSAR methodology 

3.2.1.1. The Dataset 

In this study, a 98 heterocyclic compounds (BACE1 enzyme inhibitors) (Table 3.1) were collected from 

the BindingDB database185 for the development of the QSAR model. The experimental IC50 values (nM) of 

the dataset compounds were converted into pIC50 values for model development purposes. The reported 

assay (FRET bioassay) procedure of all the compounds used in this study followed the same protocol314-320. 

All the structures were drawn using the Marvin ChemAxon tool (Available from 

https://chemaxon.com/products/marvin) followed by cleaning of molecules, and finally, saved as MDL 

.mol format. All the compound structures were properly checked before the calculation of descriptors. The 

main purpose of this study was to identify the structural requirements which are essential for BACE1 

enzyme inhibitory activity and to predict the activity of unknown compounds against the BACE1 enzyme.  

3.2.1.2. Preliminary dataset preparation and data curation 

Before the development of QSAR models, we performed dataset preparation and data curation (chemical 

and biological) steps. The dataset which we downloaded in a structural data format (SDF) had both 

structural and biological activity information. The identifiers were given to all compounds present in the 

dataset that carry the following information, i.e., the name of the respective enzyme and a serial number. 

The activity values from the dataset file was extracted to classify the compounds in four orders of 

magnitude. At last, we have submitted the dataset to chemical and biological curation. In this study, we 

have employed the most common steps (as detailed below) to perform the chemical curation that has been 

implemented in the in-house designed Konstanz Information Miner (KNIME) workflow (available at 

https://dtclab.webs.com/software-tools). 

3.2.1.2.1. Reading and storing the information present in the downloaded SDF file from the BindingDB 

database 

The dataset file (SDF) contains all the structural and topological information like molecule name, 

coordinates, bond counts, etc. Along with this necessary information, it also contains biological 

information. For chemical data curation, structural information is enough to identify the correct chemical 

structure and remove duplicates. Later, the biological data curation was also performed to store other 

information related to the biological property, which is necessary for correct biological data curation. In the 

KNIME workflow, we have used the “SDF Reader” node for reading the input SDF file and storing the 

structural information. We have discarded the molecules with incorrect and incomplete information, and 

the molecules which have correct structural and biological information were stored as the revised SDF file 

for further use. 

 3.2.1.2.2. Removal of salts, mixtures, inorganics, and organo-metallics 

The molecular descriptors are generally computed for organic compounds and thus the majority of software 

tools can only consider organic compounds. Thus, the presence of salts, mixtures, inorganics, and organo-

metallics in the dataset may lead to incorrect descriptor values, or such compounds are simply rejected by 

https://dtclab.webs.com/software-tools
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the software. So, in the present study, we have removed all the salts, mixtures, in-organics, and organo-

metallics compounds before calculating the descriptors using ‘RDKit Salt Stripper’, ‘Connectivity’ node 

and ‘Element Filter’ nodes59 respectively. 

3.2.1.2.3. Normalization of chemical structures 

There is a possibility of demonstrating the same functional group using different structural forms in the 

dataset. Therefore, normalization of chemical structure is necessary to remove different structural patterns. 

For example, nitro groups can be represented using two double bonds between nitrogen and oxygens, one 

single bond linking the nitrogen and the protonated oxygen, or linking both nitrogen and oxygen atoms that 

are oppositely charged59. Different representations of the same chemical structure may create serious 

problems in a QSAR study because molecular descriptors calculated for these different representations of 

the same functional group could be significantly different. Thus, the transformation of all such functional 

groups to standard forms is highly essential. In this study, the ‘RDKit Structure Normalizer node was used 

for standardizing the chemical structures. 

3.2.1.2.4. Biological curation 

After chemical curation, biological curation was performed using the screened compounds, and it includes 

two important steps, i.e., duplicate analysis and activity cliff analysis. In the case of biological data curation, 

we have again employed the KNIME workflow (available at http://dtclab.webs.com/software-tools) to 

perform duplicate identification and activity cliff determination. First, we simply performed the duplicate 

analysis based on the BindingDB Monomer ID and using a distance similarity index59 (calculated using a 

3D D-Similarity node available in KNIME), where the two compounds were considered identical or 

duplicates, only if both the BindingDB Monomer ID and distance similarity values are identical for both 

the compounds. Although the BindingDB Monomer ID might have been sufficient to identify duplicates, 

to confirm that there is no error in the BindingDB Monomer ID itself, distance similarity index was 

computed using KNIME workflow. The list of molecules present in the dataset with their names, structures, 

and activity against the BACE1 enzyme is depicted in Table 3.1. 
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Table 3.1. The list of molecules present in the dataset with their names, structures, and activity against the 

BACE1 enzyme. 

Name  SMILES notation  Observed value 

(pIC50 nM) 

1 C1(=N[C@](C(=O)N1C)(c1cc(ccc1)NC(=O)c1occc1)C1CCCCC1)N 

 

-1.301 

2 C1(=N[C@](C(=O)N1C)(C1CCCCC1)c1cc(ccc1)NC(=O)COC)N 

 

-1.602 

3 C1(=N[C@](C(=O)N1C[C@H]1CC[C@H](CC1)C(=O)O)(c1ccccc1) 

C1CCCCC1)N 

 

-2.079 

4 C1(=N[C@](C(=O)N1C)(c1cccc(c1)NC(=O)c1n(ccc1)C)C1CCCCC1)N 

 

-2.255 

5 C1(=N[C@@](C(=O)N1CCCCCC)(C1CCCCC1)c1ccccc1)N 

 

-2.431 

6 C1(=N[C@](C(=O)N1CCCCCC(=O)O)(c1ccccc1)C1CCCCC1)N 

 

-2.491 

7 C1(=N[C@](C(=O)N1C)(c1cccc(c1)NC(=O)c1ccc2c(c1)OCO2)C1CCCCC1)N 

 

-2.579 

8 C1(=N[C@](C(=O)N1Cc1cc(cc(c1)F)F)(c1ccccc1)C1CCCCC1)N 

 

-2.612 

9 C1(=N[C@](C(=O)N1C)(C1CCCCC1)c1cc(ccc1)NC(=O)CCC)N 

 

-2.690 

10 C1(=N[C@@](C(=O)N1C)(c1ccccc1)C1CCCCC1)N 

 

-2.707 

11 c1(ccccc1)c1ccc(c2ccc(cc2)NC(=O)c2cc(ccc2)Br)n1CC(=O)NC(=N)N 

 

-2.778 

12 C1(=N[C@](C(=O)N1C)(c1cccc(c1)NC(=O)c1n(ccc1)C)C1CCCCC1)N 

 

-2.934 
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13 C1(=N[C@@](C(=O)N1C)(c1ccccc1)C1CCCCC1)N 

 

-2.995 

14 C1(=NC(C(=O)N1C)(C1CCCCC1)C1CCCCC1)N 

 

-3.033 

15 C1(=N[C@](C(=O)N1C)(c1cccc(c1)NC(=O)c1ccc2c(c1)OCO2)C1CCCCC1)N 

 

-3.060 

16 C1(=N[C@@](C(=O)N1C)(c1cccc(c1)NC(=O)c1cccc(c1)OC)C1CCCCC1)N 

 

-3.133 

17 C1(=N[C@](C(=O)N1C)(c1cc(ccc1)NC(=O)CCOC)C1CCCCC1)N 

 

-3.267 

18 C1(c2ccccc2)(c2ccccc2)N=C(N(C1=O)C)N 

 

-3.531 

19 C1(=N[C@](C(=O)N1C)(c1cc(ccc1)NC(=O)CCOC)C1CCCCC1)N 

 

-3.895 

20 C1(=N[C@@](C(=O)N1C)(c1ccccc1)C1CCCCC1)N 

 

-4.380 

21 C1(c2ccccc2)(N=C(N2C1=NCCC2)N)c1ccccc1 

 

-4.579 

22 c12cc(ccc1c(c(cn2)C(=O)NCc1ccc2OCOc2c1)O)S(=O)(=O)Nc1cccc(c1)C(F)(F)F 

 

-2.491 

23 c1(csc(n1)NC(=O)CSc1nc(c(c(=O)[nH]1)C#N)c1ccc(cc1)OC)c1ccccc1 

 

-3.677 

24 c1(n(c(cc1)c1c(cccc1)Cl)CC(=O)NC(=N)NCCCO)c1ccc(cc1)OCCC 

 

-2.041 

25 c1(n(c(cc1)c1c(cccc1)Cl)CC(=O)NC(=N)N)c1ccc(cc1)Oc1ccc(cc1)C(=O)C 

 

-2.380 

26 c1(n(c(cc1)C12CC3CC(C1)CC(C3)C2)CC(=O)NC(=N)NCCCO)c1ccccc1 

 

-3.505 

27 c1(n(c(cc1)C12CC3CC(C1)CC(C3)C2)CC(=O)NC(=N)N)c1ccccc1 -3.770 
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28 c1(n(c(cc1)c1ccccc1)CC(=O)NC(=N)N)c1ccccc1 

 

-4.287 

29 C1[C@@H]2[C@@H]3[C@H](N[C@@H]2CN[C@H]1Cn1cc(nn1)c1ccc2c(c1)c

cc(c2)OC)CCCC3 

 

-3.173 

30 [C@H]1(C(=O)[C@H](SCc2cc(ccc2)C(F)(F)F)C(=O)N1)[C@@H](C)CC 

 

-4.778 

31 C1(=O)[C@@H](OC(=O)[C@H]1Sc1ccccc1)c1ccccc1 

 

-5.021 

32 C1(=O)[C@H](NC(=O)[C@@H]1SCc1occc1)Cc1ccccc1 

 

-5.161 

33 C1(=O)[C@@H](NC(=O)[C@@H]1SCc1cccc(c1)C(F)(F)F)CC(C)C 

 

-5.287 

34 C1(=O)[C@@H](NC(=O)[C@H]1SCC(=O)NCc1cc2OCOc2cc1)CC(C)C 

 

-5.301 

35 C1(=O)[C@@H](NC(=O)[C@H]1SCc1occc1)[C@@H](CC)C 

 

-5.301 

36 C1(=O)CN(C(=O)[C@H]1SCc1cccc(c1)C(F)(F)F)Cc1ccccc1 

 

-5.326 

37 C1(=O)CN(C(=O)[C@H]1SCCc1ccccc1)Cc1cc2OCOc2cc1 

 

-8.143 

38 C1(=O)CN(C(=O)[C@H]1SCc1cccc(c1)C(F)(F)F)CCc1ccccc1 

 

-8.264 

39 C1(=O)CN(C(=O)[C@H]1SCCc1ccccc1)Cc1cccc(c1)C(F)(F)F 

 

-8.326 

40 C1(=O)CN(C(=O)[C@@H]1SCc1cccc(c1)C(F)(F)F)Cc1ccc(cc1)OC 

 

-8.382 

41 C1(=O)CN(C(=O)[C@@H]1SCc1cccc(c1)C(F)(F)F)Cc1cc(ccc1)C(F)(F)F -8.411 
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42 C1(=O)CN(C(=O)[C@H]1SCc1cccc(c1)C(F)(F)F)Cc1cc2OCOc2cc1 

 

-8.423 

43 C1(=O)CN(C(=O)[C@H]1SCCc1ccccc1)CCc1ccccc1 

 

-8.627 

44 C1(=O)CN(C(=O)[C@@H]1SCCc1ccccc1)Cc1ccccc1 

 

-8.661 

45 C1(=N[C@@](C2=NCCCN12)(c1cccc(c2c(nccc2)F)c1)c1ccc(cc1)OC(F)(F)F)N 

 

-1.477 

46 C1(=N[C@](c2cccc(c2)c2c(nccc2)F)(c2ccc(OC(F)(F)F)cc2)C2=NOCCN12)N 

 

-1.778 

47 C1(=N[C@](C2=NCCCN12)(c1cccc(c1)c1cncnc1)c1ccc(cc1)OC(F)(F)F)N 

 

-1.903 

48 C1(=N[C@@](C2=NCCCN12)(c1cccc(c2c(nccc2)F)c1)c1ccc(cc1)OC(F)(F)F)N 

 

-1.903 

49 C1(=N[C@](C2=NCCCN12)(c1cccc(c2c(nccc2)F)c1)c1ccc(cc1)OC)N 

 

-2 

50 C1(=N[C@](c2cccc(c2)c2c(nccc2)F)(c2ccc(OC(F)(F)F)cc2)C2=NCCCCN12)N 

 

-2.113 

51 C1(=N[C@](C2=NCCCN12)(c1cc(c2c(nccc2)F)ccc1)c1cc(c(cc1)OCC)OCC)N 

 

-2.278 

52 C1(=N[C@@](c2cccc(c3c(nccc3)F)c2)(c2ccc(OC(F)(F)F)cc2)C2=NCCN12)N 

 

-2.897 

53 C1(=N[C@](C2=NCCCN12)(c1cccc(c2cncnc2)c1)c1ccc(cc1)OC)N 

 

-3.309 

54 C1(=N[C@](C2=NCCCN12)(c1cccc(c1)c1cncnc1)c1ccc(cc1)OC(F)(F)F)N 

 

-3.380 

55 c1(n(c(cc1)c1c(cccc1)Cl)CC(=O)NC(=N)NCCCO)c1ccc(cc1)OCCC 

 

-3.577 
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56 C1(=N[C@](c2cccc(c2)c2c(nccc2)F)(c2ccc(OC(F)(F)F)cc2)C2=NCCCCCN12)N 

 

-3.819 

57 C1(=N[C@@](C2=NCCCN12)(c1cccc(c2c(nccc2)F)c1)c1cc2c(cc1)OCO2)N 

 

-3.845 

58 C1(=N[C@](C2=NCCCN12)(c1cccc(c2c(nccc2)F)c1)c1cc2c(cc1)OCCO2)N 

 

-3.982 

59 C1(=N[C@](c2cccc(c2)c2c(nccc2)F)(c2ccc(OC(F)(F)F)cc2)C2=NC(CN12)(C)C)

N 

 

-4.029 

60 C1(=N[C@@](C2=NCCCN12)(c1cccc(c1)CCC1CC1)c1ccc(cc1)OC(F)(F)F)N 

 

-4.037 

61 C1(=N[C@](C2=NCCCN12)(c1cccc(c2c(nccc2)F)c1)c1cc2c(cc1)OC(O2)(F)F)N 

 

-4.086 

62 C1(=N[C@](C2=NCCCN12)(c1cccc(c1)c1cncnc1)c1ccc(cc1)OC(F)(F)F)N 

 

-4.215 

63 C1(=N[C@@](C2=NCCCN12)(c1cccc(c1)CCC)c1ccc(cc1)OC(F)(F)F)N 

 

-4.238 

64 C1(=N[C@](c2cccc(c2)Br)(c2ccc(cc2)OC(F)(F)F)C2=NCCCN12)N 

 

-4.318 

65 C1(=N[C@](C2=NCCCN12)(c1cccc(Cc2ccccc2)c1)c1ccccc1)N 

 

-4.387 

66 C1(=N[C@](C2=NCCCN12)(c1cccc(Cc2ccc(cc2)F)c1)c1ccccc1)N 

 

-4.480 

67 C1(=N[C@](C2=NCCCN12)(c1cccc(Cc2ccc(cc2)OC)c1)c1ccccc1)N 

 

-4.579 

68 C1(=N[C@@](c2cccc(c2)C(F)(F)F)(c2ccccc2)C2=NCCCN12)N 

 

-4.583 

69 C1(=N[C@@](C2=NCCCN12)(c1cc(ccc1)OC)c1ccccc1)N 

 

-4.755 



Chapter 3 Materials and methods 

 

 

 

 

 
53 

 

  

70 C1(=N[C@@](c2cccc(c2)C(C)(C)C)(c2ccccc2)C2=NCCCN12)N 

 

-4.895 

71 C1(c2ccccc2)(N=C(N2C1=NCCC2)N)c1ccccc1 

 

-5.176 

72 c1c(n(Cc2ccc(c(n2)N)OCCO)c(c2ccccc2Cl)c1)c1ccc(Oc2cncnc2)cc1 

 

-1.602 

73 c1c(n(Cc2ccc(c(n2)N)NCCO)c(c2ccccc2Cl)c1)c1ccc(Oc2cncnc2)cc1 

 

-1.845 

74 c1c(c2ccc(Oc3cncnc3)cc2)n(c(c2ccccc2Cl)c1)Cc1cccc(n1)N 

 

-2 

75 c1c(c2ccc(OCCCCC)cc2)n(Cc2ccc(c(n2)N)OCCO)c(c2ccccc2Cl)c1 

 

-2.041 

76 c1c(c2ccc(OCCCCC)cc2)n(Cc2ccc(c(n2)N)NCCO)c(c2ccccc2Cl)c1 

 

-2.230 

77 c1c(n(Cc2ccc(c(n2)N)NCCCO)c(c2ccccc2Cl)c1)c1ccc(OCCCCC)cc1 

 

-2.342 

78 c1c(c2ccc(Oc3cccs3)cc2)n(c(c2ccccc2Cl)c1)Cc1cccc(n1)N 

 

-2.462 

79 c1c(c2ccc(Oc3cccnn3)cc2)n(c(c2ccccc2Cl)c1)Cc1cccc(n1)N 

 

-2.612 

80 c1c(c2ccc(Oc3cccnc3)cc2)n(c(c2ccccc2Cl)c1)Cc1cccc(n1)N 

 

-2.612 

81 c1c(c2ccc(OCCCC#N)cc2)n(c(c2ccccc2Cl)c1)Cc1cccc(n1)N 

 

-2.623 

82 c1c(c2ccc(Oc3cnccn3)cc2)n(c(c2ccccc2Cl)c1)Cc1cccc(n1)N 

 

-2.672 

83 c1c(c2ccc(OCCCCC)cc2)n(c(c2ccccc2Cl)c1)Cc1cccc(n1)N 

 

-2.740 

84 c1c(c2ccc(Oc3ccncc3)cc2)n(c(c2ccccc2Cl)c1)Cc1cccc(n1)N -2.770 
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85 c1c(c2ccc(Oc3ccccn3)cc2)n(c(c2ccccc2Cl)c1)Cc1cccc(n1)N 

 

-2.770 

86 c1c(c2ccc(Oc3ccccc3)cc2)n(c(c2ccccc2Cl)c1)Cc1cccc(n1)N 

 

-2.908 

87 c1c(c2ccc(Nc3cncnc3)cc2)n(c(c2ccccc2Cl)c1)Cc1cccc(n1)N 

 

-2.991 

88 c1c(c2ccc(cc2)OCCC)n(c(c2ccccc2Cl)c1)Cc1cccc(n1)N 

 

-3 

89 c1c(c2ccc(C(=O)NC3CC3)cc2)n(c(c2ccccc2)c1)Cc1cccc(n1)N 

 

-3.060 

90 c1c(c2ccc(OCCCC)cc2)n(c(c2ccccc2Cl)c1)Cc1cccc(n1)N 

 

-3.079 

91 c1c(c2ccc(C(=O)NC(C)C)cc2)n(c(c2ccccc2)c1)Cc1cccc(n1)N 

 

-3.217 

92 c1c(c2ccc(cc2)C(=O)NCC)n(c(c2ccccc2)c1)Cc1cccc(n1)N 

 

-3.250 

93 c1c(c2ccc(cc2)OC)n(c(c1)c1ccccc1Cl)Cc1cccc(n1)N 

 

-3.352 

94 c1c(c2ccc(C(=O)NCCC)cc2)n(c(c2ccccc2)c1)Cc1cccc(n1)N 

 

-3.389 

95 c1c(c2ccc(C(=O)NCCCC)cc2)n(c(c2ccccc2)c1)Cc1cccc(n1)N 

 

-3.477 

96 c1c(c2ccc(C(=O)NC3CCC3)cc2)n(c(c2ccccc2)c1)Cc1cccc(n1)N 

 

-3.477 

97 c1c(c2ccccc2)n(c(c1)c1ccccc1)Cc1cccc(n1)N 

 

-3.531 

98 c1c(c2ccc(C(=O)NCC=C)cc2)n(c(c2ccccc2)c1)Cc1cccc(n1)N 

 

-3.851 
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3.2.1.3. Descriptor calculation and data pretreatment 

The molecular descriptors were calculated using two software tools, namely, Dragon software version 7301 

(covering constitutional, ring descriptors, connectivity index, functional group counts, atom centered 

fragments, 2D atom pairs, atom type E-states, and molecular properties) and PaDEL-descriptor 2.20 

software302 (for extended topochemical atom or ETA indices). Molecular descriptors may be defined as the 

way of mathematical representation of a molecule by values associated with the chemical constitution for 

correlation of chemical structures with various chemical reactivity, biological activity, or physical 

property69. After the calculation of descriptors, data pretreatment was implemented using the tool 

Pretreatment V-WSP version 1.2 (available at http://dtclab.webs.com/software-tools) to remove descriptors 

with at least one missing value, variables with constant or near constant values (standard deviation less than 

0.0001), descriptors with all missing values and descriptors with (absolute) pair correlation larger than or 

equal to 0.95 from the initial pool of descriptors69.  

3.2.1.4. Dataset division 

The whole dataset was divided into training (ntrain=76) and test (ntest=22) sets based on the k-Medoids 

clustering technique. We aimed to develop a QSAR model which is statistically robust and capable of 

making accurate and reliable predictions. For this, we have employed a software tool “Modified k-

Medoids” (version 1.2) developed in our laboratory (available at http://dtclab.webs.com/software-tools). 

The clustering method classifies a set of compounds into clusters so that compounds belonging to the same 

cluster are similar to each other, while when two compounds belonging to two different clusters are 

expected to be dissimilar321. The representative compounds within a cluster are called medoids. This 

technique tends to select k from most middle objects or compounds as the initial medoid. After clustering, 

we sorted the whole dataset according to the cluster number followed by activity values. We have selected 

around 22% of compounds from each cluster as test set compounds (ntest= 22) and the remaining 78% as 

training set (ntrain= 76) compounds. Consequently, the developed QSAR model was validated using new 

chemical entities, i.e., the test set to check the predictive ability of the developed model.  

3.2.1.5. Variable selection and QSAR model development  

In this study, a QSAR model was developed for inhibitory activity against the BACE1 enzyme using pIC50 

values as the response variable. The selection of important and meaningful descriptors from a large 

descriptors pool is a crucial step in QSAR model development. Thus, we employed a variable selection 

strategy before the development of the final model using stepwise regression (using a suitable stepping 

criterion, e.g., ‘F-for-inclusion ‘and ‘F-for-exclusion’ based on partial F-statistic) followed by the best 

subset selection. For this purpose, stepwise regression was run using the whole pool of descriptors (393) to 

develop a stepwise regression model. In this case, stepwise regression has been applied using the initial 

pool of 393 descriptors, and the selected model descriptors were removed from the initial pool of descriptors 

and kept aside. Further, stepwise regression was run using the remaining pool of descriptors, and so on. 

Finally, we have clubbed the selected model descriptors in different cycles. In this way, we have reduced 

the initial pool of descriptors from 393 to 60 descriptors. Using these 60 descriptors, we ran the best subset 

selection tool v2.1 developed in our laboratory (available at http://dtclab.webs.com/software-tools) to 

generate a 5-descriptor model. Best subset regression is an investigative model-building regression analysis 

technique. This technique compares all possible models using a specified set of predictors and displays the 

best-fitting models that contain one predictor, two predictors, and so on. A result is several models and their 

http://dtclab.webs.com/software-tools
http://dtclab.webs.com/software-tools
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summary statistics. It is up to us to compare them and choose one. Sometimes the results do not point to 

one best model and so our judgment is required to choose the best significant model. When selecting the 

best subset model, we are looking for the highest R2, Q2, R2pred, and lowest MAE. Among the equations 

generated from the best subset selection, we selected the best model, based on the highest R2, Q2, R2pred, 

and lowest MAE criteria. Among these models, we have selected one model based on Mean Absolute Error 

(MAE) based criteria303. The final model was developed by employing PLS-regression methodology to 

avoid intercorrelation among the modeled descriptors using the Minitab software (Available from 

http://www.minitab.com/en-us/products/minitab/). Information about the original variables is stored in 

latent variables (LV) generated by PLS. The final PLS model was developed with 5 selected descriptors 

using 3 latent variables (LV). 

3.2.1.6. Statistical validation metrics 

The developed models were validated using both internal and external validation parameters for 

measurement of the fitness, stability, robustness, and predictivity of the developed PLS model. Various 

internal statistical parameters like determination coefficient (R2), leave-one-out cross-validated correlation 

coefficient (Q2
(LOO)), and some rm

2 metrics like average rm
2

(LOO) and Δrm
2

(LOO) were used to measure the 

robustness of the model. The determination coefficient (R2) represents how much variability of a factor can 

be caused or explained by its relationship to another factor. It is computed as a value between 0 (0 percent) 

and 1 (100 percent)322. The higher value of this parameter indicated a better fit of the model. But these 

parameters are not good enough to evaluate the robustness and predictivity of a significant model. Thus, 

we have employed some other statistical validation parameters (external prediction) such as R2
Pred or Q2F1, 

Q2F2 to assure the significance of the developed model. Besides these parameters, rm
2 metrics like average 

rm
2 and Δrm

2 and concordance correlation coefficient (CCC) were also calculated for external validation. 

The basic application of a predictive QSAR model is to judge the prediction errors for an external set, which 

should be within the chemical and response-based domain of the internal set (i.e., training set). The Q2
ext-

based metrics (i.e., R2
pred and Q2

F2) are not always able to provide a correct indication of the prediction 

quality because of the influence of the response range as well as the distribution of the values of response 

in both the training and test set compounds. Thus, we have also validated the model using the mean absolute 

error (MAE) based criteria for both external and internal validation tests. The error-based metrics were used 

to determine the true indication of the prediction quality in terms of prediction error since they do not 

evaluate the performance of the model in comparison with the mean response322. Additionally, we have 

performed a Y-randomization test and DModX approach (applicability domain criteria) using the Simca-P 

software (Available from https://umetrics.com/products/simca). The Y-randomization test was performed 

to check whether the model was obtained by any chance or not, and the DModX approach was performed 

to check whether the test set compounds lie within the applicability domain or outside the applicability 

domain of training set compounds.  The Y-randomization test was performed using the Simca-P software 

(Available from https://umetrics.com/products/simca) through randomly reordering (100 permutations) the 

dependent variable values. The validation parameter of the model obtained under such conditions should 

be of poor quality as compared to the selected model. The value of the R2
yrand intercept should not exceed 

0.3 and the value of the Q2
yrand intercept should not exceed 0.05. The detailed methodology of work for the 

development of the 2D-QSAR model for BACE1 enzyme inhibitors is shown in Figure 3.3. 
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Figure 3.3. Schematic work flow of 2D QSAR model development against BACE1 inhibitors, [PLS = 

Partial least squares, SR = Stepwise regression, BSS = Best subset selection]. 
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3.2.2. 3D-QSAR pharmacophore modeling 

In the current study, 3D-QSAR pharmacophore modeling was for the identification of essential 

pharmacophoric features, which are necessary for the inhibitory activity against the BACE1 enzyme. The 

inhibitory activity against the BACE1 enzyme expressed in terms of IC50 values was used as the dependent 

variable for the pharmacophore model development. For the development of the pharmacophore model, we 

have utilized the compounds (training set) which were selected as the test set compounds in the case of the 

2D QSAR model whereas the training compounds in the 2D QSAR model were used as test compounds 

here [81]. The development of the 3D QSAR pharmacophore model was carried out using the training set 

compounds and validated using the test set compounds.  Before the development of pharmacophore models, 

we performed conformation generation using training set compounds. After conformation generation, we 

performed a features mapping protocol for identifying the meaningful pharmacophoric features from the 

training set compounds was carried out in the BIOVIA Discovery Studio client 4.1 (Available from 

https://www.3dsbiovia.com/) platform and it resulted in hydrogen bond donor (HBD), hydrogen bond 

acceptor (HBA), hydrophobic (HYD), hydrophobic (aromatic and aliphatic) and ring aromatic (RA) 

features. In the development of the pharmacophore model, different parameters were adjusted such as 

activity, uncertainty value was kept 2, maximum five features containing hydrophobic (HYD), hydrophobic 

aliphatic, aromatic and ring aromatic (RA), and hydrogen bond acceptors (HBA) were selected and the final 

models were developed using the FAST method of poling algorithm323.  

3.2.2.1. Validation of developed pharmacophore model 

For to validate the best pharmacophore model, we have used different validation parameters such as 

quantitative and qualitative methods. In terms of test analysis, validation of developed models was 

performed by mapping the whole test set molecules on the pharmacophore model. It was carried out in the 

BIOVIA Discovery Studio client 4.1 (Available from https://www.3dsbiovia.com/) platform with the same 

setting as we have used in pharmacophore model development. The predictive ability of a model to 

categorize both active and less active compounds has been determined by organizing the molecules with an 

activity threshold of 1000 nM. In the whole dataset, the training set (n = 22) consists of 12 most active and 

10 least active compounds, whereas the test set (n = 76) consists of 32 most active and 44 least active 

compounds. To judge the quality of the developed pharmacophore model, we have performed the 

qualitative validation test calculating the confusion matrix (validation parameters namely true positives, 

true negatives, false positives, and false negatives) based on the observed and predicted activity values 

obtained from test set analysis323. The validation parameters in terms of qualitative analysis used for the 

pharmacophore model are sensitivity, specificity, accuracy, precision, F-measure, and G-means. According 

to Aher et al.323, the selected model is measured to be robust, if all the validation parameter values are more 

than 60% for both the sets (training and test set). In terms of internal validation, we have performed a cost 

analysis and selected the model based on the RMSD, correlation, fit values, and cost difference values. We 

have also performed the Fischer randomization test (F-test) at a confidence level of 95%, to check whether 

the obtained model is by chance or not. It was carried out by randomly reordering the activity data of 

training set molecules and developing the model with the same settings as used for the actual 

pharmacophore model development323. According to F-test, the actual model is considered to be a better 

model, if the results obtained from randomized models are bad quality than the actual model323. The 

validated pharmacophore model could be further utilized for the prediction of the inhibitory activity of the 

new compound against the BACE1 enzyme. 
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3.2.2. Molecular Docking studies 

Aβ is the main component of pathophysiology in Alzheimer’s disease, and the BACE1 enzyme is 

responsible for the amyloidogenic cleavage of APP-generating Aβ. Consequently, controlling the BACE1 

enzyme activity to decrease Aβ is a rational therapeutic goal324. Molecular docking is a key tool in structural 

molecular biology and computer-assisted drug design313. The goal of ligand-protein docking is to predict 

the predominant binding mode of a ligand with a protein of known three-dimensional structure [68]. In the 

present study, molecular docking studies was employed to understand the interactions pattern of BACE1 

enzyme inhibitors within the active site of BACE1 enzyme (the structure of the protein was retrieved from 

Protein Data Bank325 with PDB ID: 4ivt (Available from https://www.rcsb.org/structure/4IVT). Molecular 

docking was performed by using the CDOCKER module of receptor-ligand interaction available in 

BIOVIA Discovery Studio client 4.1. Before the docking, the active site of the enzyme was defined using 

the protocol Receptor-ligand Interaction section employing the option “define site from receptor cavities” 

available in the BIOVIA Discovery Studio client 4.1 platform (Available from 

https://www.3dsbiovia.com/). The selected inhibitors were subjected to ligand preparation to find a series 

of ligand conformers (maximum 255). Each orientation was used in the CDOCKER module for molecular 

docking using CHARMm-based interaction energy using a rigid receptor326. The poses are sorted according 

to CHARMm interaction energy and the top scoring (most negative, thus favorable to binding) poses are 

kept. 
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3.3. Study 3- Cheminformatic modeling of β-amyloid aggregation inhibitory activity against Alzheimer's 

disease 

3.3.1. QSAR methodology 

3.3.1.1. The Dataset 

In this study, 314 heterocyclic compounds (β-amyloid aggregation inhibitors) were collected from the 

BindingDB database185 with β-amyloid aggregation inhibitory activity for QSAR model development. The 

experimental IC50 values (nM) of the dataset compounds were converted to pIC50 (=-logIC50) values for 

model development purposes. The dataset compounds utilized in this study followed the same experimental 

protocol (Thioflavin T (ThT) spectrofluorometric assay method)327-346. All the compounds were carefully 

checked and filtered using different software and tools like KNIME (https://dtclab.webs.com/software-

tools), MarvinView, and MarvinSketch (Available from http://www.chemaxon.com). The compounds were 

drawn by using the MarvinView and saved in the MDL.mol format.  

3.3.1.2. Preliminary dataset preparation and data curation 

Chemical curation is very important when researchers collect data from different sources347. In this work, 

before the development of the regression models, preliminary dataset preparation and data curation 

(chemical and biological) strategy were implemented using KNIME work flow 

(https://dtclab.webs.com/software-tools). The accuracy of the KNIME workflow was confirmed by 

Mariana et al. 2017348, Domenico et al. 2018349, and Fabian P et al. 2015350. The dataset was downloaded 

from BindingDB185 in a structural data format (SDF) containing important information related to the 

structure and endpoint values against the β-amyloid aggregation. An identifier was given to every 

compound present in the dataset, characterizing the name of a respective protein and a serial number. The 

endpoint values from the dataset file was extracted to classify the compounds in four orders of magnitude. 

In the end, we incorporated the dataset into chemical and biological curation.  

3.3.1.2.1. Reading and storing the information obtained from the Binding database 

In this methodology, the “SDF reader” was utilized using the KNIME workflow 

(https://dtclab.webs.com/software-tools) to read the input file and store the important structural features of 

the compounds. The downloaded dataset contained all of the essential information related to the compounds 

such as the molecule name, coordinates, bond counts, bond order, number of rings, end point, biological 

assay, etc. The compounds with incorrect information were deleted from the source file and the compounds 

with correct information were saved for further use.   

3.3.1.2.2. Elimination of salts, mixtures, inorganics, and organo-metallics from the dataset 

In this study, we removed all of the salts, mixtures, in-organics, and organo-metallic compounds before 

calculating the descriptors using ‘RDKit Salt Stripper’, ‘Connectivity’ node, and ‘Element Filter node351, 

respectively. 

3.3.1.2.3. Standardization of chemical structures 

Normalization is an important step in QSAR modeling to correct the structural pattern before the calculation 

of the molecular descriptors. In the current work, the ‘RDKit Structure Normalizer’ node was applied for 

http://www.chemaxon.com/
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correction of the geometry of the chemical structure using the KNIME workflow 

(https://dtclab.webs.com/software-tools). 

3.3.1.2.4. Biological curation 

The molecules obtained from chemical curation were subjected to biological curation. Biological data 

curation is one of the important steps in QSAR modeling. In the current work, we implemented biological 

data curation as described by Ambure et al.59 using the KNIME workflow (http://dtclab.webs.com/software-

tools) for duplicate identification and activity cliff determination. 

3.3.1.3. Descriptor calculation and data pre-treatment 

A pool of 457 descriptors was computed by applying two software tools, namely, Dragon version 7301 and 

PaDEL-Descriptor software version 2.20302. In this work, only 2D descriptors were computed including 

constitutional, ring descriptors, connectivity index, functional group counts, atom-centered fragments, 2D 

atom pairs, atom type E-states, molecular properties, and extended topochemical atom (ETA) indices. After 

descriptor calculation, we performed the data pre-treatment using the tool Pre-treatment V-WSP version 

1.2 (http://dtclab.webs.com/software-tools) to discard the descriptors with incomplete information or with 

nearly constant values.  

3.3.1.4. Dataset division 

In this study, we aimed to develop QSAR models having good reliable prediction ability. Therefore, QSAR 

models were developed by using a training set and validated using new chemical entities, i.e., a test set to 

check the predictive capacity of the developed models. In this study, the whole data set (n = 314) was 

divided into a training set (n = 252, 80% of the total number of compounds), and a test set (n = 62, 20% of 

the total number of compounds) based on a Euclidean distance-based algorithm using the “Dataset Division 

GUI” developed by our group (https://dtclab.webs.com/software-tools). 

3.3.1.5. Multilayered variable selection strategy and model development 

Before the development of the final model, we tried to extract the important descriptors from the large pool 

of initial descriptors using various variable selection strategies. For this purpose, we applied a multilayered 

variable selection strategy before the development of the final model using multistage stepwise regression 

(using a suitable stepping criterion, e.g., ‘F-for-inclusion ‘and ‘F-for-exclusion’ based on partial F-statistic) 

followed by a genetic algorithm (GA) followed by the best subset selection, and the final models were built 

by using partial least squares (PLS) regression techniques. The detailed multi-layered variable selection 

strategy is schematically represented in Figure 3.4. 

3.3.1.6. Statistical validation metrics 

Validation of the robustness and predictive ability of the developed models is an important step in a QSAR 

study77. In this study, we employed different statistical approaches such as internal and external validation 

metrics to justify the robustness and predictive quality of the developed models. In the case of internal 

validation, we determined various statistical metrics such as determination coefficient (R2), leave-one-out 

cross-validated correlation coefficient (Q2
(LOO)), Avg rm

2
(LOO), and Δrm277. Higher values of the metrics R2, 

Q2
(LOO)) and Avg rm2

(LOO) indicated a better fit of the model, but all of these parameters are not sufficient to 

evaluate the robustness and predictivity of significant models77. Thus, we determined other statistical 

validation parameters (external validation parameters) such as Q2F1, Q2F2, and rm
2 parameters like average 
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rm
2(test) and Δrm2 and concordance correlation coefficient (CCC) to assure the significance of the 

developed models77. Moreover, we also performed a Y-randomization test, checked applicability domain 

criteria, etc. to investigate the robustness of the developed models. The Y-randomization test was performed 

using the Simca-P software (Available from https://umetrics.com/products/simca) by randomly reordering 

(100 permutations) the dependent variable310. The details of the methodology are depicted in Figure 3.4. 

 

Figure 3.4. Schematic work flow of QSAR model development against β-amyloid aggregation [PLS = 

Partial least squares, SR = Stepwise regression, BSS = Best subset selection, GAs = Genetic algorithms]. 
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3.3.2. Development and validation of the 3D-pharmacophore model   

In the current work, a pharmacophore modeling study was performed to reveal the required features which 

are essential for β-amyloid aggregation inhibitory activity. The β-amyloid aggregation inhibitory activity 

stated in terms of IC50 (nM) was used as the dependent variable for the development of pharmacophore 

models. Previously prepared compound structures were used for this study. The dataset was rationally 

distributed into training (62 compounds) (for model development) and test sets (252 compounds for 

validation) based on the biological activity values spanned over four orders of magnitude313. The BIOVIA 

Discovery Studio Client 4.1 (Available from https://www.3dsbiovia.com/) platform was used to build the 

pharmacophore models. The details of the methodology for the development of the pharmacophore model 

are described by Aher et al.323. Validation of the developed models was performed using different 

parameters like cost analysis, the Fischer randomization test (F-test), and test set prediction to judge the 

robustness and predictive quality of models as described by Aher et al.323. 

3.3.3. Molecular Docking studies 

Investigation of important structural features that will be helpful for the development of novel inhibitors 

which control the aggregation of β-amyloid was the goal of this study. Here, a molecular docking study 

was performed to identify the interaction pattern between the β-amyloid peptide (PDB ID: 1IYT, Available 

from https://www.rcsb.org/structure/1IYT) and selected β-amyloid aggregation inhibitors from the dataset. 

Molecular docking studies were performed by using the BIOVIA Discovery Studio client 4.1 platform 

using the CDOCKER module of receptor-ligand interactions326. After docking, the generated poses were 

sorted according to CDOCKER interaction energy, and the top-scoring poses were kept for further analysis. 
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3.4. Study 4- Chemometric modeling of structurally diverse carbamates for the inhibition of 

acetylcholinesterase enzyme (AChE) in Alzheimer’s disease 

3.4.1. QSAR modeling 

3.4.1.1. Dataset 

In the current study, a congeneric series of 78 carbamate derivatives186 with inhibitory activity against the 

AChE enzyme were collected from the previous published literature. All 78 structures of the AChEI 

(carbamate derivatives) present in the dataset with their names, structures, and activity (observed and 

predicted) against the AChE enzyme are depicted in Table 3.2. The activity values for all the compounds 

were measured using the same experimental method (Ellman assay)186 by the same research group. The 

activity values of all the dataset compounds expressed as IC50 (µM) values were converted to the negative 

logarithm of IC50 (i.e., pIC50) values for model development. The structures were drawn using Marvin 

Sketch software version 5.9.4 (Available from https://chemaxon.com/products/marvin) and ChemDraw 

Ultra software version 12.0 (Available from https://www.perkinelmer.com/category/chemdraw). In 

GQSAR model development, the designation of common scaffold and substitution sites is a prerequisite 

step as shown in Table 3.2186. It can be seen that there are three substitution sites R1, R2, and R3 in the 

congeneric series used in the G-QSAR study. In the GQSAR methodology, every dataset molecule is 

considered a set of fragments, and the fragmentation scheme is either template-based or user-defined. Once 

the common scaffold and substitution sites are defined, various descriptors are calculated for each fragment 

of the molecule. Now using an appropriate variable selection method, the significant descriptors 

representing the particular substituent sites are selected.  
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Table 3.2. The list of Carbamate derivatives present in the dataset with their name structure and activity 

value against the AChE enzyme. 

 

Common scaffold and the substitution sites 

Name Molecular structures Observed value 

(pIC50 µM) 

1 

 

1.522 

2 

 

0.036 

3 

 

0.119 

4 

 

-1.278 
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5 

 

-0.863 

6 

 

0.275 

7 

 

-0.597 

8 

 

0.522 

9 

 

-1.247 

10 

 

-0.170 

11 

 

-0.029 
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12 

 

-1.586 

13 

 

-1.389 

14 

 

-0.556 

15 

 

0.337 

16 

 

-1.021 

17 

 

0.292 
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18 

 

2.045 

19 

 

1.585 

20 

 

-0.170 

21 

 

-0.793 

22 

 

-0.510 

23 

 

-1.900 
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24 

 

-0.462 

25 

 

-1.672 

26 

 

-1.164 

27 

 

-1.195 

28 

 

-1.614 

29 

 

0.065 

30 

 

-1.136 
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31 

 

-0.376 

32 

 

-1.053 

33 

 

-1.859 

34 

 

-1.252 

35 

 

-0.250 

36 

 

0.259 
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37 

 

-1.110 

38 

 

-1.252 

39 

 

-0.397 

40 

 

-2.720 

41 

 

-1.653 

42 

 

-0.845 
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43 

 

-2.642 

44 

 

1.275 

45 

 

-0.332 

46 

 

-1.406 

47 

 

-1.642 

48 

 

-0.255 
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49 

 

-0.595 

50 

 

-1.719 

51 

 

-0.612 

52 

 

-2.309 

53 

 

-1.173 

54 

 

-0.332 

55 

 

1.886 
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56 

 

0.638 

57 

 

-1.550 

58 

 

-0.892 

59 

 

0.552 

60 

 

-1.315 

61 

 

0.795 

62 

 

0.657 
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63 

 

-1.480 

64 

 

-1.187 

65 

 

0.070 

66 

 

-1.220 

67 

 

0.267 

68 

 

-1.530 

69 

 

-1.281 

70 

 

-0.556 
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71 

 

-1.086 

72 

 

-0.214 

73 

 

-2.369 

74 

 

-1.519 

75 

 

-0.485 

76 

 

-0.938 

77 

 

0.769 
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78 

 

-1.143 

 

3.4.1.2. Descriptor calculation and data pretreatment 

In the case of 2D-QSAR model development, a pool of 174 descriptors was computed from the congeneric 

series of 78 carbamate derivatives186 against AChE enzyme using two software tools, namely, Dragon 

version 7301 and PaDEL-Descriptor version 2.20 software302. We have calculated only 2D descriptors 

covering constitutional, ring descriptors, connectivity index, functional group counts, atom-centered 

fragments, 2D atom pairs, atom type E-states, and molecular properties.  In the case of GQSAR modeling, 

a pool of 213 descriptors was calculated for every fragment at the substitution sites (R1, R2, and R3) using 

the tool VLifeMDS version 3 (Available from https://www.vlifesciences.com/support/request_demo.php) 

software covering physiochemical and atom type count descriptors. In current investigation, data 

pretreatment was performed for both sets of descriptors to remove inter-correlated descriptors from the 

datasets using the tool Pretreatment V-WSP version 1.2 (available from http://dtclab.webs.com/software-

tools). 

3.4.1.3. Dataset division 

The primary aim of this study was to develop QSAR models that are robust enough and capable of making 

accurate and reliable predictions. Therefore, QSAR models were developed by a training set and validated 

using new chemical entities, i.e., a test set to check the predictive capacity of the developed models. In this 

study, the whole data set was divided into a training set and a test set based on activity/property algorithm 

using the “Dataset Division GUI” developed by our group (available from http://dtclab.webs.com/software-

tools). The same strategy was also applied in the case G-QSAR study. 

3.4.1.4. Multilayered variable selection and QSAR model development 

Before the development of the final models, authors tried to extract the important descriptors from the large 

pool of initial descriptors using various variable selection strategies111. For this purpose, we have applied a 

multilayered variable selection strategy before the development of the final models using stepwise 

regression (using a suitable stepping criterion, e.g., ‘F-for-inclusion ‘and ‘F-for-exclusion’ based on partial 

F-statistic)352 followed by genetic algorithm (GA) followed by best subset selection, and the final models 

were built using partial least squares (PLS) regression techniques. The same variable selection strategy was 

applied in both cases (2D- QSAR, and GQSAR). The detail multi-layered variable selection strategy is 

schematically represented in Figure 3.5. 

https://www.vlifesciences.com/support/request_demo.php
http://dtclab.webs.com/software-tools
http://dtclab.webs.com/software-tools
http://dtclab.webs.com/software-tools
http://dtclab.webs.com/software-tools
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Figure 3.5. Schematic representation of multi-layered variable selection strategy for the development of 

the model. 

3.4.1.5. Statistical validation metrics 

To judge the robustness and predictive quality of the developed models is a critical step in the QSAR 

study322. In this study, different statistical approaches such as internal and external validation metrics were 

employed to justify the robustness and predictive quality of developed models. In the case of internal 

validation, we have determined various statistical metrics such as determination coefficient (R2), leave-one-

out cross-validated correlation coefficient (Q2
(LOO)), Avg rm2

(LOO), and Δrm2 etc.322. Higher values of the 

metrics R2, Q2
(LOO)), and Avg rm2

(LOO indicated a better fit of the model, but all these parameters are not 

sufficient to evaluate the robustness and predictivity of significant models322. Thus, authors have 

determined other statistical validation parameters (external validation parameters) such as Q2F1, Q2
F2, and 

r2m parameters like average rm2 (test) and Δrm2 and concordance correlation coefficient (CCC) to assure 

the significance of developed models322. Moreover, we have also performed a Y-randomization test, 

checked applicability domain criteria, etc to investigate the robustness of developed models. The Y-

randomization test was performed using the Simca-P software (Available at http://www.minitab.com/en-

us/products/minitab/) through random reordering (100 permutations) of the dependent variable [65]. The 

details of the methodology are depicted in Figure 3.6. 

http://www.minitab.com/en-us/products/minitab/
http://www.minitab.com/en-us/products/minitab/
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Figure 3.6. Schematic work flow of QSAR model development against AChE enzyme [PLS = Partial least 

squares, SR = Stepwise regression, BSS = Best subset selection, GAs = Genetic algorithms]. 

3.4.2. Development and validation of 3D pharmacophore model   

In the present study, a pharmacophore modeling study was applied to reveal the required features essential 

for the inhibitory activity against the AChE enzyme. The AChE enzyme inhibitory activity expressed in 

terms of IC50 (µM) was used as the dependent variable for the development of pharmacophore models. 

Previously prepared compound structures were used for this study. The dataset was rationally distributed 

into training (23) (for model development) and test set (55) (For validation) compounds based on the span 

over four orders of magnitude313. BIOVIA Discovery Studio client 4.1 (Available from 

https://www.3dsbiovia.com/) platform was used to build the pharmacophore models. The details of the 

methodology for the development of the pharmacophore model are described by Aher et al.323. Validation 

of the developed models was performed using different parameters like cost analysis, Fischer randomization 

https://www.3dsbiovia.com/
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test (F-test), and test set prediction, to judge the robustness and predictive quality of models as described 

by Aher et al323. 

3.4.3. Molecular docking studies 

In this study, molecular docking studies was performed to identify the interactions of the AChE enzyme 

(the structure of the protein was retrieved from Protein Data Bank325 with PDB ID: 4M0E available from 

https://www.rcsb.org/structure/4M0E) with the most and least active AChE enzyme inhibitors from the 

dataset. Molecular docking studies were carried out using BIOVIA Discovery Studio client 4.1 (Available 

from https://www.3dsbiovia.com/) platform using the CDOCKER module of receptor-ligand interaction326. 

After docking, the generated poses were sorted according to CDOCKER interaction energy, and the top 

scoring (most negative, thus favorable to binding) poses are kept. Schematic workflow for the 

methodologies adopted in this study given in Figure 3.7. 

 

Figure 3.7. Schematic workflow for the methodologies adopted in this study. 
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3.5. Study 5- In silico modeling for dual inhibition of acetylcholinesterase (AChE) and 

butyrylcholinesterase (BuChE) enzymes in Alzheimer’s disease 

3.5.1. 2D-QSAR analysis 

3.5.1.1. Dataset selection  

In the current work, authors have used two different datasets against two important targets, namely AChE 

(number of compounds = 997) and BuChE (umber of compounds = 761) enzymes collected from previously 

published literature187-299. In both the datasets, some compounds have inhibitory activities both against 

AChE and BuChE enzymes (number of compounds 198), therefore, we have used the difference of 

activities against AChE and BuChE enzymes as the dependent variable (AChE-BuChE) for modeling 

selectivity, and the third dataset has been prepared. The datasets comprise diverse classes of heterocyclic 

compounds, and the experimental activity of each compound is expressed in IC50 (nM) value, derived 

following the same bioassay protocol (modified colorimetric Ellman assay. For the model's development, 

we have converted the IC50 values to pIC50 (pIC50 = -logIC50) values as customary in QSAR analysis, and 

all the compounds from each dataset set were drawn using MarvienSketch (Available from  

https://chemaxon.com/products/marvin), followed by cleaning of molecules. Then, hydrogen was added, 

and the file was saved in SDF format. Before descriptor calculation, authors have carefully checked all 

structures in the datasets for the development of significant 2D-QSAR models. 

3.5.1.2. Descriptor calculation and pretreatment 

In this section, only 2D descriptors were calculated using two software, namely Dragon 7301 (covering 

functional group counts, constitutional, ring descriptors, connectivity index, atom centered fragments, 2D 

atom pairs, atom type E-states, and molecular properties) and PaDEL descriptor 2.20302 (for extended 

topochemical atom indices). After descriptor calculation, we performed data curation utilizing the tool 

Pretreatment V-WSP version 1.2 (available at http://dtclab.webs.com/software-tools) to eliminate the 

descriptors with missing or near-constant values. 

3.5.1.3. Dataset division 

In this method, authors have split the whole dataset into training and test sets based on the sorted activity-

based algorithm using the “Dataset Division GUI” developed by our group (available at 

http://dtclab.webs.com/software-tools). Initially, the dataset was divided into training and test sets 

randomly353 for 30 trials. Then the whole range of activities was sorted in ascending order, and every fourth 

compound was assigned to the test set. Finally, an attempt was made to rationalize the division process, in 

which the division was performed so that points representing both training and test sets were distributed 

within the whole descriptor space occupied by the entire dataset, and each point of the test set was close 

total east one point of the training set353. The training set was used for the development of models, and the 

test set compounds for the validation of the developed models. 

3.5.1.4. Multi-layered variable selection strategy and 2D QSAR model development 

Selection of important descriptors from the large pool of initial descriptors using different variable selection 

methodologies is an important task in QSAR modeling. Based on this concept, a multi-layered variable 

selection strategy was adopted before the development of the final models. In the multi-layered variable 

selection, first, we have applied stepwise regression in successive iterations using the Minitab software 

http://dtclab.webs.com/software-tools
http://dtclab.webs.com/software-tools
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(Available from http://www.minitab.com/en-us/products/minitab/) followed by genetic algorithm (GA) 

using the GA software (available from http://dtclab.webs.com/software-tools), and afterward, we applied 

double cross-validation (DCV) (available from http://dtclab.webs.com/software-tools) in case AChE and 

BuChE enzyme inhibitor models. On the other hand, in the case of the selectivity-based models we have 

applied best subset selection (BSS) (available from http://dtclab.webs.com/software-tools), and partial least 

squares (PLS) regression technique was used for the development of final models in all cases. Additionally, 

we have applied additional selection strategies to check the statistical quality of the developed models. 

Thus, to address the above said situation, we have performed (1) PLS without stepwise regression (SR) + 

GA, (2) PLS + SR, (3) PLS + GA, (4) PLS + SR + GA to find out the optimal combinations of predictors. 

From the developed models, we have found that the models reported in this study are more robust than 

models obtained from the above strategies. The details of the steps used in the multi-layered variable 

selection strategy are schematically represented in Figure 3.8. 

 

Figure 3.8. Schematic representation of multi-layered variable selection strategy. 

3.5.1.5. Statistical validation of the generated2D-QSAR models 

In the present work, authors have applied various statistical methodologies like internal (determination 

coefficient (r2), leave-one-out cross-validated correlation coefficient (Q2
(LOO)), Avg rm

2
(LOO) and Δrm2) and 

external (Q2F1, Q2
F2, rm

2 parameters like average rm
2 (test) and Δrm

2 and concordance correlation coefficient 

(CCC)) validation methods to assure the significant level of the generated models77, 310. Additionally, we 

http://www.minitab.com/en-us/products/minitab/
http://dtclab.webs.com/software-tools
http://dtclab.webs.com/software-tools
http://dtclab.webs.com/software-tools
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have also implemented the Y-randomization test309, checked applicability domain criteria, etc using Simca-

P 10.0 software (available from https://umetrics.com/products/simca). The detailed methodologies are 

depicted in Figure 3.9. 

 

Figure 3.9. Schematic work flow of QSAR model development against AChE, BuChE and based on 

selectivity [PLS = Partial least squares, SR = Stepwise regression, BSS = Best subset selection, GAs = 

Genetic algorithms, DCV = double cross validation]. 
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3.5.2. Molecular docking studies 

In this analysis, molecular docking studies was performed to investigate the binding pattern of molecules 

(most and least active compounds from the dataset) with the respective enzymes, such as AChE and BuChE. 

The enzyme crystal structures were extracted from the protein databank325 with the PDB id: 4M0E (structure 

of human acetylcholinesterase bound to Dihydrotanshinone I, available at 

https://www.rcsb.org/structure/4M0E) and 4BDS (crystal structure of human butyrylcholinesterase in 

Complex with Tacrine, available at https://www.rcsb.org/structure/4BDS) (AChE and BuChE enzymes, 

respectively). The molecular docking study was performed by using BIOVIA discovery studio client 4.1 

(Available from https://www.3dsbiovia.com/) platform with the CDOCKER module of receptor-ligand 

interaction as discussed by Pal S et al and Kumar V et al313, 112. Before the docking analysis, we prepared 

the target enzyme and selected inhibitors using the protein and ligand preparation protocol available in 

BIOVIA discovery studio client 4.1. The active site in the enzyme was defined by the “define and edit 

binding site” protocol available in BIOVIA discovery studio client 4.1. After docking analysis, we sorted 

the generated poses as per the CDOCKER interaction energy, and the poses with top-scoring values were 

used for further analysis. The obtained poses were validated using the bound ligand present in the crystal 

structure of the enzyme. Based on the number of interactions and the active residues interacting with the 

bound ligand, we have selected the final pose for further study. From the ligplot (Figure 3.10), we can see 

the number of interactions and active residues responsible for the significant interaction in the crystal 

structure of AChE and BuChE enzymes with their bound ligand. 

 

Figure 3.10. Ligplot of AChE (4M0E) and BuChE (4BDS) enzyme and with their bound ligands. 

 

https://www.3dsbiovia.com/
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3.6. Study 6- Multi-target QSAR modeling for the identification of novel inhibitors against Alzheimer's 

disease 

3.6.1. 2D-QSAR modeling 

3.6.1.1. Data collection, curation, and dataset preparation 

The activity data against twelve major targets of AD were collected from the BindingDB database185 

(available from www.bindingdb.org). Initially, 80 inhibitors against 5-hydroxytryptamine receptor 6 (5-

HT6) following cell-based Radio ligand binding assay, 1733 compounds against acetylcholinesterase 

(AChE) enzyme following modified colorimetric Ellman assay, 2507 compounds against 

butyrylcholinesterase (BuChE) enzyme following modified colorimetric Ellman assay, 905 inhibitors 

against beta-secretase 1 (BACE1) enzyme following FRET (fluorescence resonance energy transfer) assay, 

262 β-amyloid aggregation inhibitors following Thioflavin T-based fluorometric assay, 225 compounds 

against Cyclin Dependent Kinase 5 (CDK-5) protein following Scintillation proximity assay, 217 inhibitors 

against gamma-secretase enzyme following cell-based sandwich ELISA assay, 132 compounds against 

Glutaminyl Cyclase (QCs) enzyme following Continuous Spectrometric Assay, 159 inhibitors against 

glycogen synthase kinase-3 beta (GSK-3β) enzyme following Kinase-Glo reagent based luminescence 

assay, 170 compounds against Monoamine oxidase B (MAO-B) enzyme following Fluorometric method, 

356 compounds against N-methyl-D-aspartate (NMDA) receptor following Fluorescence-based assay, 289 

compounds against Phosphodiester 10A (PDE 10A) enzyme following TR-FRET assay were collected from 

the BindingDB database185 (available from www.bindingdb.org). The datasets comprise diverse classes of 

heterocyclic compounds, and the experimental activity values are quantified in IC50 (nM). Before 

proceeding with the development of the regression models, we executed preliminary dataset preparation 

and data curation (chemical and biological) strategy using a KNIME workflow (available from 

https://dtclab.webs.com/software-tools) following the protocol as discussed by Kumar et al.112. The 

precision of the KNIME workflow was confirmed by Mariana et al., 2017348, Domenico et al., 2018349, and 

Fabian et al., 2015350. After dataset curation, screening of the activity datasets was performed to find the 

common compounds having dual inhibitory activity against the listed targets. Accordingly, we have found 

that the 43 compounds with dual inhibitory activities both against AChE and BACE1 enzymes, 83 

compounds against AChE and β-amyloid, 113 compounds against AChE and BuChE enzymes, 52 

compounds against AChE and MAO-B enzymes, 20 compounds against BACE1 and GSK-3β enzymes, 51 

compounds against BuChE and BACE1enzymes, 23 compounds against BuChEI and β-amyloid, 48 

compounds against BuChE and MAO-B enzymes, 21 compounds against AChE and GSK-3β enzymes and 

21 compounds against BuChE and GSK-3β enzymes were retained and used for the development of the 

respective QSAAR and selectively based models. Marvin Sketch software version 5.5.0.1 (available from 

https://chemaxon.com) was used to draw the chemical structures of all compounds, followed by the addition 

of explicit hydrogens in the structures. The activity end point values (IC50) were converted to the negative 

logarithmic scale, pIC50, as customary in QSAR modeling. 

3.6.1.2. Computation of the molecular descriptors and data pretreatment  

In this section, authors have calculated only 2D descriptors using software, namely the alvaDesc (v2.0.12) 

tool (available from https://www.alvascience.com/alvaDesc/) covering atom-type E-state indices, 2D Atom 

Pairs, 2D autocorrelations, 2D matrix-based descriptors, atom-centered fragments, 2D Autocorrelation, 

http://www.bindingdb.org/
http://www.bindingdb.org/
https://dtclab.webs.com/software-tools
https://chemaxon.com/
https://www.alvascience.com/alvaDesc/
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connectivity indices, constitutional indices, ETA indices, functional group counts, information indices, 

MDE descriptors, molecular properties, P_VSA-like descriptors Rotatable Bonds Count Descriptor, 

Pharmacophore descriptors, Ring descriptors, Rule of Five Descriptor and Topological indices. After 

descriptor calculation, we have executed data pretreatment employing the tool Pretreatment V-WSP version 

1.2 (available from http://dtclab.webs.com/software-tools) to remove the descriptors with missing or near 

constant values. 

3.6.1.3. Dataset division  

After data pretreatment, all the datasets were divided into training and test sets. In this work, the division 

of the data sets was implemented following three different dataset division methods, namely, activity-

property, Euclidean distance-based, and modified k-medoid clustering techniques using “Dataset Division 

GUI” version 1.2 and “Modified k-Medoid” version 1.3 software tools, respectively (Available from 

http://teqip.jdvu.ac.in/QSAR_Tools/). The training set was used for the development of models, and the 

test set compounds for the validation of the obtained models. The datasets containing less than 20 molecules 

in the whole dataset have been modeled by the application of the “small dataset modeler_beta version” 

(available from http://teqip.jdvu.ac.in/ QSAR_Tools/) without dividing the dataset into training and test 

sets. Instead of dividing the small dataset into training and test sets, the double cross-validation (DCV) 

technique is utilized here to model for small data sets354-356. Therefore, all potential combinations (k) of the 

validation set, which contains r compounds, and the calibration set, which contains n-r compounds, are 

calculated354-356. This is because the inner loop does not produce the "modeling set" (containing n 

compounds)354-356. The software enables the user to define the number of compounds to be kept in the 

validation set (r) depending on how the calibration and validation sets are made354-356. Genetic algorithm-

multiple linear regression (GA-MLR) models are generated using calibration set chemicals354-356. Several 

internal and external validation metrics are generated for each of the chosen models during the thorough 

double cross-validation process. Furthermore, for each MLR model, the software generates partial least 

squares (PLS) regression models. 

3.6.1.4. Multi-layered variable selection strategy and model development 

In the current investigation, authors have adopted a multi-layered variable selection strategy to extract the 

meaningful and important descriptors before developing the final model. In this approach, initially, we have 

applied stepwise regression in successive iterations using the Minitab software (Available from 

https://www.minitab.com/en-us/products/minitab/) using with the whole pool of descriptors, followed by a 

genetic algorithm using the GeneticAlgorithm_v4.1 software (available from 

http://dtclab.webs.com/software-tools), with a reduced pool of descriptors. Finally, we have implemented 

the best subset selection (available from http://dtclab.webs.com/software-tools) on the reduced pool of 

descriptors obtained from the genetic algorithm step. Finally, the acquired pool of descriptors was used to 

develop the final model. All of the final QSAR, selectivity, and QSAAR models were developed using the 

partial least squares (PLS) regression method, except the QSAAR models (between β-amyloid and BuChE 

enzyme inhibitory activity, and BACE1 enzyme and BuChE enzyme inhibitory activity), and selectivity 

based models (between BACE1 and GSK-3β enzyme, BuChE and BACE1 enzyme, AChE and GSK-3β 

enzyme and BuChE and GSK-3β enzyme inhibitors), which were developed by using the multiple linear 

regression (MLR) techniques. 

 

http://dtclab.webs.com/software-tools
http://teqip.jdvu.ac.in/QSAR_Tools/
http://teqip.jdvu.ac.in/
https://www.minitab.com/en-us/products/minitab/
http://dtclab.webs.com/software-tools
http://dtclab.webs.com/software-tools
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3.6.1.5. Statistical validation of the developed 2D-QSAR models 

To establish a model's significance and reliability in terms of robustness and prediction accuracy, statistical 

validation is one of the most important steps in the model development process. In the current work, authors 

have calculated different internal and external validation metrics to establish that the developed models are 

robust and predictive enough to satisfy the acceptability criteria. In terms of internal validation metrics, we 

have calculated metrics like determination coefficient (R2), leave-one-out cross-validated correlation 

coefficient (Q2
(LOO)), Avg rm

2
(LOO), and Δrm

2
(LOO)) to perform the validation of the training set compounds. 

Better values of these metrics (R2, Q2
(LOO)), Avg rm

2
(LOO), and Δrm

2
(LOO)) indicate a better fit and robustness 

of the model77, 310. Since the internal validation metrics are insufficient to assess the predictive accuracy and 

robustness of the developed model, comprehensive validation of test set compounds using various external 

validation parameters is required like Q2F1, Q2F2, rm
2 parameters like average rm

2 (test), and Δrm
2 (test) and 

concordance correlation coefficient (CCC)) validation methods to guarantee the predictive nature of the 

developed models77, 310. Furthermore, we have also performed the Y-randomization test309, applicability 

domain criteria (DModX (distance to model) in the X-space), etc using Simca-P 10.0 software (Available 

from https://umetrics.com/products/simca). 

3.6.1.6. Database preparation and activity prediction using developed 2D-QSAR models 

To predict the inhibitory activity using developed models, authors have used four chemical drug-like 

databases, namely, Asinex database (338604 compounds) (available from 

https://www.asinex.com/screening-libraries-(all-libraries), InterBioscreen (IBS) database (552793 

compounds) (available from https://www.ibscreen.com/), NCI Open Database (265242 compounds) 

(available from https://cactus.nci.nih.gov/download/nci/), and Zinc12 Database (17900742 compounds) 

(available from https://zinc12.docking.org/subsets/drug-like). Before the prediction, we developed the 

alvaModel by establishing 2D QSAR model descriptors against each listed target and then converted the 

alvaModel into the alvaRunner project file using software, namely the alvaModel v2.0.4 tool (available 

from https://www.alvascience.com/alvaModel/). The established alvaRunner project files were individually 

used to compute the predicted values of the above databases’ compounds; the validated models were 

capable of precisely predicting the inhibitory activity of the majority of the compounds, as suggested by 

‘alvaRunner version 2.0.4’ tool (https://www.alvascience.com/alvarunner/) product of Alvascience 

solution. We have predicted the inhibitory activity of these compounds considering the applicability domain 

of our PLS-based 2D QSAR models against the respective targets. 

3.6.2. Similarity-based Read-Across prediction 

Read-across prediction is a similarity-based in silico technique that predicts the biological response of 

unknown compounds based on known activity values357-360. In this study, the chemical read-across approach 

based on machine learning was employed to estimate the activity of the test set chemicals using the modeled 

descriptors. For a successful prediction with Laplacian kernel similarity-based (LK), Gaussian kernel 

similarity-based (GK), and Euclidean distance-based (ED) estimations, we have optimized the 

hyperparameter sigma (σ) and gamma (γ) respectively using validation sets. For the optimization, the initial 

training set is randomly divided into sub-training and sub-test sets in a 3:1 proportion. The sub-training and 

sub-test sets were then subjected to ‘Read-across v4.1’ (Available from 

https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home) with different σ and γ values. 

During optimization, the other tool parameters, including the number of nearby training compounds, the 

https://umetrics.com/products/simca
https://www.asinex.com/screening-libraries-(all-libraries)
https://www.ibscreen.com/
https://cactus.nci.nih.gov/download/nci/
https://zinc12.docking.org/subsets/drug-like
https://www.alvascience.com/alvaModel/
https://www.alvascience.com/alvarunner/
https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home
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distance threshold, and the similarity threshold were kept constant. The optimized setting has been selected 

by checking the external validation metrics (Q2F1 and Q2F2). Finally, the optimized setting was combined 

with the original training and test sets to get the final prediction. To obtain the best predictions, we gradually 

reduced the number of similar training compounds from 10 to 2. 

3.6.3. Molecular docking study 

In this investigation, the molecular docking study was performed using the most and least active compounds 

from the initial datasets and also the top predicted compounds from the chemical databases to identify the 

interaction pattern with the respective targets. The crystal structure of the targets such as AChE enzyme 

(PDB ID: 4M0E), BACE1 enzyme (PDB ID: 4ivt), β-amyloid aggregation (PDB ID: 1IYT), BuChE 

enzyme (PDB ID: 6EZ2), Cyclin-dependent kinase 5 (PDB ID: 3O0G), Gamma-secretase enzyme (PDB 

ID: 6IYC), Glutaminyl Cyclase (QC) enzyme (PDB ID: 3PBB), GSK-3β enzyme (PDB ID: 5F94), MAO-

B enzyme (PDB ID: 2V5Z), NMDA receptor (PDB ID: 1PBQ), and PDE 10A (PDB ID: 6MSA) were 

extracted from the protein databank (available from https://www.rcsb.org/). In the case of 5-HT6 protein, 

there are no experimental structures available in the protein data bank, so we have retrieved the predicted 

protein structure from the AlphaFold Protein Structure Database (Available from 

https://alphafold.ebi.ac.uk/entry/P50406) with the UniProt: P50406, Source organism: Homo sapiens 

(Human), and AlphaFold id: AF-P50406-F1-model_v2. To confirm the reliability of the predicted structure, 

we have validated the structure by Ramachandran plot server (Available from 

https://swift.cmbi.umcn.nl/servers/html/ramchk.html) and found Ramachandran Z-score: -5.259 which 

represents the good quality of the model (see Figure 3.11). The molecular docking study was executed 

using the Biovia Discovery Studio client 4.1 (Available from https://www.3dsbiovia.com/) platform 

following the protocol discussed by Robertson et al.326 and Kumar et al.361. Before molecular docking, the 

protein was prepared by checking for any missing residues, having explicit hydrogen added, and generating 

the active site. The active site was generated using the Biovia Discovery Studio client 4.1 platform from 

the ligand binding domain of the bound ligand and generating the site 'from the current selection' program 

in the ‘receptor-ligand interaction module’ of the software. The bound ligand was taken out after active site 

generation for new molecule docking. In the case of the 5-HT6 protein, we have predicted the multiple 

active sites at the surface of the protein using the Biovia discovery studio 4.1 client platform from the 

“define and edit binding site” using the module “generate active site from receptor cavities”, and docked 

the ligand in each site to identify the favorable binding site (identified most favorable active site coordinate 

X: -18.945, Y: -0.896, Z: 11.313, the radius of sphere 19.299). To prepare ligands, the selected compounds 

were run through the Discovery Studio platform's ‘small-molecule module’, where several ligand 

conformers were formed. Each of these generated conformers was subsequently employed in the 

CDOCKER module for molecular docking using a CHARMm-based molecular dynamic scheme. The 

CDOCKER interaction energy parameter (kcal/mol) was examined for all receptor-ligand complexes, and 

the highest-scoring (more negative; hence favorable to binding) poses with only non-covalent interactions 

(ionic bonds, hydrophobic interactions, hydrogen bonds, etc.) were kept for future investigation. A graphic 

representation of the complete methodologies implemented in this study is shown in Figure 3.12. 

https://www.rcsb.org/
https://alphafold.ebi.ac.uk/entry/P50406
https://swift.cmbi.umcn.nl/servers/html/ramchk.html
https://www.3dsbiovia.com/


Chapter 3 Materials and methods 

 

 

 

 

 
89 

 

  

 

Figure 3.11. Ramachandran plot for 5-HT6 protein model (UniProt: P50406, Source organism: Homo 

sapiens (Human), and AlphaFold id: AF-P50406-F1-model_v2). 
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Figure 3.12. The framework of the methodologies implemented in this investigation. 
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Chapter 4: Results and discussions 

4.1. Study 1- A Multi-layered Variable Selection Strategy for QSAR Modeling of 

Butyrylcholinesterase Inhibitors 

In this study, 2D QSAR modeling and molecular docking study were performed to identify the important 

structural features responsible for the inhibition of the BuChE enzyme. Here, we will discuss the results 

obtained from this study, which will include the selected 2D QSAR model and its validation, molecular 

docking analysis, and finally, the identified important structural features against the BuChE enzyme. 

4.1.1. 2D QSAR modeling analysis 

4.1.1.1. Mechanistic interpretation of modeled descriptors 

The reported PLS model was developed by using 15 descriptors with corresponding latent variables of 6.  

The R2 (0.664), Q2 (0.650), and R2
pred values (0.657) of the PLS model were higher than 0.6 (Equation 4.1) 

which indicated the acceptability and predictive ability of the model. Thus, the results obtained from the 

PLS model (Equation 4.1) suggested that the models are acceptable in terms of fitness, stability, and 

classical predictivity measures. The descriptors appearing in the model (see Table 4.1) define the structural 

and functional requirements which can improve the inhibitory activity of molecules against the BuChE 

enzyme. The proximity of the observed and predicted values for the BuChE enzyme inhibitors in the data 

set can be further established from the scatter plot as shown in Figure 4.1. The quantitative contributions 

of similar/dissimilar descriptors are given in the loading plot (similar descriptors are placed in close 

proximity), and the interrelationships between the X-variables and the Y-response are depicted in the 

loading plot (Figure 4.2). Additionally, we have also performed a Y-Randomization test to check whether 

the model was obtained by any chance or not. The results (R2
rand = -0.000805 and Q2

rand = -0.147) obtained 

from the randomized model suggested that the developed model was not obtained by any chance correlation 

(Figure 4.2).  
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Figure 4.1. The scatter plot of observed and predicted values of the final PLS model against the BuChE 

enzyme. 

 

Figure 4.2. Loading plot and Randomization plot for final PLS model against the BuChE enzyme. 
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The developed PLS regression model is shown below: 

𝑝𝐼𝐶50(𝑛𝑀) = −6.41 + 1.15 × 𝑅𝐷𝐶𝐻𝐼 − 0.08 × 𝐹04[𝐶 − 𝑂] + 0.46 × 𝑛𝑃𝑦𝑟𝑖𝑑𝑖𝑛𝑒𝑠 + 0.004 ×

𝑇(𝑁. . 𝑂) − 0.07 × 𝐹06[𝐶 − 𝑂] + 1.38 × 𝐶 − 041 + 0.12 × 𝐵02[𝑁 − 𝑂] − 0.015 × 𝐹03[𝐶 − 𝐶] +

0.06 × 𝑛𝐶𝑟𝑠 + 3.10 × 𝑛𝑁 − 𝑁 − 1.34 × 𝐵01[𝑁 − 𝑁] + 0.18 × 𝐻 − 048 − 0.43 × 𝑁𝑅𝑆 − 1.33 × 𝐶 −

031 + 1.05 × 𝑛𝐴𝑟𝐶𝑂𝑁𝐻𝑅                                             Equation 4.1 

ntraining =  848, R2=  0.664, R2
adj= 0.662, Q2

LOO=  0.650, LV=6, ntest =  282, Q2F1=  0.657, Q2F2=  0.657 

The descriptors in the PLS model are arranged accordingly to their importance and then described 

separately. The significance level of the modeled descriptors towards the BuChE inhibitory activity is 

computed based on a variable importance plot (VIP) (Figure 4.3). The VIP defines the importance of each 

variable obtained from the final PLS model that is responsible to regulate the BuChE inhibitory activity. 

As per the VIP plot, the significance level of the modeled descriptors is established to be in the following 

manner: RDCHI, F04[C-O], nPyridines (N..O), F06[C-O], C-041, B02[N-O], F03[C-C], nCrs, nN-N, 

B01[N-N], H-048, NRS, C-031, and nArCONHR. According to the regression coefficient plot, among these 

descriptors, RDCHI, C-041, nN-N, T(N..O), nPyridines, nArCONHR, nCrs, H-048 and B02[N-O] 

contributed positively but C-031, F03[C-C], F06[C-O], B01[N-N], F04[C-O] and NRS descriptors 

contributed negatively towards the BuChE inhibitory activity as shown in Figure 4.3. 

 

Figure 4.3. Regression coefficient plot and variable importance plot (VIP) of final PLS model against 

BuChE enzyme. 
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Table 4.1. Contribution, definition, and mechanism of all the descriptors obtained from the PLS 

model. 

S. No. Name of 

Descriptors 

Contribution Family/Short description Mechanism 

1 RDCHI +ve Connectivity indices: Reciprocal distance 

sum Randic-like index 

Hydrophobic interactions 

2 nArCONHR +ve Functional group counts: Number of 

secondary amides (aromatic) 

Hydrogen bonding and 

electrostatic interactions 

3 nN-N +ve Functional group counts: Number of N 

hydrazines 

Hydrogen bonding interaction 

4 B01[N-N] -ve 2D Atom Pairs: Presence/absence of N - N at 

topological distance 1 

Hydrogen bonding interaction 

5 F06[C-O] -ve 2D Atom Pairs:- Frequency of C - O at 

topological distance 6 

Hydrogen bonding interaction 

6 nCrs +ve Functional group counts:- Number of ring 

secondary C(sp3) 

π-π interactions 

7 C-031 -ve Atom-centred fragments:- X--CR--X Electrostatic interactions 

8 F04[C-O] -ve 2D Atom Pairs:- Frequency of C - O at 

topological distance 4 

Hydrogen bonding interaction 

9 C-041 +ve Atom-centred fragments:- X-C(=X)-X Electrostatic interactions 

10 NRS -ve Ring descriptors:-Number of ring systems Hydrophobic interactions 

11 B02[N-O] +ve 2D Atom Pairs:- Presence/absence of N - O 

at topological distance 2 

Hydrogen bonding and 

electrostatic interactions 

12 nPyridines +ve Functional group counts:- Number of 

Pyridines 

Hydrogen bonding and 

electrostatic interactions 

13 H-048 +ve Atom-centred fragments:- H attached to 

C2(sp3)/C1(sp2)/C0(sp) 

Electrostatic interactions 

14 F03[C-C] -ve 2D Atom Pairs:- Frequency of C - C at 

topological distance 3 

Hydrophobic interactions 

15 T(N..O) +ve 2D Atom Pairs:- Sum of topological 

distances between N..O 

Electrostatics and π -π 

Interaction 
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The descriptor, RDCHI, simply characterizes the size and branching of molecules. Its value increases with 

molecular size but decreases with molecular branching. It can be calculated through the Randic-like formula 

(Equation 4.2) as shown below. 

𝑅𝐷𝐶𝐻𝐼𝑖𝑛𝑑𝑒𝑥 = ∑ ∑ 𝑎𝑖𝑗. (𝑅𝐷𝑆𝑖. 𝑅𝐷𝑆𝑗)𝐴
𝑗=𝑖+1

𝐴−1
𝑖=1

-1/2                        Equation 4.2 

Here, A is the number of vertices and aij is equal to 1 only for pairs of adjacent vertices and zero otherwise, 

RDS is the sum of reciprocal distance362. The descriptor contributes positively towards the BuChE 

inhibitory activity as suggested by the positive regression coefficient, as shown (in Figure 4.4) in 

compounds 264 (pIC50: 1), 266 (pIC50: 0.823), and 690 (pIC50: 0.629) (containing descriptor values 5.482, 

5.277 and 5.246 respectively). These compounds have a large molecular size and less molecular branching. 

Conversely, compounds 292 (pIC50: -5.63), 293 (pIC50: -4.62), and 835 (pIC50: -5.13) (containing descriptor 

values 2.351, 2.608 and 2.727 respectively) are low active and have higher branching (Figure 4.4). The 2D 

atom pair descriptor, F04[C-O], denotes the frequency of C-O at the topological distance 4. The BuChE 

enzyme inhibitory activity is inversely correlated to the numerical value of this descriptor as indicated by 

its negative regression coefficient. The frequency of the C-O fragment at the topological distance 4 may 

reduce the inhibitory activity of the BuChE enzyme. The higher number of C-O fragments correlates to 

lower inhibitory activity as observed in (Figure 4.4) compounds 883 (pIC50: -4.41) and 642 (pIC50: -5.53) 

(containing descriptor values 8 and 15 respectively), while a lower numerical value of this descriptor 

correlates to higher inhibitory activity as observed in (Figure 4.4) compounds 757 (pIC50: -0.819) and 752 

(pIC50: -0.991). 

 

Figure 4.4. Contribution of RDCHI and F04[C-O] descriptors on BuChE enzyme inhibition. 

The functional group count descriptor, nPyridines, describes the number of Pyridine rings present in the 

compounds. The positive regression coefficient of this descriptor indicates that the presence of Pyridine 

rings in the compounds may enhance the inhibitory activity against BuChE enzyme as found in (Figure 

4.5) compounds 690 (pIC50: 0.621), 688 (pIC50: 0.017), 697 (pIC50: 0.85) and 695 (pIC50: 0.645) (containing 
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1 pyridine ring in each case) and vice versa in case of compounds 190 (pIC50: -5.74), 204 (pIC50: -5.02) and 

849 (pIC50: -4.91) (containing no such fragments) as given in Figure 4.5. The pyridine ring with free 

electron-pairs and having no active atoms are "passive hydrophilic" moieties and are capable of forming 

"hydrogen-bridges" with other polar molecules. The structural polarity of pyridine makes it hydrophilic. 

Another 2D atom pair descriptor, T(N..O), stands for the sum of topological distances between N..O. This 

descriptor contributes positively towards the BuChE inhibitory activity as indicated by the positive 

regression coefficient. Thus, the molecules bearing higher topological distance between (N..O) fragment 

may have higher BuChE inhibitory activity as shown in (Figure 4.5) compounds 264 (pIC50: 1) and 690 

(pIC50: 0.621) (containing descriptor values 202 and 237 respectively) whereas in contrary, compounds 190 

(pIC50: -5.74) and 841 (pIC50: -2.23) which do not contain any such fragment shows less BuChE inhibitory 

activity (Figure 4.5). From this observation, it can be concluded that the topological distances between 

nitrogen and oxygen atoms should be higher for better inhibitory activity against BuChE. 

 

Figure 4.5. Contribution of nPyridines, T(N..O), nN-N and B02[N-O] descriptors on BuChE enzyme 

inhibition. 

Another 2D atom pair descriptor, F06[C-O], indicates the frequency of the C-O fragment at the topological 

distance 6. The negative regression coefficient of this descriptor suggests that the descriptor is inversely 

proportional to the BuChE inhibitory activity as observed in the case of compounds 757 (pIC50: -0.819) and 

758 (pIC50: -0.44) (having higher enzyme inhibitory activity as the corresponding numerical descriptor 

value is in the lower range) whereas the reverse is observed in case of compounds 880 and 642 having 

lower enzyme inhibitory activity (pIC50= -4.22 and -5.53 respectively) (Figure 4.6). The atom-centered 

fragments descriptor, C-041, represents the number of fragments containing C(sp2) atoms that are attached 

with two electronegative atoms (O, N, S, Se, and halogens), i.e., one by a single bond and another by a 

double bond. The positive regression coefficient suggests the influential effect of the feature containing 



Chapter 4 Results and discussions 

 

 

 

 

 
97 

 

  

C(sp2) atoms directly attached to two electronegative atoms toward BuChE inhibitory activity. This is 

observed in the case of compound 269 (pIC50: 0.823) (descriptor value 1), and the opposite is seen in 

compound 84 (pIC50: -4.39) as depicted in Figure 4.6. Thus, this descriptor provides us with an assumption 

that these fragments might involve in polar interaction with the binding pocket amino acid residues. This 

electrostatic bond may also help in stabilizing the π-π stacking binding and increase the affinity between 

the BuChE enzyme and its inhibitors363. 

 

Figure 4.6. Contribution of F06[C-O] and C-041 descriptors on BuChE enzyme inhibition. 

Another functional group count descriptor, B02[N-O], stands for the presence/absence of the N-O fragment 

at the topological distance 2. The positive regression coefficient of this descriptor indicates that the presence 

of the N-O fragment at topological distance 2 may favor the inhibitory activity of inhibitors against the 

BuChE enzyme as found in (Figure 4.5) compounds 690 (pIC50: 0.621), 688 (pIC50: 0.017), 697 (pIC50: 

0.850) and 695 (pIC50: 0.645) (containing descriptor value of 1 for all the cases). On the other hand, 

compounds with the lower numerical value of this descriptor show lower inhibitory activity as observed in 

(Figure 4.5) compounds 190 (pIC50: -5.74), 204 (pIC50: -5.02), and 849 (pIC50: -4.91). In the latter case, 

the compounds do not have such N-O fragments at the topological distance 2. Thus, N-O fragments at 

topological distance 2 are influential for the BuChE inhibitory activity. Another 2D atom pair descriptor, 

F03[C-C], indicates the frequency of the C-C fragment at the topological distance 3. The negative 

regression coefficient of this descriptor suggests that the presence of the C-C fragment at the topological 

distance 3 inversely affects the BuChE inhibitory activity. This is observed in compounds 996 (pIC50: -

4.25) and 987 (pIC50: -5.37) (containing higher descriptor values 90 and 81 respectively) (Figure 4.7). The 

opposite is observed in compounds 675 (pIC50: -1.83) and 430 (pIC50: -1.91) (containing descriptor values 
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9) show higher enzyme inhibitory activity due to lower numerical values of this descriptor. The functional 

group count descriptor, nCrs, represents the number of ring secondary C (sp3) atoms present in the 

compounds. This descriptor positivity influences the activity of BuChE inhibitors as indicated by its 

positive regression coefficient. Thus, the compounds containing a higher number of ring secondary C (sp3) 

atoms may have high inhibitory activity against BuChE, as shown in (Figure 4.7) compounds 385 (pIC50: 

-0.477), 386 (pIC50: 0.9085) and 269 (pIC50: 0.823) (containing 10, 10 and 9 ring secondary C (sp3) atoms 

respectively), whereas the compounds containing no such ring secondary C (sp3) atom have low inhibitory 

activity against BuChE as shown in (Figure 4.7) compounds 1041 (pIC50: -5.33) and 1098 (pIC50: -4.60). 

From this descriptor, it can be inferred that the cyclic ring containing carbon atoms without any unsaturation 

may favor the BuChE inhibitory activity. 

 

Figure 4.7. Contribution of F03[C-C] and nCrs descriptors on BuChE enzyme inhibition. 

Another functional group count descriptor, nN-N, denotes the presence of the number of hydrazine moieties 

in the compounds. The positive regression coefficient of this descriptor indicates that the activity of 

inhibitors is directly proportional to the numerical value of the nN-N descriptor. Thus, the compounds 

having a higher number of hydrazine moiety may have higher  BuChE enzyme inhibitory activity as shown 

in (Figure 4.5) compounds 690 (pIC50: 0.621), 688 (pIC50: 0.017), 697 (pIC50: 0.85) and 695 (pIC50: 0.645) 

(containing descriptor values 1), whereas the compounds such as 190 (pIC50: -5.74), 204 (pIC50: -5.02) and 

849 (pIC50: -4.91) have less BuChE enzyme inhibitory activity due to the absence of such fragment as 

shown in Figure 4.5. The hydrazine fragment may be involved in hydrogen bonding interactions with the 

surrounding amino acid residues in the binding pocket of the BuChE enzyme. We have observed from 

docking studies (discussed later) that N-N fragments in the molecules form hydrogen bonds along with 

electrostatic interaction with their surrounding amino acid residues. 
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The 2D atom pair descriptor, B01[N-N], describes the presence/absence of N-N at topological distance 1. 

The negative regression coefficient of this descriptor indicates that compounds containing the lower number 

of such fragments have good inhibitory activity against the BuChE enzyme as shown in (Figure 4.8) 

compounds 264 (pIC50: 1) and 266 (pIC50: 0.823) (containing descriptor value of 1), while a higher number 

of this fragment shows the lower inhibitory activity as observed in (Figure 4.8) compounds 187 (pIC50: -

5.52) and 175 (pIC50: -5.39). We have found that descriptors nN-N and B01[N-N] are showing opposite 

effects on the inhibitory activity against BuChE. The descriptor nN-N representing the presence of the 

number of hydrazine moiety in the compounds has a positive regression coefficient. In a hydrazine group, 

two adjacent nitrogen atoms are attached with a single bond; there is no presence of unsaturation.    On the 

other hand, the descriptor B01[N-N] denotes the presence/absence of N-N at topological distance 1 and has 

a negative regression coefficient. Here, the descriptor signifies the presence or absence of N-N at 

topological distance 1 without considering the unsaturation effect (i.e., unsaturation might be present or 

absent). In compounds 187 and 175, the hydrazine group is absent (nN-N descriptor) but the presence of 

unsaturation between two adjacent nitrogen atoms can be explained by B01[N-N] but not by then N-N 

descriptor.  

The atom centered fragment, H-048, denotes the number of H attached to C2(sp3)/C1(sp2)/C0(sp). This 

descriptor is defined as the number of specific atom types in a molecule and can be calculated by knowing 

only molecular composition and atom connectivity. The count of hydrogen atoms of type H-048 discloses 

the importance of hydrogen bond interaction. The positive regression coefficient of this descriptor indicates 

that compounds containing a higher number of such hydrogen atoms have good inhibitory activity against 

BuChE enzyme as shown in (Figure 4.8) compounds 795 (pIC50: -0.77) and 461 (pIC50:-0.699) (containing 

descriptor values 1) while the compounds 927 (pIC50: -5.29) and 243 (pIC50:-5.70) show lower inhibitory 

activity due to the absence of such H atom (Figure 4.8). 

 

Figure 4.8. Contribution of B01[N-N] and H-048 descriptors on BuChE enzyme inhibition. 
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Another functional group count descriptor, NRS, indicates the number of ring systems present in the 

compounds, which contributes negatively towards the BuChE enzyme inhibitory activity. As observed in 

the docking study (discussed later), the results properly corroborate this observation. Hydrophobicity plays 

an important role in better BuChE inhibitory activity as we have observed in compounds such as 264 (pIC50: 

1) and 697 (pIC50: 0.850) containing descriptor value 2 showing higher inhibitory activity, but according to 

the regression coefficient plot, this descriptor contributes negatively. Thus, we have concluded that BuChE 

inhibitory activity decreases with increasing the descriptor value which could be due to some other features 

present in the molecules as shown in (Figure 4.9) Compounds 996 (pIC50: -4.25) and 987 (pIC50: -5.37) 

(containing descriptor values 2 and 1 respectively) and vice versa in case of compounds 675 (pIC50: -1.83) 

and 430 (pIC50: -1.91) (Figure 4.9). The atom-centered fragment descriptor, C-031, simply refers to X-CR-

X, where, R represents any group linked through a carbon atom; X represents any heteroatom (O, N, S, P, 

Se, and halogens). This descriptor contributes negatively towards the BuChE enzyme as indicated by the 

negative regression coefficient. For example, compounds 306 (pIC50: -4) and 303 (pIC50: -4.22) (containing 

descriptor values 1) have lower BuChE inhibitory activity. On the contrary, the molecules which do not 

contain such features have higher inhibitory activity as shown in compounds 264 (pIC50: 1) and 697 (pIC50: 

0.850) as mentioned in Figure 4.9. The functional group count descriptor, nArCONHR, represents the 

presence of the number of secondary amides (aromatic) in the compounds. There are only 32 compounds 

(261, 270, 272, 1061, 1068, 227, 229, and 231, etc) out of 1130 molecules in the whole data set, which 

contain such fragments, and the frequency of these fragments in compounds is 1 (Figure 4.9). It may be 

assumed that this fragment contributes significantly to increasing the intermolecular interactions by forming 

strong H-bonds. This descriptor contributed positively towards the BuChE inhibitory activity as indicated 

by the positive regression coefficient. Thus, the molecules bearing this fragment may enhance the BuChE 

inhibitory activity as shown in (Figure 4.9) compounds 261 (pIC50: -1.04) and 272 (pIC50: -1.25) 

(containing descriptor values 1). On the other hand, the compounds containing no such fragments have 

lower inhibitory activity as shown in compounds 179 (pIC50: -5.61) and 175 (pIC50: -5.39). It may be 

mentioned here that the entire dataset may not follow the exact pattern of correlation for all data points 

concerning a single descriptor, since it is obvious that the property of any molecules is a function of multiple 

features. Here, we have given appropriate representative examples to understand the role of different 

features and descriptors in controlling the response values.  
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Figure 4.9. Contribution of NRS, C-031, and nArCONHR descriptors on BuChE enzyme inhibition. 

4.1.1.2. Applicability domain of the PLS model 

The applicability domain of a QSAR model is the structural, biological, and Physico-chemical information 

on which the training set of the model has been developed, and for which it is applicable to make predictions 

for new compounds310. The applicability domain of a QSAR model should be described in terms of the 

most significant parameters that appeared in the developed model. Ideally, the QSAR should only be used 

to make predictions within that domain by interpolation, not extrapolation. The proposed PLS model was 

checked using the applicability domain at a confidence level of 99% according to the DModX (distance to 

model in the X-space)  approach using SIMCA-P 10.0 software (available from 

https://umetrics.com/kb/getting-started-simca-p). In the case of the proposed model, (Figure 4.10) we 

found that 59 compounds (i.e. compounds number 99, 189, 221, 222, 225-231, 233, 261, 270, 272, 300-

306, 512, 683, 684, 686, 688, 690, 691, 692, 693, 695, 696, 697, 778, 960, 975-981, 984, 988, 990, 995, 

996, 999, 1003, 1006, 1011, 1057, 1059, 1060, 1061, 1062, 1065, 1066, 1068 and 1069) in the training set 

are located outside the critical DModX value (D-Crit=1.62) and in case of the test set, 16 compounds (i.e., 

compounds number 223, 228, 301, 685, 687, 689, 694, 959, 989, 993, 997, 1002, 1058, 1063, 1064 and 

1067) are located outside the critical DModX value (D-Crit=1.62). 
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Figure 4.10. Applicability domain DModX values of the training and test set compounds at 99% confidence 

level of the developed PLS model against BuChE enzyme. 

4.1.2. Molecular Docking analysis 

4.1.2.1. Molecular Docking for the most active compounds from the dataset 

In the case of compounds 264, 688, 697, 695, and 690 having higher activity values (pIC50 = 1, 0.01, 0.850, 

0.645, and 0.621 respectively), the interaction forces include hydrogen bond interactions (carbon-hydrogen 

bonds and conventional hydrogen bonds), π-interactions (π-sigma, π-anion, π-cation, π-alkyl bonds and 

alkyl hydrophobic) and others attractive forces. The amino acid residues involved in the interaction are 

ALA A:101, ASP A: 3, ASN A:17, ARG A:14, ILE A:99, ILE A:5, ILE A:4, ASP A:3, THR A:26, MET 

A:16 and LYS A:103 (Figure 4.11, 4.12, 4.13, 4.14 and 4.15). Table 4.2 contains the docking results and 

correlation with the final QSAR model. 

From compound 264 (Figure 4.11), we can see the interacting residues include ALA A: 101, ASP A: 3, 

MET A: 16, ASN A: 17, ILE A: 4, LYS A: 103, and THR A: 26 of which ALA A: 101 is bound with the 

ligand via alkyl bonding, ASP A: 3, ASN A: 17, MET A: 16 and THR A: 26 interact with the ligand with 

hydrogen bonding, while ILE A:4 and LYS A:103 show π-alkyl interactions. 
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Figure 4.11. Docking interactions of most active compound (compound 264). 

In the case of compound 688, the interacting amino acids include ILE A: 5, ASP A: 3, and ILE A: 4. The 

different interactions are shown in Figure 4.12. Hydrogen bonding interactions are exhibited by ILE A: 5, 

and ASP A: 3 while ILE A: 4 shows π-sigma interaction. It is observed from compound 697 (Figure 4.12) 

that amino acids ILE A: 4 and ASP A: 3 interact with the ligand via hydrogen bonding interaction, ASP A: 

3 and ARG A: 14 interact with ligand via π-anion, π-cation and some other attractive charges whereas LYS 

A: 103, MET A: 16 show π-alkyl and alkyl interaction with the ligand. 

 

Figure 4.12. Docking interactions of most active compound (compound 688). 
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In the case of compound 697, which interacted with the active site pocket of the enzyme (Figure 4.13) 

through hydrogen bonding with the amino acid residues ILE A: 4, and ASP A: 33, via pi-cation with the 

amino acid residue ARG A:14, through attractive charge and pi-anion with the amino acid residue ASP A: 

3, via pi-alkyl with the amino acid residue LYS A: 103 and alkyl bond with the amino acid residue MET 

A: 16. 

 

Figure 4.13. Docking interactions of most active compound (compound 697). 

In the case of compound 695, the interacting amino acids include LYS A:103, ILE A:99, ASP A:3, ILE 

A:4, and ASN A:17. The different interactions are shown in Figure 4.14. Conventional hydrogen bond 

interactions are formed with ASN A:17 and ASP A:3 while LYS A:103, ILE A:99, and ILE A:4 form π-

alkyl and alkyl bonding.   

It is observed from compound 690 (Figure 4.15) that amino acids ILE A:5, ILE A:4, ASP A:3, and THR 

A:26 interact with the ligand via hydrogen bonding interaction whereas MET A:16 and LYS A:103 show 

π-alkyl interaction with the ligand. 
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Figure 4.14. Docking interactions of most active compound (compound 695). 

 

Figure 4.15. Docking interactions of most active compound (compound 690). 
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4.1.2.2. Moderately active molecules from the dataset 

In the case of compounds 35, 118, 867,45 and 300 (pIC50 = -2.99, -2.96, -2.91, -3.770, and -3.959 

respectively) which are moderately active against the BuChE enzyme, the interaction forces include 

hydrogen bond (carbon-hydrogen bonds and conventional hydrogen bonds), pi-interaction (π-cation, π-

alkyl, π-lone pair, π-cation, π-anion, and π-π stacking) and interacting amino acids residues include such as 

LYS A: 103, ASN A: 17, ILE A: 4, ASP A: 3, HIS A:438, TRP A: 82, TRP A: 430, TYR A: 332, THR A: 

120, MET A: 16, THR A: 59, ILE A:99, LEU A:125, ALA A:328, and GLY A:115. 

It is observed from compound 35 (Figure 4.16) that amino acids ASN A: 17 and ASP A: 3 interact with 

the ligand via hydrogen bonding interaction, and LYS A: 103 and ILE A: 4 interact with ligand via π-alkyl 

and alkyl bonding. 

 

Figure 4.16. Docking interactions of moderately active compound (compound 35). 

In the case of compound 118, the interacting amino acids include HIS A:438, TRP A: 82, TRP A: 430, 

TYR A: 332, and THR A: 120. The different interactions are shown in Figure 4.17. The amino acid residues 

HIS A: 438 interact with ligands through hydrogen bonding, whereas HIS A; 438, TRP A: 82, TRP A: 430, 

TYR A: 332, and THR A: 120 share their hydrophobic feature through π-interactions (π-alkyl, pi-lone pair, 

and π-cation). 

In the case of compound 867 (Figure 4.18), the interacting amino acid residues are ASP A: 3 and THR A: 

59 which interact with the ligand making hydrogen bonding interaction while ILE A: 4, MET A: 16 bind 

with ligand via π-alkyl and alkyl bonds. 
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Figure 4.17. Docking interactions of moderately active compound (compound 118). 

 

Figure 4.18. Docking interactions of moderately active compound (compound 867). 
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From compound 45, we can see (Figure 4.19) the interacting residues include ILE A:99, LYS A:103, ILE 

A:4, and ASP A:3, of which ASP A:3 is bound with the ligand via hydrogen bonding while ILE A:4, ILE 

A:99, and LYS A:103 share their hydrophobic feature via π-alkyl interactions. 

In compound 300 (Figure 4.20), the interacting amino acids include LEU A:125, TYR A:332, THR A:120, 

TRP A:82, ALA A:328, TRY A:332, GLY A:115, TRP A:430, and HIS A:438. The different interactions 

are shown in Figure 4.20. The amino acid residues HIS A;438, GLY A:115, and THR A:120 share their 

hydrophilic feature through hydrogen bonding interaction whereas TRY A:332, ALA A:328, TRP A:82, 

TRY A:128, LEU A:125 and TRP A:430 are bound to the ligand via π-π interaction. 

 

Figure 4.19. Docking interactions of moderately active compound (compound 45). 
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Figure 4.20. Docking interactions of moderately active compound (compound 300). 

4.1.2.3. Least active molecules from the dataset 

The BuChE enzyme inhibitors 185, 243, 277, 204 and 835 having a lower inhibitory activity (pIC50 = -5.65, 

-5.69, -5.60, -5.021, and -5.136 respectively) show similar kinds of interactions (alkyl interaction, hydrogen 

and π interactions) as in case of higher inhibitory activity compounds, but the number of interacting amino 

acid residues are much less as shown in Figure 4.21, 4.22, 4.23, 4.24 and 4.25.  

From compound 185 (Figure 4.21), we can see the interacting residues include TYR A: 332, TRP A: 82, 

TYR A: 128, and GLU A: 197, of which GLU A: 197 and TYR A: 128 are bound with the ligand via 

hydrogen bonding while TYR A: 332 and TRP A: 82show π-sigma and π-π stacked interactions. 
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Figure 4.21. Docking interactions of least active compound (compound 185). 

In the case of compound 243 (Figure 4.22), the amino acids involved in the interaction are GLU A: 197, 

TRP A: 82, GLY A: 439, HIS A: 438, ALA A: 32. The amino acid residues HIS A:438 and  GLU A:197 

interact with the ligand via hydrogen bonding whereas TRP A:82, GLY A:439, ALA A:32 interact with the 

ligand through π interaction (π-alkyl, π-cation, and π-π stacked). 

From compound 277 (Figure 4.23), we can see the interacting residues include HIS A: 438, TYR A: 332, 

ALA A: 199, and GLY A: 117, in which GLY A: 117 and ALA A: 199 are bound with the ligand via 

hydrogen bonding while HIS A: 438 and TYR A: 332 show π-π T shaped interactions. 
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Figure 4.22. Docking interactions of least active compound (compound 243). 

 

Figure 4.23. Docking interactions of least active compound (compound 277). 
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In the case of compound 204 (Figure 4.24), the interacting amino acid residues are TRP A: 231, GLU A: 

197, TRP A: 128, and GLY A: 115. GLU A: 197 and TRP A: 128 interact with the ligand by hydrogen 

bonding while TRP A: 231 binds with the ligand via T-shaped π-π interaction, and GLY A: 115 binds with 

the ligand through amide-π stacking interaction.  

In the case of compound 835 (Figure 4.25), the amino acids involved in the interaction are TRP A: 82 and 

ALA A: 328. The amino acid TRP A: 82 interacts with the ligand through π-π stacking and π-sulfur 

interaction whereas ALA A: 328 binds with the ligand via π-alkyl bonding interaction. 

 

Figure 4.24. Docking interactions of least active compound (compound 204). 

 

Figure 4.25. Docking interactions of least active compound (compound 835). 
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Table 4.2. Docking results and correlation with the final QSAR model. 

S. No. Compound 

Number 

- CDocker 

interaction 

energy 

Interacting residues Interactions Correlation with QSAR 

model 

1 264 (high 

pIC50) 

45.1 ALA A: 101, ASP A: 3, 

MET A: 16, ASN A: 17, 

ILE A: 4, LYS A: 103, 

THR A: 26 

Vdw, Hydrogen 

bonding, alkyl and pi-

alkyl 

nPyridines, nCrs and 

T(N..O) 

2 688 (high 

pIC50) 

47.20 ILE A: 5, ASP A: 3, ILE 

A: 4 

Vdw, Hydrogen 

bonding, attractive 

charges and pi-sigma 

nPyridines, nN-N, and 

T(N..O) 

3 697 (high 

pIC50) 

42.67 Met A: 16, ILE A: 4, LYS 

A: 103, ASP A: 3, ARG 

A: 14 

Vdw, Hydrogen 

bonding, attractive 

charges, pi-cation, pi-

anion, alkyl and pi-alkyl 

nPyridines, RDCHI and 

nN-N, nCrs 

4 695 (high 

pIC50) 

40.56 LYS A:103, ILE A:99, 

ASP A:3, ILE A:4 and 

ASN A:17 

Vdw, Attractive 

charges, Hydrogen 

bonding, Pi-alkyl and 

alkyl 

nPyridines, nN-N, nCrs 

and T(N..O) 

5 690 (high 

pIC50) 

48.38 Met A:16, ILE A: 4, ILE 

A: 5, LYS A:103, THR A: 

26, ASP A:3 

Vdw,Hydrogen 

bonding, Attractive 

charge, pi-alkyl 

nPyridines, RDCHI and 

nN-N 

6 35 (moderate 

pIC50) 

42.46 LYS A: 103, ASN A: 17, 

ILE A: 4, ASP A: 3 

Vdw, Hydrogen 

bonding, alkyl and pi-

alkyl 

RDCHI 

7 118 (moderate 

pIC50) 

42.09 HIS A:438, TRP A: 82, 

TRP A: 430, TYR A: 332, 

THR A: 120 

Vdw, Hydrogen 

bonding, Pi-cation, pi-

alkyl, pi-lone pair 

NRS and nCrs 

8 867 (moderate 

pIC50) 

28 ILE A: 4, ASP A: 3, MET 

A: 16, THR A: 59 

Vdw, Hydrogen 

bonding, alkyl, pi-alkyl 

T(N..O) 

9 45 (moderate 

pIC50) 

40.59 ILE A:99, LYS A:103, 

ILE A:4 and ASP A:3 

Vdw, Hydrogen 

bonding, Pi-alkyl and 

alkyl 

RDCHI, nCrs and C-041 

10 300 (moderate 

pIC50) 

44.43 LEU A:125, TYR A:332, 

THR A:120, TRP A:82, 

ALA A:328, TRY A:332, 

GLY A:115, TRP A:430 

and HIS A:438 

Vdw, Hydrogen 

bonding, Pi-alkyl, alkyl, 

pi-cation and pi-pi 

staking 

nPyridines and nCrs 

11 185 (low 

pIC50) 

29.55 TYR A: 332, TRP A: 82, 

TYR A: 128, GLU A: 197 

Vdw, Hydrogen 

bonding, pi-pi stacked, 

pi-sigma, 

B01[N-N] and NRS 

12 243 (low 

pIC50) 

37.65 GLU A: 197, TRP A: 82, 

GLY A: 439, HIS A: 438, 

ALA A: 328 

Vdw, Hydrogen 

bonding, pi-cation, pi-

pi- stacked, pi alkyl 

NRS 
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13 277 (low 

pIC50) 

40 HIS A: 438, TYR A: 332, 

ALA A: 199, GLY A: 117 

Vdw, Hydrogen 

bonding, attractive 

charges, pi-cation, pi-

pi-T- shaped 

NRS 

14 204 (low 

pIC50) 

35.193 TRP A:231, GLU A:197, 

TRP A:128 and GLY 

A:115 

Vdw, Hydrogen 

bonding, pi-pi T-shaped 

and amide pi-stacked 

NRS 

15 835 (low 

pIC50) 

25.128 TRP A:82 and ALA 

A:328 

Vdw, Pi-alkyl, pi-

sulphur, pi-pi-stacked 

NRS 

4.1.3. Relation of the docking results with the QSAR model 

In the docking study, it was demonstrated that the formation of hydrogen bonds and π-π stacking between 

the ligand and the target play a vital role in binding. Hydrogen bonding and π-π-interactions can be 

correlated with T(N..O) (sum of topological distances between N...O) and nCrs (number of ring secondary 

C(sp3)) descriptors in the QSAR model. T(N..O)is related to hydrogen bonding, electrostatic and π-donor 

hydrogen bonding interactions between protein and ligand. The descriptor, nCrs, gives evidence of π-π 

interaction. Furthermore, nPyridines(number of Pyridines) descriptor supports the evidence of π-π 

interaction (π-cation, π-anion, π-π stacking, and π-alkyl) along with hydrogen bonding interaction as we 

have observed in compound 264, 688, 697, 695, 690 and 300 (Figure 4.11, 4.12, 4.13, 4.14, 4.15 and 4.20). 

The RDCHI (simply characterizes the size and branching of molecules) descriptor also supports the π-π 

interaction (π-alkyl and alkyl) while C-041 (X-C(=X)-X) descriptor signifies hydrogen bonding interaction. 

The H-048 (C2(sp3)/C1(sp2)/C0(sp)) descriptor characterizes both the hydrogen bonding and π-π (π-alkyl 

and alkyl) interactions in the QSAR model. Thus, from the above-mentioned information, we can conclude 

that hydrogen bonding, hydrophobicity, electrostatic interactions, and unsaturation (π-π interaction) feature 

obtained from both QSAR and docking study are essential for the inhibitory activity against the BuChE 

enzyme. 

4.1.4 Comparisons of the performance of the proposed study with previously published studies 

There are many previous QSAR models reported for the prediction of the bioactivity of BuChE enzyme 

inhibitors. Here, we have performed a comparison of the best model currently derived with some previous 

models. (Table 4.3). The previously reported models were developed by Multilinear Regression (MLR) 

analysis, partial least squares (PLS), Genetic function approximation (GFA), Multilayer perceptron (MLP), 

and Artificial neural network (ANN) method, which gave reliable predictions of bioactivity of BuChE 

enzyme inhibitors. However, the models reported previously were developed using a very low number of 

compounds covering a very narrow range of chemical diversity. But in the current study, we have employed 

an extended list of compounds covering a wide range of chemicals and offering a larger chemical domain. 

We can see from Table 4.3, Fang et al.364 developed a PLS model against the BuChE enzyme by using only 

66 compounds; the model quality was good but the equation length (12) was quite high compared to the 

number of data points. In this study, we have utilized a wide range of compounds and developed the model 

with 15 selected descriptors and 6 latent variables. We can also see from Table 4.3 that Zheng et al.365 and 

Bitam et al.366 developed QSAR models using very narrow groups of samples (151 and 93 compounds 

respectively) and developed MLR, ANN, and MLP-based models.  Solomon et al.367 reported GFA models 

utilizing only 59 compounds. The details of different internal and external validation parameters obtained 

from our model and obtained from the previously reported models are given in Table 4.3. The best model 
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presented in this work is based on a larger group of samples and the validation parameters (both internal 

and external) of the training and test sets qualified the requisite thresholds. Before the development of the 

final model, we performed a multilayered variable selection strategy from a large pool of descriptors. The 

best model was selected based on different validation parameters and low equation length. The final model 

was built by using the PLS algorithm with latent variables of 6. The 15 selected descriptors reflect the 

fundamental structural characteristics of molecules that are important in modeling the bioactivity of BuChE 

enzyme inhibitors. The docking results in this study also well collaborate with the descriptors obtained from 

the developed QSAR model and justify the significance of the developed model. In comparison with the 

previously reported models concerning acceptability and reliability, the present work deals with diverse 

classes of compounds. Due to the wide applicability domain, the model reported in the present study may 

be used as a screening tool for the discovery and development of leads against the BuChE enzyme. 

Table 4.3. Comparison of the developed model with the previously published models. 

Sources Equation 

Length 

Model Training set Test set 

Train R2 Q2 Test R2pred 

Model in this study 15 PLS 848 0.664 0.650 282 0.657 

Fang et al. 2016364 12 MLR 48 0.883 0.726 18 0.731 

Fang et al. 2016364 12 PLS 48 0.883 0.777 18 0.775 

Zheng et al. 2014365 10 MLR 62 0.89 0.85 31 - 

Zheng et al. 2014365 10 ANN 62 0.950 0.900 31 - 

Solomon et al. 2009366 5 GFA 39 0.884 0.857 20 0.820 

Bitam et al. 2018367 8 MLR 121 0.879 0.857 30 0.847 

Bitam et al. 2018367 8 MLP 121 0.888 0.895 30 - 
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4.2. Study 2- Exploring 2D-QSAR for prediction of Beta-secretase 1 (BACE1) inhibitory activity 

against Alzheimer’s disease 

In this study, 2D QSAR modeling, pharmacophore mapping, and molecular docking study were performed 

to unveil the structural requirements for the inhibitory activity against the BACE1 enzyme. Here, we will 

discuss the results obtained from this study, which will include the selected 2D QSAR model, 

pharmacophore mapping, and its validation, molecular docking analysis, and finally, the identified 

important structural features against the BACE1 enzyme. 

4.2.1. 2D QSAR modeling analysis 

4.2.1.1. Mechanistic interpretation of modeled descriptors 

The reported PLS model was developed with 5 descriptors using 3 LVs (latent variables). The statistical 

validation parameters like coefficient of determination R2 (0.826) and cross-validated correlation 

coefficient Q2
(LOO) (0.795) signifying the reliability of the model, and R2

Pred or Q2F1 (0.846), Q2F2 (0.846) 

judge the good predictivity of the model. The descriptors appearing in the model describe the structural and 

functional requirements which can improve the inhibitory activity of molecules against the BACE1 enzyme. 

The closeness of the observed and predicted values for the BACE1 enzyme inhibitors in the data set can be 

further recognized from the scatter plot as shown in Figure 4.26. The final PLS model with its validation 

parameters is depicted below (Equation 4.3): 

 

Figure 4.26. The scatter plot of observed and predicted values of the final PLS model against the BACE1 

enzyme. 
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BACE1 enzyme inhibitors: PLS Model 

pIC50(𝑛𝑀) = −4.235 + 36.67 × "𝐸𝑇𝐴_𝑑𝐸𝑝𝑠𝑖𝑙𝑜𝑛_𝐷" − 1.82 × "𝐵03[𝑁 − 𝑆]" + 1.106 ×

"𝐸𝑇𝐴_𝐵𝑒𝑡𝑎_𝑛𝑠_𝑑" − 0.107 × "𝐻 − 047" + 1 × "𝐶 − 033"                                  Equation 4.3 

Internal validation parameters: ntraining= 76, R2= 0.826, Q2= 0.795, Average rm
2= 0.711, Δrm

2= 0.139, 

MAE= 0.625, Fitting quality=Moderate, External validation parameters: ntest= 22, Q2F1= 0.846, 

Q2F2=  0.846, Average rm
2= 0.731, Δrm

2= 0.140, MAE= 0.544, CCC= 0.911, Fitting quality =Good, 

LV= 3, No. of descriptors=  5 

In the present analysis, a simple but statistically robust PLS regression-based QSAR model was developed 

against the BACE1 enzyme. The regression coefficient plot (see Figure 4.27) provides information about 

the contribution of descriptors in the model toward the activity of the compounds. The positive regression 

coefficients of the descriptors indicated that the BACE1 inhibitory activity will increase with increasing 

their descriptors values as shown in the case of ETA_Beta_ns_d, ETA_dEpsilon_D, and C-033 descriptors.  

In contrast, the negative regression coefficients of the descriptors suggested that the BACE1 enzyme 

inhibitory activity of the compounds will decrease with increasing the descriptor values as shown in the 

case of H-047 and B03[N-S] descriptors. The significance level of the modeled descriptors towards the 

inhibitory activity against the BACE1 enzyme is computed based on the variable importance plot (VIP). 

The variable importance plot (VIP)368 defines the order of significance level among the model variables 

which are responsible to regulate the inhibitory activity towards the BACE1 enzyme. The descriptors 

contributing most (ETA_dEpsilon_D, B03[N-S] and ETA_Beta_ns_d) and least (H-047 and C-033) to the 

BACE1 inhibition can be identified with the help of this plot (Figure 4.27). The variables show higher 

statistical significance with a VIP score >1 as compared to one with a low VIP score of 0.45.  As suggested 

by the VIP plot368, the significance level of the modeled descriptors is found to be in the following order: 

ETA_dEpsilon_D, B03[N-S], ETA_Beta_ns_d, H-047, and C-033. The details of statistical validation 

parameters in terms of both internal and external validation parameters are depicted in the model (Equation 

3). The list of molecules present in the dataset with their names, SMILES notation of respective compounds 

and observed and predicted activities (2D-QSAR) against the BACE1 enzyme are depicted in Table 4.4. 

Table 4.4. The list of molecules present in the dataset with their names, SMILES notation of respective 

compounds, and observed and predicted activities (2D-QSAR) against the BACE1 enzyme. 

Name  SMILES notation Activity (pIC50) 

Observed Predicted  

1 C1(=N[C@](C(=O)N1C)(c1cc(ccc1)NC(=O)c1occc1)C1CCCCC1)N 

 

-1.301 -1.729 

2* C1(=N[C@](C(=O)N1C)(C1CCCCC1)c1cc(ccc1)NC(=O)COC)N 

 

-1.602 -2.877 

3 C1(=N[C@](C(=O)N1C[C@H]1CC[C@H](CC1)C(=O)O)(c1ccccc1)C1C

CCCC1)N 

 

-2.079 -3.193 

4 C1(=N[C@](C(=O)N1C)(c1cccc(c1)NC(=O)c1n(ccc1)C)C1CCCCC1)N 

 

-2.255 -2.169 

5 C1(=N[C@@](C(=O)N1CCCCCC)(C1CCCCC1)c1ccccc1)N 

 

-2.431 -3.682 

6 C1(=N[C@](C(=O)N1CCCCCC(=O)O)(c1ccccc1)C1CCCCC1)N 

 

-2.491 -3.041 
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7* C1(=N[C@](C(=O)N1C)(c1cccc(c1)NC(=O)c1ccc2c(c1)OCO2)C1CCCCC

1)N 

 

-2.579 -3.034 

8 C1(=N[C@](C(=O)N1Cc1cc(cc(c1)F)F)(c1ccccc1)C1CCCCC1)N 

 

-2.612 -2.853 

9* C1(=N[C@](C(=O)N1C)(C1CCCCC1)c1cc(ccc1)NC(=O)CCC)N 

 

-2.690 -2.455 

10 C1(=N[C@@](C(=O)N1C)(c1ccccc1)C1CCCCC1)N 

 

-2.707 -3.428 

11 c1(ccccc1)c1ccc(c2ccc(cc2)NC(=O)c2cc(ccc2)Br)n1CC(=O)NC(=N)N 

 

-2.778 -2.566 

12 C1(=N[C@](C(=O)N1C)(c1cccc(c1)NC(=O)c1n(ccc1)C)C1CCCCC1)N 

 

-2.934 -2.169 

13 C1(=N[C@@](C(=O)N1C)(c1ccccc1)C1CCCCC1)N 

 

-2.995 -3.428 

14 C1(=NC(C(=O)N1C)(C1CCCCC1)C1CCCCC1)N 

 

-3.033 -2.894 

15 C1(=N[C@](C(=O)N1C)(c1cccc(c1)NC(=O)c1ccc2c(c1)OCO2)C1CCCCC

1)N 

 

-3.060 -3.034 

16* C1(=N[C@@](C(=O)N1C)(c1cccc(c1)NC(=O)c1cccc(c1)OC)C1CCCCC1)

N 

 

-3.133 -2.923 

17 C1(=N[C@](C(=O)N1C)(c1cc(ccc1)NC(=O)CCOC)C1CCCCC1)N 

 

-3.267 -2.967 

18* C1(c2ccccc2)(c2ccccc2)N=C(N(C1=O)C)N 

 

-3.531 -3.962 

19 C1(=N[C@](C(=O)N1C)(c1cc(ccc1)NC(=O)CCOC)C1CCCCC1)N 

 

-3.895 -2.967 

20* C1(=N[C@@](C(=O)N1C)(c1ccccc1)C1CCCCC1)N 

 

-4.380 -3.428 

21* C1(c2ccccc2)(N=C(N2C1=NCCC2)N)c1ccccc1 

 

-4.579 -4.286 

22 c12cc(ccc1c(c(cn2)C(=O)NCc1ccc2OCOc2c1)O)S(=O)(=O)Nc1cccc(c1)C(

F)(F)F 

 

-2.491 -2.149 

23 c1(csc(n1)NC(=O)CSc1nc(c(c(=O)[nH]1)C#N)c1ccc(cc1)OC)c1ccccc1 

 

-3.677 -4.303 

24 c1(n(c(cc1)c1c(cccc1)Cl)CC(=O)NC(=N)NCCCO)c1ccc(cc1)OCCC 

 

-2.041 -2.915 

25 c1(n(c(cc1)c1c(cccc1)Cl)CC(=O)NC(=N)N)c1ccc(cc1)Oc1ccc(cc1)C(=O)C 

 

-2.380 -2.841 

26 c1(n(c(cc1)C12CC3CC(C1)CC(C3)C2)CC(=O)NC(=N)NCCCO)c1ccccc1 

 

-3.505 -3.595 

27 c1(n(c(cc1)C12CC3CC(C1)CC(C3)C2)CC(=O)NC(=N)N)c1ccccc1 

 

-3.770 -2.975 

28 c1(n(c(cc1)c1ccccc1)CC(=O)NC(=N)N)c1ccccc1 

 

-4.287 -3.118 

29* C1[C@@H]2[C@@H]3[C@H](N[C@@H]2CN[C@H]1Cn1cc(nn1)c1ccc

2c(c1)ccc(c2)OC)CCCC3 

 

-3.173 -3.303 

30 [C@H]1(C(=O)[C@H](SCc2cc(ccc2)C(F)(F)F)C(=O)N1)[C@@H](C)CC 

 

-4.778 -5.935 

31 C1(=O)[C@@H](OC(=O)[C@H]1Sc1ccccc1)c1ccccc1 

 

-5.021 -4.964 

32 C1(=O)[C@H](NC(=O)[C@@H]1SCc1occc1)Cc1ccccc1 -5.161 -5.332 
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33* C1(=O)[C@@H](NC(=O)[C@@H]1SCc1cccc(c1)C(F)(F)F)CC(C)C 

 

-5.287 -5.935 

34 C1(=O)[C@@H](NC(=O)[C@H]1SCC(=O)NCc1cc2OCOc2cc1)CC(C)C 

 

-5.301 -5.480 

35 C1(=O)[C@@H](NC(=O)[C@H]1SCc1occc1)[C@@H](CC)C 

 

-5.301 -4.609 

36 C1(=O)CN(C(=O)[C@H]1SCc1cccc(c1)C(F)(F)F)Cc1ccccc1 

 

-5.326 -7.769 

37* C1(=O)CN(C(=O)[C@H]1SCCc1ccccc1)Cc1cc2OCOc2cc1 

 

-8.143 -7.662 

38 C1(=O)CN(C(=O)[C@H]1SCc1cccc(c1)C(F)(F)F)CCc1ccccc1 

 

-8.264 -7.769 

39 C1(=O)CN(C(=O)[C@H]1SCCc1ccccc1)Cc1cccc(c1)C(F)(F)F 

 

-8.326 -7.769 

40 C1(=O)CN(C(=O)[C@@H]1SCc1cccc(c1)C(F)(F)F)Cc1ccc(cc1)OC 

 

-8.382 -7.429 

41* C1(=O)CN(C(=O)[C@@H]1SCc1cccc(c1)C(F)(F)F)Cc1cc(ccc1)C(F)(F)F 

 

-8.411 -7.662 

42 C1(=O)CN(C(=O)[C@H]1SCc1cccc(c1)C(F)(F)F)Cc1cc2OCOc2cc1 

 

-8.423 -7.555 

43 C1(=O)CN(C(=O)[C@H]1SCCc1ccccc1)CCc1ccccc1 

 

-8.627 -7.876 

44 C1(=O)CN(C(=O)[C@@H]1SCCc1ccccc1)Cc1ccccc1 

 

-8.661 -7.876 

45 C1(=N[C@@](C2=NCCCN12)(c1cccc(c2c(nccc2)F)c1)c1ccc(cc1)OC(F)(F

)F)N 

 

-1.477 -2.803 

46 C1(=N[C@](c2cccc(c2)c2c(nccc2)F)(c2ccc(OC(F)(F)F)cc2)C2=NOCCN12

)N 

 

-1.778 -2.736 

47* C1(=N[C@](C2=NCCCN12)(c1cccc(c1)c1cncnc1)c1ccc(cc1)OC(F)(F)F)N 

 

-1.903 -3.712 

48 C1(=N[C@@](C2=NCCCN12)(c1cccc(c2c(nccc2)F)c1)c1ccc(cc1)OC(F)(F

)F)N 

 

-1.903 -2.803 

49 C1(=N[C@](C2=NCCCN12)(c1cccc(c2c(nccc2)F)c1)c1ccc(cc1)OC)N 

 

-2 -3.246 

50* C1(=N[C@](c2cccc(c2)c2c(nccc2)F)(c2ccc(OC(F)(F)F)cc2)C2=NCCCCN

12)N 

 

-2.113 -2.869 

51 C1(=N[C@](C2=NCCCN12)(c1cc(c2c(nccc2)F)ccc1)c1cc(c(cc1)OCC)OC

C)N 

 

-2.278 -2.850 

52 C1(=N[C@@](c2cccc(c3c(nccc3)F)c2)(c2ccc(OC(F)(F)F)cc2)C2=NCCN1

2)N 

 

-2.897 -2.733 

53 C1(=N[C@](C2=NCCCN12)(c1cccc(c2cncnc2)c1)c1ccc(cc1)OC)N 

 

-3.309 -4.125 

54 C1(=N[C@](C2=NCCCN12)(c1cccc(c1)c1cncnc1)c1ccc(cc1)OC(F)(F)F)N 

 

-3.380 -3.712 

55 c1(n(c(cc1)c1c(cccc1)Cl)CC(=O)NC(=N)NCCCO)c1ccc(cc1)OCCC 

 

-3.577 -2.915 

56 C1(=N[C@](c2cccc(c2)c2c(nccc2)F)(c2ccc(OC(F)(F)F)cc2)C2=NCCCCC

N12)N 

 

-3.819 -2.930 
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57* C1(=N[C@@](C2=NCCCN12)(c1cccc(c2c(nccc2)F)c1)c1cc2c(cc1)OCO2)

N 

 

-3.845 -3.357 

58 C1(=N[C@](C2=NCCCN12)(c1cccc(c2c(nccc2)F)c1)c1cc2c(cc1)OCCO2)

N 

 

-3.982 -3.845 

59 C1(=N[C@](c2cccc(c2)c2c(nccc2)F)(c2ccc(OC(F)(F)F)cc2)C2=NC(CN12)

(C)C)N 

 

-4.029 -2.655 

60 C1(=N[C@@](C2=NCCCN12)(c1cccc(c1)CCC1CC1)c1ccc(cc1)OC(F)(F)

F)N 

 

-4.037 -3.716 

61* C1(=N[C@](C2=NCCCN12)(c1cccc(c2c(nccc2)F)c1)c1cc2c(cc1)OC(O2)(

F)F)N 

 

-4.086 -3.280 

62 C1(=N[C@](C2=NCCCN12)(c1cccc(c1)c1cncnc1)c1ccc(cc1)OC(F)(F)F)N 

 

-4.215 -3.712 

63 C1(=N[C@@](C2=NCCCN12)(c1cccc(c1)CCC)c1ccc(cc1)OC(F)(F)F)N 

 

-4.238 -3.611 

64 C1(=N[C@](c2cccc(c2)Br)(c2ccc(cc2)OC(F)(F)F)C2=NCCCN12)N 

 

-4.318 -2.929 

65 C1(=N[C@](C2=NCCCN12)(c1cccc(Cc2ccccc2)c1)c1ccccc1)N 

 

-4.387 -5.081 

66 C1(=N[C@](C2=NCCCN12)(c1cccc(Cc2ccc(cc2)F)c1)c1ccccc1)N 

 

-4.480 -4.374 

67 C1(=N[C@](C2=NCCCN12)(c1cccc(Cc2ccc(cc2)OC)c1)c1ccccc1)N 

 

-4.579 -4.760 

68 C1(=N[C@@](c2cccc(c2)C(F)(F)F)(c2ccccc2)C2=NCCCN12)N 

 

-4.583 -4.078 

69 C1(=N[C@@](C2=NCCCN12)(c1cc(ccc1)OC)c1ccccc1)N 

 

-4.755 -3.985 

70* C1(=N[C@@](c2cccc(c2)C(C)(C)C)(c2ccccc2)C2=NCCCN12)N 

 

-4.895 -4.415 

71 C1(c2ccccc2)(N=C(N2C1=NCCC2)N)c1ccccc1 

 

-5.176 -4.286 

72 c1c(n(Cc2ccc(c(n2)N)OCCO)c(c2ccccc2Cl)c1)c1ccc(Oc2cncnc2)cc1 

 

-1.602 -2.033 

73 c1c(n(Cc2ccc(c(n2)N)NCCO)c(c2ccccc2Cl)c1)c1ccc(Oc2cncnc2)cc1 

 

-1.845 -2.068 

74 c1c(c2ccc(Oc3cncnc3)cc2)n(c(c2ccccc2Cl)c1)Cc1cccc(n1)N 

 

-2 -2.636 

75* c1c(c2ccc(OCCCCC)cc2)n(Cc2ccc(c(n2)N)OCCO)c(c2ccccc2Cl)c1 

 

-2.041 -2.266 

76 c1c(c2ccc(OCCCCC)cc2)n(Cc2ccc(c(n2)N)NCCO)c(c2ccccc2Cl)c1 

 

-2.230 -1.896 

77 c1c(n(Cc2ccc(c(n2)N)NCCCO)c(c2ccccc2Cl)c1)c1ccc(OCCCCC)cc1 

 

-2.342 -1.962 

78 c1c(c2ccc(Oc3cccs3)cc2)n(c(c2ccccc2Cl)c1)Cc1cccc(n1)N 

 

-2.462 -1.847 

79 c1c(c2ccc(Oc3cccnn3)cc2)n(c(c2ccccc2Cl)c1)Cc1cccc(n1)N 

 

-2.612 -2.850 

80* c1c(c2ccc(Oc3cccnc3)cc2)n(c(c2ccccc2Cl)c1)Cc1cccc(n1)N 

 

-2.612 -2.440 

81 c1c(c2ccc(OCCCC#N)cc2)n(c(c2ccccc2Cl)c1)Cc1cccc(n1)N 

 

-2.623 -2.835 

82 c1c(c2ccc(Oc3cnccn3)cc2)n(c(c2ccccc2Cl)c1)Cc1cccc(n1)N -2.672 -1.743 
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83* c1c(c2ccc(OCCCCC)cc2)n(c(c2ccccc2Cl)c1)Cc1cccc(n1)N 

 

-2.740 -2.874 

84 c1c(c2ccc(Oc3ccncc3)cc2)n(c(c2ccccc2Cl)c1)Cc1cccc(n1)N 

 

-2.770 -2.440 

85 c1c(c2ccc(Oc3ccccn3)cc2)n(c(c2ccccc2Cl)c1)Cc1cccc(n1)N 

 

-2.770 -2.546 

86 c1c(c2ccc(Oc3ccccc3)cc2)n(c(c2ccccc2Cl)c1)Cc1cccc(n1)N 

 

-2.908 -3.244 

87* c1c(c2ccc(Nc3cncnc3)cc2)n(c(c2ccccc2Cl)c1)Cc1cccc(n1)N 

 

-2.991 -2.222 

88 c1c(c2ccc(cc2)OCCC)n(c(c2ccccc2Cl)c1)Cc1cccc(n1)N 

 

-3 -3.272 

89 c1c(c2ccc(C(=O)NC3CC3)cc2)n(c(c2ccccc2)c1)Cc1cccc(n1)N 

 

-3.060 -3.501 

90 c1c(c2ccc(OCCCC)cc2)n(c(c2ccccc2Cl)c1)Cc1cccc(n1)N 

 

-3.079 -2.821 

91* c1c(c2ccc(C(=O)NC(C)C)cc2)n(c(c2ccccc2)c1)Cc1cccc(n1)N 

 

-3.217 -3.501 

92 c1c(c2ccc(cc2)C(=O)NCC)n(c(c2ccccc2)c1)Cc1cccc(n1)N 

 

-3.250 -4.008 

93 c1c(c2ccc(cc2)OC)n(c(c1)c1ccccc1Cl)Cc1cccc(n1)N 

 

-3.352 -2.743 

94 c1c(c2ccc(C(=O)NCCC)cc2)n(c(c2ccccc2)c1)Cc1cccc(n1)N 

 

-3.389 -3.608 

95* c1c(c2ccc(C(=O)NCCCC)cc2)n(c(c2ccccc2)c1)Cc1cccc(n1)N 

 

-3.477 -3.673 

96 c1c(c2ccc(C(=O)NC3CCC3)cc2)n(c(c2ccccc2)c1)Cc1cccc(n1)N 

 

-3.477 -3.567 

97 c1c(c2ccccc2)n(c(c1)c1ccccc1)Cc1cccc(n1)N 

 

-3.531 -3.738 

98 c1c(c2ccc(C(=O)NCC=C)cc2)n(c(c2ccccc2)c1)Cc1cccc(n1)N 

 

-3.851 -3.929 

  Note: *Test set compounds 
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Figure 4.27. Regression coefficient plot and variable importance plot (VIP) of the final PLS model against 

BACE1 enzyme. 

The most contributing descriptor as per the VIP plot is ETA_dEpsilon_D, an extended topochemical atom 

descriptor, denoting the measure of the contribution of hydrogen bond donor atoms, i.e., the presence of 

groups such as –OH, –NH2, –SH, etc369. The positive regression coefficients of this descriptor indicated 

that the activity of inhibitors is directly proportional to the numerical value of ETA_dEpsilon_D. Thus, the 

compounds having a higher number of hydrogen bond donor atoms may enhance the BACE1 enzyme 

inhibitory activity as shown in (Figure 4.28) compounds like 28 (N-carbamimidoyl-2-(2,5-diphenyl-1H-

pyrrol-1-yl)acetamide) (pIC50: -4.28), 82 (6-((2-(2-chlorophenyl)-5-(4-(pyrazin-2-yloxy)phenyl)-1H-

pyrrol-1-yl)methyl)pyridin-2-amine) (pIC50: -2.67) and 11 (3-bromo-N-(4-(1-(2-guanidino-2-oxoethyl)-5-

phenyl-1H-pyrrol-2-yl)phenyl)benzamide) (pIC50: -2.77) and their corresponding descriptor values are 

0.071, 0.066 and 0.0648 respectively. In contrast, compounds like 31 ((3S,5S)-5-phenyl-3-

(phenylthio)furan-2,4(3H,5H)-dione), (pIC50: -5.02)  36 ((S)-1-benzyl-3-((3-

(trifluoromethyl)benzyl)thio)pyrrolidine-2,4-dione ) (pIC50: -5.32) and 38 ((S)-1-phenethyl-3-((3-

(trifluoromethyl)benzyl)thio)pyrrolidine-2,4-dione) (pIC50: -8.26) have no such atom to form a hydrogen 

bond, leading to lower inhibitory activity (Figure 4.28). From these observations, we have concluded that 

a hydrogen bond donor group is important for BACE1 inhibitory activity.  
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Figure 4.28. Impact of ETA_dEpsilon_D descriptor on pIC50 of the compounds. 

The next significant descriptor, B03[N-S] is an 2D atom pair descriptor that accounts for the 

presence/absence of N-S fragment at the topological distance 369. It contributes negatively toward the 

endpoint value which suggested that the numerical values of the descriptor are inversely proportional to the 

inhibitory activity. Thus, the compounds bearing such fragments show lower values of inhibitory activity 

as evidenced by (Figure 4.29) compounds 40 ((R)-1-(4-methoxybenzyl)-3-((3-

(trifluoromethyl)benzyl)thio)pyrrolidine-2,4-dione) (pIC50: -8.38), 38 ((S)-1-phenethyl-3-((3-

(trifluoromethyl)benzyl)thio)pyrrolidine-2,4-dione) (pIC50: -8.26) and 39 ((S)-3-(phenethylthio)-1-(3-

(trifluoromethyl)benzyl)pyrrolidine-2,4-dione) (pIC50: -8.32))   whereas, compounds having no such 

fragments show higher BACE1 inhibitory activity as shown in compounds 1 ((S)-N-(3-(2-amino-4-

cyclohexyl-1-methyl-5-oxo-4,5-dihydro-1H-imidazol-4-yl)phenyl)furan-2-carboxamide) (pIC50: -1.301) 

45 (R)-8-(3-(2-fluoropyridin-3-yl)phenyl)-8-(4-(trifluoromethoxy)phenyl)-2,3,4,8-tetrahydroimidazo[1,5-

a]pyrimidin-6-amine) (pIC50: -1.477)  and 72 (2-((2-amino-6-((2-(2-chlorophenyl)-5-(4-(pyrimidin-5-

yloxy)phenyl)-1H-pyrrol-1-yl)methyl)pyridin-3-yl)oxy)ethanol)) (pIC50: -1.602) (Figure 4.29). 
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Figure 4.29. Impact of B03[N-S]descriptor on pIC50 of the compounds. 

Another extended topochemical atom (ETA) descriptor, ETA_Beta_ns_d, represents the summed 

contribution of lone electron pairs capable of forming resonance interaction with an aromatic system. It is 

defined as the sum of all βns(δ) values of all vertices369. The positive regression coefficient of this descriptor 

indicates that heteroatoms with a lone pair of electrons capable of resonance with an aromatic system are 

beneficial for the enzyme inhibitory activity as shown in compounds (Figure 4.30) 72 (2-((2-amino-6-((2-

(2-chlorophenyl)-5-(4-(pyrimidin-5-yloxy)phenyl)-1H-pyrrol-1-yl)methyl)pyridin-3-yl)oxy)ethanol) 

(pIC50: -1.60), 73 (2-((2-amino-6-((2-(2-chlorophenyl)-5-(4-(pyrimidin-5-yloxy)phenyl)-1H-pyrrol-1-

yl)methyl)pyridin-3-yl)amino)ethanol) (pIC50: -1.84)  and 76 (2-((2-amino-6-((2-(2-chlorophenyl)-5-(4-

(pentyloxy)phenyl)-1H-pyrrol-1-yl)methyl)pyridin-3-yl)amino)ethanol)) (pIC50: -2.23) (all these 

compounds have descriptor value 2). In contrast, a low number of heteroatoms is detrimental to the enzyme 

inhibitory activity as we have observed in (Figure 4.30) compounds 42 ((S)-1-(benzo[d][1,3]dioxol-5-

ylmethyl)-3-((3-(trifluoromethyl)benzyl)thio)pyrrolidine-2,4-dione) (pIC50: -8.42), 43 ((S)-1-phenethyl-3-

(phenethylthio)pyrrolidine-2,4-dione) (pIC50: -8.62)  and 44 ((R)-1-benzyl-3-(phenethylthio)pyrrolidine-

2,4-dione)) (pIC50: -8.62).  
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Figure 4.30. Contribution of ETA_Beta_ns_d to pIC50 of the compounds. 

An atom-centered fragment descriptor, H-047, stands for the number of H atoms attached to 

C1(sp3)/C0(sp2); where the superscript represents the formal oxidation number (the formal oxidation 

number of a carbon atom which is equal to the sum of the conventional bond orders with electronegative 

atoms)370. This descriptor is defined as the number of specific atom types in a molecule which is calculated 

by knowing only the molecular composition and atom connectivity371. The negative regression coefficient 

of this descriptor suggests that a higher numerical value of this descriptor leads to lower inhibitory activity 

as evidenced by the compounds 67 ((S)-8-(3-(4-methoxybenzyl)phenyl)-8-phenyl-2,3,4,8-

tetrahydroimidazo[1,5-a]pyrimidin-6-amine) (pIC50: -4.57), 40 ((R)-1-(4-methoxybenzyl)-3-((3-

(trifluoromethyl)benzyl)thio)pyrrolidine-2,4-dione) (pIC50: -8.38), and 43 ((S)-1-phenethyl-3-

(phenethylthio)pyrrolidine-2,4-dione)) (pIC50: -8.62) (corresponding descriptor values are 20, 18 and 17 

respectively) (Figure 4.31). On the contrary, the compounds with lower descriptor values show higher 

BACE1 enzyme inhibitory activity as observed in the case of compounds 1 ((S)-N-(3-(2-amino-4-

cyclohexyl-1-methyl-5-oxo-4,5-dihydro-1H-imidazol-4-yl)phenyl)furan-2-carboxamide) (pIC50: -1.30),  5 

((S)-2-amino-4-cyclohexyl-1-hexyl-4-phenyl-1H-imidazol-5(4H)-one) (pIC50: -2.43) and 6 ((S)-6-(2-

amino-4-cyclohexyl-5-oxo-4-phenyl-4,5-dihydro-1H-imidazol-1-yl)hexanoic acid ) (pIC50: -2.49) (their 

corresponding descriptor values are 9, 7 and 7 respectively) (Figure 4.31). 
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Figure 4.31. Impact of H-047descriptor on pIC50 of the compounds. 

Another atom-centered fragment descriptor, C-033, stands for the fragment R--CH..X. It represents the 

number of the R--CH…X fragments in a molecule which mean a central carbon atom (C) on an aromatic 

ring has a carbon neighbor (R), a heteroatom neighbor (X-any heteroatom (O, N, S, P, Se, and halogens)) 

and the third hydrogen (H) neighbor outside the ring. “--” and “… ” stand for aromatic and aromatic single 

bonds, respectively69, 371. For these β-secretase enzyme inhibitors, this fragment indeed plays an important 

role in the binding process and may influence the inhibitory activity prominently. The positive impact of 

this descriptor towards the inhibitory activity against β-secretase enzyme was indicated by their positive 

regression coefficient. Thus, the information obtained from this descriptor suggested that the molecules 

containing R--CH..X fragment showed higher inhibitory activity to the β-secretase enzyme as shown in 

compounds 1 ((S)-N-(3-(2-amino-4-cyclohexyl-1-methyl-5-oxo-4,5-dihydro-1H-imidazol-4-

yl)phenyl)furan-2-carboxamide) (pIC50: -1.30), 35 ((3S,5S)-5-((R)-sec-butyl)-3-((furan-2-

ylmethyl)thio)pyrrolidine-2,4-dione) (pIC50: -5.30) and 23 (2-((5-cyano-4-(4-methoxyphenyl)-6-oxo-1,6-

dihydropyrimidin-2-yl)thio)-N-(4-phenylthiazol-2-yl)acetamide)) (pIC50: -3.67) (Figure 7) while 

compounds 42 ((S)-1-(benzo[d][1,3]dioxol-5-ylmethyl)-3-((3-(trifluoromethyl)benzyl)thio)pyrrolidine-

2,4-dione) (pIC50: -8.42),  43 ((S)-1-phenethyl-3-(phenethylthio)pyrrolidine-2,4-dione) (pIC50: -8.62) and 

44 ((R)-1-benzyl-3-(phenethylthio)pyrrolidine-2,4-dione) (pIC50: -8.66) show lower inhibitory activity due 

to the absence of this fragment (Figure 4.32).  
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Figure 4.32. Impact of C-033 descriptor on pIC50 of the compounds. 

4.2.1.2. Randomization model of the PLS model  

The predictive quality of the developed model will be poor until the observations are not appropriately 

independent of each other. The randomization method is a way to test the robustness of the developed 

model310. The purpose of the development of a randomization plot is to identify that the selected descriptors 

are appropriate and the reported model is not due to chance correlation. In the randomization method, many 

numbers of models are developed by several runs for which the original descriptor matrix X is kept fixed, 

and only the vector Y is randomized. The validation metrics of the developed model under such conditions 

should be poor and the value of the R2
yrand intercept should not be more than 0.3 and the value of the Q2

yrand 

intercept should not exceed 0.05310. In the present study, for the training set, the X data were kept constant 

and the Y data were scrambled randomly using 100 permutations. The model obtained from such condition 

shows the intercepts as follows: (see Figure 4.33) R2
yrand = -0.0128 and Q2

yrand = -0.26, which signify the 

validity of the model and confirm that the reported model was not obtained by any chance. The above 

results suggest that the developed model is non-random and robust, and suitable for the prediction of the 

inhibitory activity against the BACE1 enzyme. 

 

Figure 4.33. Model randomization plots for the final PLS model against the BACE1 enzyme. 
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4.2.1.3. Applicability domain of the PLS model 

Prediction of the activity of the entire space of chemicals is not possible by a robust and validated QSAR 

model until the compounds are predicted within the applicability domain of the model. The applicability 

domain (AD) gives a theoretical province in chemical space well-defined by the respective model 

descriptors and responses in which the predictions of activity are reliable372. In this study, we have checked 

the applicability domain of test set compounds at a 95% confidence level using the DModX (distance to 

model in X-space) approach available within SIMCA-P 10.0 software (Available from 

http://www.minitab.com/en-us/products/minitab/). In the plot (see Figure 4.34), it was observed that all the 

test set compounds are within the critical DModX value (D-Crit= 2.584)  except compound 29 

((3R,4aR,4bR,8aR,9aS)-3-((4-(6-methoxynaphthalen-2-yl)-1H-1,2,3-triazol-1-yl)methyl)dodecahydro-

1H-pyrido[3,4-b]indole).  

 

Figure 4.34. Applicability domain DModX values of the training and test set compounds at 99% confidence 

level of the developed final PLS model against BACE1 enzyme. 
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4.2.1.4. Loading plot of the PLS model 

A loading plot of a PLS model (see Figure 4.35) gives information about the relationship between the X-

variables and Y-variables. In the loading plot, a descriptor that is close to zero is not well associated with 

the trends contained in the related scores373. In the loading plot (see Figure 4.35), we can observe that the 

X-variable ETA_dEpsilon_D is significant for the Y-variable (pIC50) because it is very much close to the 

Y-variable. It has also been observed that this descriptor is situated on the same side of the Y-variable. 

From this observation, it can be concluded that this descriptor is directly proportional to the activity. Thus, 

the BACE1 enzyme inhibitory activity may increase with increasing the numerical value of this descriptor. 

On the other hand, the variable B03[N-S],  which is situated on the opposite side of the plot origin 

concerning the activity (Y-variable) contributes negatively towards the BACE1 enzyme inhibitory activity. 

The algebraic sign of the PLS loading is also taken into account, which gives important information about 

the correlation between the variables. 

 

Figure 4.35. Loading plot for final PLS model against BACE1 enzyme. 

4.2.2. 3D pharmacophore modeling  

In this investigation, ten different pharmacophore hypotheses were developed using a training set (22) of 

compounds. The best pharmacophore model (Hypo-1) was selected based on the different internal 

validation parameters such as high correlation coefficient (r: 0.912), lower root means square deviation 

(rmsd: 1.320), Maximum Fit (8.393), total cost (100.355), configuration cost (16.122), error (83.054) and 

weight (1.177) was found to be acceptable. In terms of the actual cost for Hypo-1, it is found much closer 

to the fixed cost with only a difference of 19.240 bits (mentioned in Table 4.5) which specifies an accurate 

correlation of the dataset. From Table 4.5, we can see that in Hypo 1 there is a large difference of 78.229 

bits between the actual cost and the null cost. Based on all validation matrices Hypo-1 was found to be the 

best one among the ten hypotheses with one hydrogen bond acceptor (HBA), two hydrophobic (HYD), and 

one ring aromatic (RA) features (Figure 4.36). The external validation of the model has been performed 

by mapping the test set molecules on the Hypo-1 using the same parameters as we have used in the 

development of the pharmacophore model. After mapping, we observed that 64 molecules from the data 

set of 76 compounds were mapped, and only 10 compounds failed in absence of the features that appeared 

in the developed pharmacophore model. To judge the predictive quality of the selected model to categorize 
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the compounds into active and less active BACE1 enzyme inhibitors were analyzed by comparing the 

observed activity with predicted activity by the classification-based technique. The values of different 

validation parameters for training and test sets are given in Table 4.5 (qualitative validation parameters). 

From the observation of activity predicted by the selected model, we have found that the model correctly 

classified 11 out of 12 compounds as more actives and 9 out of 10 compounds as fewer actives for the 

training set. For the test set, the model correctly classified 18 out of 25 compounds as most active and 30 

out of 39 compounds as less active. Aher et al.323 suggested that if the values of different validation 

parameters for both the training and test sets are greater than 60 %, it means that the model is following 

acceptability criteria and is good enough to predict the activity of the new compound of the same chemical 

domain. From the above observation, we have concluded that Hypo-1 is best appropriate for the 

classification of more active BACE1 enzyme inhibitors. 

Table 4.5. Different quantitative and qualitative validation parameters of the Hypo-1 model were 

obtained for the training and test sets generated by the HypoGen algorithm. 

Quantitative validation parameters 

Hypo. 

 

Total cost 

 

ΔCosta 

 

ΔCostb 

 

RMS Correlation Features 

 

1 100.355 78.229 19.240 1.320 0.912563 HBA, HYD, HYD, RA 

Dataset No. of 

compounds 

             Qualitative validation parameters 

Sensitivity Specificity Accuracy Precision F-measure G-Means 

Train 22 91.66 90 90.90 91.66 91.66 90.82 

Test 76 68 76.92 73.43 65.38 66.66 72.32 

Cost differencea= Null cost - total cost, Cost differenceb= Total cost - fixed cost, Null cost = 178.584, Fixed Cost = 81.1148, Best 

records in pass: 5, Config. Cost=16.1229, c= Best Hypothesis, Note – RA: Ring aromatic, HYD: Hydrophobic, HBA: Hydrogen 

bond acceptor. *Compounds with IC50 <1000 nM: more active (H) and IC50>1000 nM: less active (L). 
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Figure 4.36. The best pharmacophore model (Hypo1) of  BACE1 enzyme inhibitors generated by the 

HypoGen module: (A) the best pharmacophore model Hypo1 represented with distance constraints (Å), (B) 

Hypo1 mapping with one of the most active compounds 72 of test set compounds and (C) Hypo1 mapping 

with one of the least active compounds 32 of test set compounds. Pharmacophoric features are colored as 

follows: hydrogen bond acceptor (green), hydrophobic (cyan), and ring aromatic (orange). 

4.2.2.1. Relation of the 3D- pharmacophore model with the 2D QSAR model 

In the dataset, all compounds have at least one ring aromatic feature as observed from both QSAR models 

(2D QSAR and 3D QSAR pharmacophore models). The RA feature is an initial necessity for the inhibitory 

activity against the BACE1 enzyme. The RA feature from the pharmacophore model is well corroborated 

with the ETA_Beta_ns_d and C-033 descriptors of the 2D-QSAR model (Equation 4.3). Figure 4.37 has 

demonstrated that the most active compound of the training set (45, IC50: 30nM) mapped correctly with all 

features appearing in Hypo 1 (Figure 4.37). One benzene ring lies in the RA region, a nitro group in the 

hydrogen bond acceptor region, and a halogen atom of the aromatic ring lies in the hydrophobic region. On 

the other hand, the least active compound (70, IC50: 78700 nM) of the training set does not map correctly 

with Hypo 1 because of the absence of RA and HBA features in the molecules (Figure 4.37). The 

hydrophobic feature from the developed pharmacophore model is well corroborated with the C-033 

descriptor of the 2D-QSAR model (Equation 4.3). For the most active compound of the training set (45), 

the hydrophobic feature of Hypo 1 was mapped completely. The most active compound of the test set (72, 

IC50: 40nM) mapped correctly on Hypo-1 with all three features (Figure 4.36) appeared in the developed 
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pharmacophore model. The least active compound (32, IC50: 145000 nM) of the test set was mapped 

partially with Hyo-1 (Figure 4.36). From the above observation, it was concluded that the absence of these 

three features that appeared in the developed pharmacophore model decreases the inhibitory activity of 

compounds against the BACE1 enzyme. The results obtained from the F-test suggest that the selected 

pharmacophore model (Hypo-1) is not due to a chance. This observation was confirmed by a lower cost 

value (100.355) of the selected pharmacophore model than the average cost of randomized pharmacophore 

models (155.91) and a higher correlation coefficient (R: 0.912) of the selected pharmacophore model than 

the average correlation coefficient of random models (Rr: 0.568). The actual and randomized total cost and 

correlation values of hypotheses for the F-test are given in Figure 4.38.  

 

Figure 4.37. Pharmacophore mapping with training set compounds: (A) Hypo1 mapping with one of the 

most active compounds 45 of training set compounds and (B) Hypo1 mapping with one of the least active 

compounds 70 of training set compounds. 

 

Figure 4.38. The actual and randomized total cost (A) and (B) correlation values of hypotheses for the F-

test. 
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4.2.3. Molecular Docking analysis 

In the present study, a molecular docking study was performed of the most active and least active 

compounds of the dataset. The molecular docking study suggests that the molecules interacted with a pocket 

containing (ILE A:110, PHE A:108, VAL A:332, GLY A:11, GLY A:13, GLY A:230, VAL A:332, ILE 

A:226, LEU A:30 and GLY A:34 (hydrophobic nature), GLN A:73, SER A:229, THR A:231, THR A:329, 

THR A:71, GLN A:73, GLN A:12 and THR A:232 (hydrophilic nature), ARG A:235, ASP A:32, ASP 

A:228 and LYS A:107 (charged) and TYR A:71 (amphipathic nature)) amino acid residues. Docking results 

and correlation with the 2D-QSAR model are depicted in Table 4.6.  

4.2.3.1. Molecular Docking for the most active compounds from the dataset 

Three most active compounds from the dataset (pIC50 = -1.301, -1.47, and -1.77 respectively) namely 1, 45, 

and 16 interacted with the active site amino acid residues through different interactions forces like hydrogen 

bonding interactions (carbon-hydrogen bonds conventional hydrogen bonds, and π-donor hydrogen bond), 

π-interactions (π-alkyl bonds, alkyl hydrophobic, π-lone pair and π-π-T-shaped), salt bridge interaction and 

halogen bonding (halogen bonding is an attractive, non-covalent interaction that can form between an 

electrophilic region of a halogen atom (fluorine) in a molecule and a nucleophilic region of a molecule). 

The amino acid residues involved in interaction with these compounds such as THR A:231, GLY A:11, 

GLN A:73, THR A:71, ASP A:32, ASP A:228, VAL A:332, GLY A:13, THR A:232, GLY A:230, SER 

A:229, GLY A:34, LYS A:107, ILE A:110, PHE A:108 and ARG A:235 (shown in Figure 4.39).  

Figure 4.39 shows that compound 1 (one of the most active compounds in the dataset) interacts with GLN 

A:73, ASP A:32, and ASP A:228 amino acid residues through hydrogen bonding interaction, with VAL 

A:332, THR A:71 and THR A:231 amino acid residues through alkyl, π-alkyl and π-lone pair interactions 

respectively, with ASP A:228 amino acid through salt bridge formation and with ASP A:32 amino acid 

through attractive charges (interaction between two oppositely charged atoms).  

 

 Figure 4.39. Docking interaction of the most active compound 1, 45, and 16. 
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Another most active compound, 45, interacts with the amino acid residues through hydrogen bonding 

(GLNA:73, GLY A:13, PHE A:108, LYS A:107, THR A:232, and GLY A:34), halogen bonding (THR 

A:231, SER A:229, and GLY A:230),  π-anion (ASP A:228), π-donor hydrogen bond (THR A:231) and 

alkyl bonding (and ILE A:110) interactions (see Figure 4.39). Figure 4.39 shows that compound 16 

interacts with GLY A:11, ARG A:235, GLY A:34, THR A:231, ASP A:32, ASP A:228  (through hydrogen 

bonding), THR A:71 (π-π-T-shaped), VAL A:332 (π-alkyl bonds) ASP A:228 (salt bridge interaction) and 

ASP A:32 (attractive charges) amino acid residues.   

4.2.3.2. Molecular Docking for the least active compounds from the dataset 

The three least active compounds from the dataset (pIC50 = -2.70, -2.77, and -2.770 respectively),  namely 

84, 10, and 85, interact with the active site amino acid residues through different interactions forces like 

hydrogen bonds (carbon-hydrogen bonds and conventional hydrogen bonds), pi-interaction (π-anion, π-π-

T-stacking π-alkyl, and alkyl), salt bridge attractive charge interactions. The amino acid residues involved 

in interaction with these compounds are VAL A:332, GLN A:73, GLY A:230, ASP A:32, TYR A:71, ASP 

A:228, GLY A:34, ILE A:226, THR A:329, GLN A:12 and LEU A:30  (shown in Figure 4.40).  

Figure 4.40 shows that compound 10 (one of the least active compounds from the dataset) interacts with 

GLN A:73, GLY A:230, ASP A:32, ASP A:228, and GLY A:34  amino acid residues through hydrogen 

bonding interaction,  TYRA:71 and VAL A:332 amino acid residues through π-alkyl, π-π -T-stacking and 

alkyl, ASP A:228 amino acid through salt bridge formation and ASP A:32 amino acid through attractive 

charges interaction. Another least active compound from the dataset, 85, interacts with the amino acid 

residues through hydrogen bonding (THR A:326 and GLN A:12) and hydrophobic interaction such as π-π-

T-stacking, π-alkyl and π anion bonding (TYR A:71, LEU A:30, and ASP A:228) (Figure 4.40). Figure 

4.40 shows that compound 84 interacts with GLN A:73 (through hydrogen bonding), ASP A:228 (π-anion), 

and ILE A:226 and VAL A:332 (π-alkyl bonds) amino acid residues.  

 

Figure 4.40. Docking interaction of the least active compound 84, 10, and 85. 

Finally, docking analysis has demonstrated that the most active compounds from the dataset such as 1, 45 

and 16 (shown in Figure 4.39) interacted with the maximum number of active amino acid residues with the 

higher number of interacting forces (non-covalent forces) in comparison to the least active compounds from 

the data set like 10, 85 and 84 (shown in Figure 4.40). In pharmacophore mapping, we have also observed 

that the most active compounds from the data set correctly mapped with all features that appeared in the 

model, whereas the least active compounds partially mapped with the model. It is possible that the least 
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active compounds from the data set failed to map in the absence of the features appearing in the developed 

models, which are most important for inhibitory activity against the BACE1 enzyme. 

Table 4.6. Docking results and correlation with the 2D-QSAR model. 

S. 

No. 

Compound 

Number 

-CDocker 

interaction 

energy 

(kcal/mol) 

Interacting residues Interactions Correlation with 

QSAR model 

1 1 (high 

pIC50) 

45.340 THR A:231, GLY 

A:11, GLN A:73, TYR 

A:71, ASP A:32, ASP 

A:228 and VAL A:332 

Vdw, Hydrogen 

bonding, Pi-alkyl, 

alkyl, salt bridge, 

Attractive charge and 

π-lone pair 

ETA_dEpsilon_D, 

ETA_Beta_ns_d, C-033 

and H-047 

2 45 (high 

pIC50) 

39.503 GLY A:13, THR 

A:232, GLY A:230, 

SER A:229, GLY A:34, 

ASP A:228, GLN A:73, 

THR A:231, LYS 

A:107, ILE A:110 and 

PHE A:108 

Vdw, Hydrogen 

bonding, halogen 

(fluorine), π-anion, π-

donor hydrogen bond 

and alkyl  

ETA_dEpsilon_D, 

ETA_Beta_ns_d and H-

047 

3 16 (high 

pIC50) 

51.278 TYR A:71, ARG 

A:235, VAL A:332, 

ASP A:228, ASP A:32, 

GLY A:34, THR A:231 

and GLY A:11 

Vdw, salt bridge, 

Attractive charge, 

hydrogen bonding, π- 

π-T-shaped and π-

alkyl   

ETA_dEpsilon_D, 

ETA_Beta_ns_d and H-

047 

4 10 (low 

pIC50) 

46.118 VAL A:332, GLN 

A:73, GLY A:230, ASP 

A:32, TYR A:71, ASP 

A:228 and GLY A:34 

Vdw, salt bridge, 

Attractive charge, 

hydrogen bonding, π- 

π-T-shaped, alkyl and 

π-alkyl   

H-047 and 

ETA_dEpsilon_D 

5 84 (low 

pIC50) 

43.144 GLN A:73, ASP A:228, 

ILE A:226 and VAL 

A:332 

Vdw, hydrogen 

bonding, π-anion and 

alkyl 

H-047, 

ETA_dEpsilon_D and 

ETA_Beta_ns_d 

6 85 (low 

pIC50) 

44.710 THR A:329, GLN 

A:12, ASP A:228, TYR 

A:71 and LEU A:30 

Vdw, hydrogen 

bonding, π-anion, π - 

π stacked and π-alkyl 

H-047, 

ETA_dEpsilon_D and 

ETA_Beta_ns_d 
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4.2.3.3. Relation with the 2D-QSAR model 

Molecular docking analysis has demonstrated that the most active compounds from the dataset such as 1, 

45, and 16 (see Table 4.6) interacted with the maximum number of amino acid residues with the higher 

number of interacting forces with the lower range of CDocker interaction energy (-45.340, -39.503 and -

51.278 respectively). On the other hand, the least active compounds from the dataset such as 84 and 85 

interacted with less number of active amino acid residues with a lower number of interacting forces, in 

comparison to the most active compounds, with CDocker interaction energy of -43.144 and -44.710 

respectively. It was noted that the interaction energy (-CDocker interaction energy) depends on the number 

of interactions and the forces involved in the docking. It is not obvious that the most active compounds will 

always show the highest interaction energy and vice versa. Many compounds show a higher range of 

interaction energy (for example, compound 10) due to some insignificant interactions with other elements 

or amino acids in the active site which have no contribution to the biological activity. Thus, the formation 

of hydrogen bonding and π-π stacking between the ligands and receptor plays a crucial role in enzyme 

inhibitory activity. These observations were also observed from the descriptors ETA_dEpsilon_D (a 

measure of the contribution of hydrogen bond donor atoms) and ETA_Beta_ns_d (a measure of lone 

electrons entering into resonance with an aromatic system) in the 2D-QSAR model. The information 

obtained from the descriptor C-033 (R--CH...X) is correlated with hydrogen bonding, attractive charges, 

and π-donor hydrogen bonding interactions as observed from the docking study (shown in Figure 4.39).  

Thus, from above said information, it was concluded that the hydrogen bonding effect, hydrophobicity, 

electrostatic interactions, and unsaturation (π-π interaction) feature as obtained from both the 2D QSAR 

model and docking study are essential for the inhibitory activity against the BACE1 enzyme.  

4.2.4. Comparisons of the performance of the present model with previously published models 

A comparison of the statistical results obtained from the present QSAR model and previously published 

models is depicted in Table 4.7. Based on the statistical quality in terms of both internal and external 

validation criteria, the model reported in this work is statistically significant and robust enough as compared 

to the previously reported models (Table 4.7). We have used 2D descriptors only for model development. 

Many researchers reported QSAR models for the prediction of bioactivity of BACE1 enzyme inhibitors 

previously using various techniques such as Multiple Linear Regression (MLR) analysis, Partial least 

squares (PLS), Comparative Molecular Field Analysis (CoMFA), Comparative molecular similarity index 

analysis (CoMSIA) and linear heuristic method (LHM). In the present study, before the development of the 

final model, we performed a variable selection strategy using a stepwise regression technique followed by 

the best subset selection method. The final model was developed by PLS regression technique with 5 

selected descriptors using 3 LVs. The 5 selected descriptors reflect the fundamental structural 

characteristics of molecules that are important in modeling the bioactivity of BACE1 enzyme inhibitors. In 

comparison with other models, it may be noted the model developed in this study are superior in terms of 

statistical quality, equation length, LVs, etc. We can see from Table 4.7 that Ambure et.al.374 developed 

PLS and MLR models against BACE1 enzyme inhibitors using only 74 compounds, and the model quality 

was good. In the present study, we have utilized a wider range of compounds and developed the model with 

5 selected descriptors using 3 latent variables. We can also see from Table 4.7 that Jain et.al.375 and 

Chakraborty et.al.377 developed QSAR models using a very narrow group of samples (27 and 30 compounds 

respectively) and developed MLR and LHM-based models respectively. Hossain et.al.376 reported 2D-

QSAR and 3D-QSAR models along with molecular docking and pharmacophore mapping utilizing 106 

compounds. The details of different internal and external validation parameters obtained from our model 
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and previously reported models are given in Table 4.7. The docking and pharmacophore mapping results 

in this study are also well collaborated with descriptors obtained from the developed QSAR model and 

justify the significance of the developed model. As the present work deals with diverse classes of 

compounds, the reported model in the present study may be used for screening purposes for the discovery 

and development of leads against the BACE1 enzyme. 

Table 4.7. Comparison of proposed study with previously published studies against BACE1 enzyme.  

Sources E. L. LV. Model Training set Test set 

n R2 Q2 n R2pred 

Model in this study 5 3 PLS 76 0.826 0.795 22 0.846 

Ambure et al. 2016374 5 4 PLS 52 0.831 0.764 22 0.813 

Ambure et al. 2016374 5 - MLR 51 0.826 0.764 22 0.791 

Jain et al. 2013375 2 - MLR 20 0.895 0.893 7 0.903 

Hossain et al. 2013376 - 10 CoMFA 71 0.998 0.765 35 0.772 

Hossain et al. 2013376 - 10 CoMSIA 71 0.992 0.730 35 0.713 

Hossain et al. 2013376 - 7 PLS 71 0.941 0.792 35 0.713 

Chakraborty et al. 2017377 4 - LHM 20 0.941 0.913 10 0.860 

Abbreviations: EL = Equation length, LV= Latent variable, MLR= Multiple linear regression, CoMFA= Comparative Molecular 

Field Analysis, CoMSIA= Comparative molecular similarity index analysis, and LHM= Linear heuristic method. 
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4.3. Study 3- Cheminformatic modeling of β-amyloid aggregation inhibitory activity against 

Alzheimer's disease 

4.3.1. 2D QSAR analysis 

4.3.1.1. Mechanistic interpretation of modeled descriptors 

In this analysis, statistically significant and robust 2D-QSAR models using the PLS regression-based 

technique were developed; the values of the validation parameters are shown below in Equations 4.4 and 

4.5 (Box 4.1). The developed models were validated carefully utilizing the deferent validation metrics 

(internal and external) for the exploration of robust and statistically significant models. Two PLS models 

were developed with 12 and 13 descriptors using 6 and 7 latent variables (LVs), respectively. The obtained 

results suggested that the models were acceptable in terms of fitness, stability, and classical predictivity 

measures. Descriptors appearing in the developed models demonstrated the structural and functional 

requirements which can improve the inhibitory activity of molecules against β-amyloid aggregation. 

Presented scatter plots in Figure 4.41 show the closeness of the observed and predicted values for the β-

amyloid aggregation inhibitors (βAAI). The randomization of models assured that the developed models 

were not found by any chance correlation. The results obtained from the randomized models (for Model 1: 

R2intercepts (int) = 0.00833 and Q2int = -0.296 and for Model 2: R2int = 0.00756 and Q2int = -0.392) 

suggested that the reported models were not obtained by chance (see S3 Figure 4.42). 

 

Figure 4.41. The scatter plots of observed and predicted values of final PLS models for β-amyloid 

aggregation inhibitors (A: Model 1, B: Model 2). 



Chapter 4 Results and discussions 

 

 

 

 

 
139 

 

  

 

Figure 4.42. Model Randomization plots for final PLS models against β amyloid aggregation. 
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Box 4.1. PLS-based 2D QSAR models and their statistical validation metrics obtained from the developed 

models 

Model 1: PLS Model against β-amyloid aggregation 

pIC50(nM)= −3.017 +  0.843 × 𝑛𝐴𝑟𝑁𝐻𝑅 + 0.178 × 𝑆𝑎𝑎𝑠𝐶 − 0.102 × 𝐹07[𝐶 − 𝑂] − 1.097 ×

𝑁𝑁𝑅𝑆 − 0.006 × 𝐷/𝐷𝑡𝑟12 − 1.185 × 𝐵06[𝐶 − 𝑁]  − 0.730 × 𝐵05[𝑁 − 𝑁] − 0.655 × 𝐵06[𝑁 − 𝑂] +

1.610 × 𝐵05[𝐶 − 𝑁] +  0.079 × 𝐹09[𝐶 − 𝐶]  − 1.051 × 𝑛𝐹𝑢𝑟𝑎𝑛𝑒𝑠 − 0.031 × 𝐹06[𝐶 − 𝐶]                                                  
Equation 4.4 

Internal Validation Parameters: ntraining = 252, r2 = 0.664, Q2 = 0.621, Fitting quality = Moderate. 

External Validation Parameters: ntest = 62, Q2F1 = 0.765, Q2F2 = 0.763, Avg R2m = 0.601, ΔR2m =

0.199, CCC = 0.861, MAE = 0.456, SD = 0.394, Fitting quality = Moderate, LV= 6, No. of descriptors 

=  12 

Model 2: PLS Model against β-amyloid aggregation 

pIC50(nM)=  −2.842 +  0.754 × 𝑛𝐴𝑟𝑁𝐻𝑅 + 0.191 × 𝑆𝑎𝑎𝑠𝐶 − 0.114 × 𝐹07[𝐶 − 𝑂] − 1.089 ×

𝑁𝑁𝑅𝑆 − 0.005 × 𝐷/𝐷𝑡𝑟12 − 0.739 × 𝐵05[𝑁 − 𝑁] − 1.159 × 𝐵06[𝐶 − 𝑁] − 0.539 × 𝐵06[𝑁 −

𝑂] + 1.427 × 𝐵05[𝐶 − 𝑁] +  0.813 × 𝐹05[𝑂 − 𝑂]  − 1.274 × 𝑛𝐹𝑢𝑟𝑎𝑛𝑒𝑠 + 0.076 × 𝐹09[𝐶 − 𝐶]  −

0.032 × 𝐹06[𝐶 − 𝐶]                         

                                                                                                                                              Equation 4.5 

Internal Validation Parameters: ntraining = 252, r2 = 0.684, Q2 = 0.638, Fitting quality = Moderate.  

External Validation Parameters: ntest = 62, Q2F1 = 0.771, Q2F2 = 0.769, Avg R2m = 0.634, ΔR2m =

0.186, CCC = 0.867, MAE = 0.462, SD = 0.375, Fitting quality = Good, LV= 7, No. of descriptors=

 13 

The descriptors in the PLS models are arranged according to their importance and then described separately. 

The significance level and contribution of the model descriptors towards the β-amyloid aggregation 

inhibitory activity are determined based on a regression coefficient plot378 and variable importance plot 

(VIP)379 as shown in Figures 4.43 and 4.44. The definition and contributions of all the descriptors obtained 

from the PLS models are mentioned in Table 4.8. 
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Figure 4.43. Regression coefficient plot of final PLS models against β-amyloid aggregation. 
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Figure 4.44. Variable importance plot (VIP) of final PLS models against β-amyloid aggregation. 
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Table 4.8. Definition and contribution of all the descriptors obtained from the PLS models. 

S. No. Name of 

Descriptors 

Contribution Discussion Mechanism 

1 NNRS -ve Normalized number of ring 

systems 

Hydrophobic and π-π 

interactions 

2 D/Dtr12 -ve Distance/detour ring index of 

order 12 R 

Hydrophobic and π-π 

interactions 

3 nArNHR +ve Number of secondary amines 

(aromatic) 

π-π and hydrogen bonding 

interactions 

4 nFuranes -ve Number of Furanes Hydrogen bonding 

interactions 

5 B05[C-N] +ve Presence/absence of C - N at 

topological distance 5 

Hydrogen bonding and 

electrostatics interactions 

6 B05[N-N] -ve Presence/absence of N - N at 

topological distance 5 

Hydrogen bonding 

interactions 

7 B06[C-N] -ve Presence/absence of C - N at 

topological distance 6 

Hydrogen bonding and 

electrostatics interactions 

8 B06[N-O] -ve Presence/absence of N - O at 

topological distance 6 

Hydrogen bonding and 

electrostatics interactions 

9 F06[C-C] -ve Frequency of C - C at topological 

distance 6 

Hydrophobic interaction 

10 F09[C-C] +ve Frequency of C - C at topological 

distance 9 

Hydrophobic interaction 

11 SaasC +ve Sum of aasC E-states Hydrophobic and π-π 

interactions 

12 F07[C-O] -ve Frequency of C - O at topological 

distance 7 

Hydrogen bonding 

interactions 

13 F05[O-O] +ve Frequency of O - O at topological 

distance 5 

Hydrogen bonding 

interactions 
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The highest contributing descriptor, nArNHR, a functional group count descriptor, denotes the number of 

secondary aromatic amines present in the compounds.   

N

Ar

R H

 

The lone pair of electrons on nitrogen is delocalized in the aromatic ring thus reducing the electron density 

of nitrogen380. The positive regression coefficient of this descriptor indicated that the activity of inhibitors 

is directly proportional to the numerical value of nArNHR. Thus, the compounds having a higher number 

of secondary aromatic amines may enhance the β-amyloid aggregation inhibitory activity as shown in 

(Figure 4.45). Compounds like 88 (pIC50: -0.217), 67 (pIC50: 0.537), and 231 (pIC50: -0.190) and their 

corresponding descriptor values are 1 each. In contrast, compounds like 294 (pIC50: -5.338), 293 (pIC50: -

5.190), and 87 (pIC50: -4.949) have lower inhibitory activity, because these compounds have no such 

fragment (Figure 4.45). From these observations, we have concluded that a secondary aromatic amine is 

important for β-amyloid aggregation inhibitory activity.  

 

Figure 4.45. Contribution of nArNHR, B05[C-N] and F05[O-O] descriptors on β-amyloid aggregation 

inhibition. 
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The next significant descriptor, SaasC, an E-state index descriptor, denotes the sum of the atom-level E-

state values for all non-substituted aromatic carbon atoms (Kier and Hall, 1999)381. According to Kier and 

Hall 1999381, each atom or bond in molecules has its intrinsic state, which is altered by every other atom or 

bond in the same molecule, encoding information related to electronic distribution and topological aspects. 

SaasC is related to aromatic carbons with an attached substituent atom382. The positive regression 

coefficient of this descriptor indicates that the presence of aromatic carbons with an attached substituent 

atom is beneficial for the inhibitory activity as shown in compounds (Figure 4.46) 71 (pIC50: 0.0861), 70 

(pIC50: 0.086), and 74 (pIC50: -0.357), and their corresponding descriptor values are 9.396, 8.807, and 8.779, 

respectively. On the other hand, the absence of such fragments is detrimental to β-amyloid aggregation 

inhibitory activity as observed in (Figure 4.46) compounds 93 (pIC50: -3.978) and 341 (pIC50: -3.469). The 

next significant descriptor, F07[C-O] is a 2D atom pair descriptor that accounts for the frequency of C and 

O atoms at topological distance 7. It contributes negatively toward the endpoint value, which suggests that 

the numerical values of the descriptor are inversely proportional to the inhibitory activity. Thus, the 

compounds bearing such fragments show lower values of inhibitory activity as evidenced by (Figure 4.46) 

compounds 153 (pIC50: -3.176), 86 (pIC50: -4.869), and 294 (pIC50: -5.338) (their corresponding descriptor 

values are 14, 13, and 10, respectively). Whereas, compounds having no such fragments show higher β-

amyloid aggregation inhibitory activity as shown in compounds 231 (pIC50: -0.190), 106 (pIC50: -0.301), 

and 201 (pIC50: -0.301) (Figure 4.46). 

 

Figure 4.46. Contribution of SaasC and F07[C-O] descriptors on β-amyloid aggregation inhibition. 



Chapter 4 Results and discussions 

 

 

 

 

 
146 

 

  

The ring descriptor, NNRS, indicates a normalized number of ring systems. This can be calculated by the 

following equation 4.6305.  

𝑁𝑁𝑅𝑆 =  𝑁𝑅𝑆/𝑋𝑚𝑎𝑥               Equation 4.6 

Here, NNRS denotes a normalized number of ring systems, NRS represents the number of ring systems, 

and an Xmax means the possibility of a maximum number of ring systems305. The negative regression 

coefficient of this descriptor suggests that NNRS negatively influences the inhibitory activity against β-

amyloid plaque. The details of this descriptor were described by Das et al. 2016305. From this, it can be 

suggested that for the development of inhibitors against beta-amyloid aggregation, the normalized number 

of ring systems should be high, as shown in (Figure 4.47) compounds 162 (pIC50: -4.243) (one cyclohexane 

and two benzene rings), 163 (pIC50: -4.350) (one cyclohexane and two benzene rings), and 293 (pIC50: -

5.190) (three benzene rings) and vice versa in the case of compounds 88 (pIC50: -0.217) (two fused rings), 

106 (pIC50: -0.301) (one fused ring), and 323 (pIC50: -1.38) (one fused ring, one benzene ring, and one 

pyridine ring) (Figure 4.47). The ring descriptor, D/Dtr12, denotes the distance/detour ring index of order 

12 (size of the ring) in the compounds. The negative impact of this descriptor recommends that a higher 

numerical value of this descriptor leads to a lower inhibitory activity as evidenced by the compounds 

(Figure 4.47) 143 (pIC50: -3.760), 145 (pIC50: -4.746), and 144 (pIC50: -4.068) (their corresponding 

descriptors values are 98.958, 75.971, and 69.627, respectively). On the contrary, the compounds (Figure 

4.47) having no such fragments show higher β-amyloid aggregation inhibitory activity as observed in the 

case of compounds 67 (pIC50: 0.537), 68 (pIC50: 0.221) and 69 (pIC50: 0.173). Another 2D atom pair 

descriptor, B05[N-N], indicates the presence of two nitrogen atoms at the topological distance of 5. The 

negative regression coefficient of this descriptor suggests that the presence of an N-N fragment at the 

topological distance 5 inversely affects the β-amyloid aggregation inhibitory activity. This is observed in 

compounds (Figure 4.47) 50 (pIC50: -4.100), 144 (pIC50: -4.068), and 145 (pIC50: -4.74) (all these 

compounds have a descriptor value of 1). The opposite is observed in the compounds (Figure 4.47) 67 

(pIC50: 0.537), 68 (pIC50: 0.221), and 69 (pIC50: 0.173).  
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Figure 4.47. Contribution of D/Dtr12, B05[N-N], B06[N-O], and NNRS descriptors on β-amyloid 

aggregation inhibition. 

Another 2D atom pairs descriptor, B06[C-N], indicates the presence/absence of C and N atoms at the 

topological distance 6. This descriptor contributes negatively towards the β-amyloid aggregation as 

indicated by the negative regression coefficient. For example, compounds (Figure 4.48) 50 (pIC50: -4.100), 

144 (pIC50: -4.068), and 145 (pIC50: -4.746) (having a descriptor value of 1 each) have lower β-amyloid 

aggregation inhibitory activity due to the presence of such a fragment at the topological distance 5. On the 

other hand, the molecules without such a fragment show higher inhibitory activity as shown in compounds 

(Figure 4.48) 106 (pIC50: -0.301), 177 (pIC50: -1.531), and 179 (pIC50: -1.892). 
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Figure 4.48. Contribution of B06[C-N] and nFuranes descriptors on β-amyloid aggregation inhibition. 

The 2D atom pair descriptors, B06[N-O], describe the presence/absence of N-O at topological distance 6. 

The negative regression coefficient of this descriptor suggests that the absence of such a fragment in the 

molecules showed good β-amyloid aggregation inhibitory activity as shown in (Figure 4.47) compounds 

67 (pIC50: 0.537), 68 (pIC50: 0.221), and 69 (pIC50: 0.173). While the presence of a higher number of this 

fragment shows the lower inhibitory activity as observed in (Figure 4.47) compounds 144 (pIC50: -4.068), 

145 (pIC50: -4.746), and 293 (pIC50: -5.190) (all of these compounds have a descriptor value of 1).  

Another 2D atom pairs descriptor, B05[C-N], denotes the presence/absence of C-N at the topological 

distance 5. This descriptor positively influences the activity of β-amyloid aggregation inhibitors as 

suggested by its positive regression coefficient. Thus, the compounds containing a higher number of C-N 

fragments at topological distance 5 may have high β-amyloid aggregation inhibitory activity as evidenced 

by (Figure 4.45) compounds 67 (pIC50: 0.537), 68 (pIC50: 0.221), and 69 (pIC50: 0.173) (their corresponding 

descriptors values are 1). On the other hand, the molecules which do not contain such a feature may have 

lower inhibitory activity as shown in compounds 159 (pIC50: -3.857), 162 (pIC50: -4.243), and 163 (pIC50: 

-4.350) (Figure 4.45). Another 2D atom pair descriptor, F05[O-O], stands for the frequency of O-O at 

topological distance 5. For the β-amyloid aggregation inhibitors, this fragment indeed plays an important 

role in the binding process and may influence the inhibitory activity prominently. The positive impact of 

this descriptor on the β-amyloid aggregation inhibitors was indicated by its positive regression coefficient. 

Thus, the information obtained from this descriptor suggested that the molecules containing an O-O the 
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fragment at the topological distance 5 show higher β-amyloid aggregation inhibitory activity as shown in 

compounds (Figure 4.45) 67 (pIC50: 0.537), 68 (pIC50: 0.221), and 69 (pIC50: 0.173) (containing descriptor 

value 1 respectively), while compounds 294 (pIC50: -5.338), 293 (pIC50: -5.190), and 87 (pIC50: -4.949) 

show lower inhibitory activity due to the absence of this fragment (Figure 4.45).  

The functional group count descriptor, nFuranes, describes the number of furane rings present in the 

compounds. The negative regression coefficient of this descriptor suggests that the presence of this ring is 

inversely proportional to the β-amyloid aggregation inhibitory activity as observed in the case of 

compounds (Figure 4.48) 83 (pIC50: -4.33), 84 (pIC50: -4.580), and 86 (pIC50: -4.869) (all of these 

compounds have descriptor value 1), while the absence of such a ring system in the compounds (Figure 

4.48) indicated higher inhibitory activity as observed in the compounds 67 (pIC50: 0.537), 68 (pIC50: 0.221), 

and 69 (pIC50: 0.173). Another 2D atom pair descriptor, F09[C-C], stands for the frequency of C-C at the 

topological distance 9. The positive regression coefficient of this descriptor suggests that an increase in the 

frequency of a C-C fragment at topological distance 9 may favor β-amyloid aggregation inhibitory activity. 

Thus, the molecules bearing such a fragment may enhance the β-amyloid aggregation inhibitory activity as 

shown in (Figure 4.49) compounds 67 (pIC50: 0.537), 68 (pIC50: 0.221), and 69 (pIC50: 0.173) (their 

corresponding descriptors values are 29, 23, and 27, respectively). The opposite is observed in the case of 

(Figure 4.49) compounds 144 (pIC50: -4.068), 145 (pIC50: -4.746), and 93 (pIC50: -3.978) (containing 

descriptors values 4, 7, and 0, respectively). Another 2D atom pair descriptor, F06[C-C], indicates the 

frequency of C-C at topological distance 6. The negative regression coefficient of this descriptor suggests 

that the presence of higher numbers of this fragment is inversely proportional to the β-amyloid aggregation 

inhibitory activity as observed in the case of compounds (Figure 4.49) 86 (pIC50: -4.869), 87 (pIC50: -

4.949), and 83 (pIC50: -4.336) (corresponding descriptor values are 49, 48, and 48, respectively). In contrast, 

a lower numerical value of this descriptor may favor the β-amyloid aggregation inhibitory activity as 

observed in the case of compound (Figure 4.49) 106 (pIC50: -0.301) (containing descriptor value 6). 
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Figure 4.49. Contribution of F09[C-C] and F06[C-C] descriptors on β-amyloid aggregation inhibition. 

4.3.1.2. Applicability domain (AD) of PLS models 

In this work, the reported PLS models were checked for their applicability domain at a confidence level of 

99% according to the DModX (distance to model in the X-space) approach using SIMCA-P 10.0 software 

(Available from https://umetrics.com/products/simca). In the case of model 1 (see S3 Figure 4.50), we 

found that 5 compounds (i.e., compounds number 26, 81, 85, 262, and 278) in the test set are located outside 

the critical DModX value (D-Crit=1.813). In the case of model 2 (see S3 Figure 4.50), we found that 3 

compounds (i.e., compounds number 262, 274, and 278) in the test set are located outside the critical 

DModX value (D-Crit=1.814). 
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Figure 4.50. Applicability domain DModX values of the test set compounds at 99% confidence level of 

the developed PLS models against β amyloid aggregation. 

4.3.1.3. Loading plot analysis 

A loading plot of a PLS model (see Figure 4.51) provides information about the relationship between the 

X-variables and Y-variables. The amount of the loading for each descriptor to the latent variables can be 

seen from their corresponding loading plot using SIMCA-P 10.0 software (Available from 

https://umetrics.com/products/simca). In the loading plot, a descriptor that is close to zero is not well 

associated with the trends contained in the related scores383. As we have observed from the loading plot 

(see Figure 4.51), the X-variables nArNHR, SaasC, F09(C-C), B05(C-N), and F05(O-O) are significant 

for the Y-variable (pIC50), because they are very close to the Y-variable. On the other hand, the variables 

NNRS, D/Dtr12, nFuranes, B05[N-N], B06[C-N], B06[N-O], F06[C-C] F07[C-O]), which are situated on 

the opposite side of the plot origin concerning the activity (Y-variable), contribute negatively. 
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Figure 4.51. Loading plot for final PLS models against β amyloid aggregation. 

4.3.2. 3D-Pharmacophore model   

In the current work, ten different pharmacophore models were developed from a training set of 62 

compounds. For the development of a pharmacophore model, we used Discovery Studio 2016 Client 4 

(Available from https://www.3ds.com/products-services/biovia/). In terms of internal validation, the best 

pharmacophore model (Hypo 1) was found in the cost analysis with a higher correlation coefficient (r: 

0.724), lower root mean square deviation (rmsd: 2.293), total cost (366.258), maximum fit (6.573), 

configuration cost (21.364), error (343.071), and weight (1.821). These values indicated that the developed 

models were inacceptable. The results of ten pharmacophore hypotheses against β-amyloid peptide are 

given in Table 4.9. Based on all reported metrics, Hypo-1 was found to be the best one among the ten 

hypotheses with one hydrogen bond acceptor (HBA), one hydrophobic (HYD), one hydrophobic aromatic, 

and one ring aromatic (RA) feature (Figure 4.52). External validation of the model has been carried out by 

mapping the test set molecules (Figure 4.52) on Hypo-1 with the same settings as employed for the 

pharmacophore generation by the FAST method. After mapping, we found that 240 molecules from the 

data set of 252 compounds were mapped properly. Only 12 compounds failed to map due to the absence of 

the features found in the developed pharmacophore model. The results obtained from the qualitative 

analysis for the training and test sets using Hypo-1 are given in Table 4.9. The F-test confirms the non-

randomness of the developed pharmacophore (Hypo-1) model. The total cost and correlation values 

obtained from the original and randomized models of the hypothesis for the F-test are given in the Figure 

4.53.  
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Figure 4.52. The best pharmacophore model (Hypo1) of β-amyloid aggregation inhibitors generated by the 

HypoGen module: (A) the best pharmacophore model Hypo1 represented with distance constraints (Å), (B) 

Hypo-1 mapping with one of the most active compounds 66 of test set compounds and (C) Hypo-1 mapping 

with one of the least active compounds 86 of test set compounds. Pharmacophoric features are colored as 

follows: hydrogen bond acceptor (green), hydrophobic (cyan), hydrophobic aromatic (light blue color), and 

ring aromatic (orange). 

 

 

Figure 4.53. The total cost and correlation values were obtained from the original and randomized models 

of the hypothesis for the F-test. 

 



Chapter 4 Results and discussions 

 

 

 

 

 
154 

 

  

Table 4.10. Different quantitative and qualitative validation parameters of the Hypo-1 model were obtained 

for the training and test sets generated by the HypoGen algorithm. 

Quantitative validation parameters 

Hypo. 

 

Total cost 

 

ΔCosta 

 

ΔCostb 

 

RMS Correlation Features 

 

1 366.258 156.90 163.77 2.293 0.724 HBA, HYDAro, HYD, 

RA 

Dataset No. of 

compounds 

             Qualitative validation parameters 

Sensitivity Specificity Accuracy Precision F-measure G-Means 

Train 62 88.34 88.23 88.32 95.78 91.91 88.29 

Test 252 64.35 89.92 79.16 82.27 72.22 76.07 

Cost differencea= Null cost - total cost, Cost differenceb= Total cost - fixed cost, Null cost = 523.154, Fixed Cost = 202.479, Best 

records in pass: 4, Config. Cost= 21.364, c= Best Hypothesis, Note – RA: Ring aromatic, HYD: Hydrophobic, HYD (aro): 

Hydrophobic Aliphatic/Aromatic, HBA: Hydrogen bond acceptor, *Compounds with IC50 <300 nM: more active (H) and IC50>300 

nM: less active (L). 

4.3.2.1. Relation of the 3D-pharmacophore model with the 2D-QSAR model 

All of the compounds in the dataset have at least one aromatic ring feature. The RA feature is a preliminary 

requirement for inhibitory activity against β-amyloid aggregation. The RA feature is in accordance with the 

nArNHR and SaasC descriptors of the 2D-QSAR models. Hydrophobic and hydrophobic aromatic features 

are in harmony with the F09[C-C] and SaasC descriptors of the 2D-QSAR models. The hydrogen bond 

acceptor feature is well corroborated with B05[C-N] and F05[O-O] descriptors of the 2D-QSAR models. 

The most active compound of the training set (69, IC50: 0.67 nM) was mapped entirely on Hypo-1 with all 

of the four features (see Figure 4.54.). One benzene ring lies in the RA region, an amino group is in the 

hydrogen bond acceptor region, and a ring system lies in the hydrophobic region. The least active compound 

24 (IC50: 6323 nM) of the training set lacks RA features; thus it does not map completely (see Figure 4.54.). 

The most active compound of the test set (66, IC50: 0.09 nM) mapped completely on Hypo-1 with all of the 

four features (Figure 4.52). The least active compound (86, IC50: 74100 nM) of the test set mapped partially 

with Hypo-1 (Figure 4.52). From the above discussion, we have concluded that the absence of any feature 

among these four features in a molecule decreases the β-amyloid aggregation inhibitory potency.  
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Figure 4.54. Pharmacophore mapping with training set compounds: (A) Hypo1 mapping with one of the 

most active compounds 69 of training set compounds and (B) Hypo1 mapping with one of the least active 

compounds 24 of training set compounds. 

4.3.3. Molecular docking 

In this study, molecular docking analysis was performed using two most active (67 and 231), two 

moderately active (208 and 276), and two least active (87 and 145) compounds from this dataset. The 

docking interactions suggest that the molecules interacted with a pocket containing HIS A: 13, (hydrophilic 

nature), LYS A: 16 (Charged), LEU A: 17, VAL A: 24, PHE A: 20, and ALA A: 21 (Hydrophobic nature) 

amino acid residues. The details of docking results are tabulated in Table 4.11. 

4.3.3.1. Molecular Docking of the most active compounds from the dataset 

The two most active compounds (67 and 231) from the dataset (pIC50 = 0.537 and -0.190, respectively) 

interacted with the active site amino acid residues through different interaction forces like hydrogen 

bonding interactions (carbon-hydrogen bonds and conventional hydrogen bonds), electrostatic interactions 

(π-cation), and hydrophobic interactions (π-alkyl bonds, alkyl and π-π-T-shaped). The amino acid residues 
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involved in interactions with these compounds are HIS A:13, LYS A:16, PHE A:20, LEU A:17, VAL A:24, 

and ALA A:21 (see Figure 4.55). 

Figure 4.55 shows that compound 67 (one of the most active compounds in the dataset) interacts with HIS 

A: 13, LYS A: 16, and LEU A: 17 amino acid residues through a hydrogen bonding interaction, with PHE 

A: 20 through a π-cation, and VAL A: 24 and ALA A: 21 amino acid residues through alkyl and π-alkyl 

interactions, respectively. Another of the most active compounds, compound 231, interacts with the amino 

acid residue through hydrogen bonding and π-π T shaped interaction (HIS A:13) and π-alkyl and alkyl 

(VAL A:24 and ALA A:21) interactions (Figure 4.55). 

 

Figure 4.55. Docking interaction in most active compounds 67 and 231 from the dataset. 

4.3.3.2. Molecular Docking of the moderately active compounds from the dataset 

Two moderately active compounds (208 and 276) from the dataset (pIC50 = -2.908 and -2.989, respectively) 

interacted with the active site amino acid residues through various interaction forces like hydrogen bonds 

(carbon-hydrogen bonds and conventional hydrogen bonds) and hydrophobic interactions (π-π-T shaped, 

π-alkyl and π-sigma). The amino acid residues involved in interactions with these compounds are ALA 

A:21, LEU A:17, PHE A:20, HIS A:13, VAL A:24, and LYS A:16 (see Figure 4.56). 

Figure 4.56 shows that compound 208 interacts with LEU A: 17 and LYS A:16 (through hydrogen 

bonding), PHE A:20 (π-π-T-shaped and pi-sigma), and ALA A:21 (π-alkyl bonds) amino acid residues. 

Another moderately active compound (compound 276) from the dataset interacted with the amino acid 

residues through hydrogen bonding (LEU A: 17 and LYS A:16) and hydrophobic interactions such as π-π 

T-shaped and π-alkyl bonding (HIS A:13 ALA A:21 and VAL A:24) (See Figure 4.56).  
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Figure 4.56. Docking interaction in moderately active compounds 276 and 208 from the dataset. 

4.3.3.3. Molecular Docking of the least active molecules from the dataset 

The two least active compounds from the dataset (pIC50 = -4.949 and -4.746, respectively) namely 87 and 

145 interacted with the active site amino acid residues through different interaction forces like hydrogen 

bonding (carbon-hydrogen bonds and conventional hydrogen bonds), electrostatic (π-cation) and 

hydrophobic interactions (π-π-stacking and π-alkyl). The amino acid residues involved in interactions with 

these compounds are ALA A:21, PHE A:24, LYS A:16, and VAL A:24 (see Figure 4.57).   

Figure 4.57 shows that compound 87 (one of the least active compounds from the dataset) interacted with 

ALA A:21 and LYS A:16 amino acid residues through hydrogen bonding interaction, LYS A:16 amino 

acid residue through π-cation and PHE A:20 and ALA A:21 through π-π -T-shaped and π-alkyl interactions. 

Another least active compound from the dataset, compound 145, interacts with the amino acid residues 

through hydrogen bonding (LYS A: 16) and hydrophobic interactions such as π-alkyl bonding (ALA A: 21, 

VAL A: 24) (See Figure 4.57). 

 

Figure 4.57. Docking interaction in the least active compound 87 and 145 from the dataset. 
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Finally, molecular docking analysis has demonstrated that the most active compounds from the dataset (67 

and 231) (Figure 4.55) interacted with the maximum number of active amino acid residues with the higher 

number of interacting forces (non-covalent forces) in comparison with the least active compounds from the 

data set like 87 and 145 (Figure 4.57). In pharmacophore mapping, the most active compounds (66 and 67) 

from the data set were correctly mapped with all features that appeared in the model, whereas the least 

active compounds (86 and 87) were partially mapped with the model. The least active compound from the 

data set failed to map in the absence of the features appearing in the developed models, which are most 

important for inhibitory activity against β-amyloid plaque. 

Table 4.11. Docking results and correlation with the 2D-QSAR model in this study. 

S. 

No. 

Compound 

Number 

-CDocker 

interaction 

energy 

(kcal/mol) 

Interacting residues Interactions Correlation with the 

QSAR model 

1 67 

(high pIC50) 

24.939 HIS A:13, LYS A:16, 

PHE A:20, LEU A:17, 

VAL A:24 and ALA 

A:21 

Vdw, Hydrogen 

bonding, π-alkyl, 

alkyl, unfavorable 

positive-positive and 

π-cation 

nArNHR, B05[C-N], 

SaasC and F05[O-O] 

2 231 

(high pIC50) 

23.463 VAL A:24, ALA A:21 

and HIS A:13 

Vdw, Hydrogen 

bonding, π-π T-

shaped, π-alkyl and 

alkyl 

nArNHR,  B05[C-N] 

and SaasC 

3 208 
(Moderate 

pIC50) 

25.815 ALA A:21, LEU A:17, 

PHE A:20, VAL A:24 

and LYS A:16 

Vdw, hydrogen 

bonding, π-sigma,π- 

π-T-shaped and π-

alkyl 

nArNHR, B05[C-N], 

SaasC and F05[O-O] 

4 276 
(Moderate 

pIC50) 

26.173 ALA A:21, LEU A:17, 

HIS A:13 and LYS 

A:16 

Vdw, hydrogen 

bonding,π- π-T-

shaped and π-alkyl 

B05[C-N] and SaasC 

5 145 (low 

pIC50) 

22.398 ALA A:21, LYS A:16 

and VAL A:24 

Vdw, hydrogen 

bonding and π-alkyl 

nArNHR and B05[C-N] 

6 87 (low 

pIC50) 

29.676 LYS A:16, PHE A:20 

and ALA A:21 

Vdw, hydrogen 

bonding,π- π-T-

shaped, π-cation and 

π-alkyl 

B05[C-N] and SaasC  
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4.3.3.4. Relation with the QSAR models 

From the docking studies, it was observed that the formation of a hydrogen bond and alkyl bond between 

the ligand and receptor plays a vital role in interactions. Hydrogen bonding may correlate with descriptors 

nArNHR (number of secondary aromatic amines present in the compounds), F05[O-O] (frequency of O-O 

at topological distance 5), and B05[C-N] (presence/absence of C-N at topological distance 5 in the 

compounds) in the 2D-QSAR models. Descriptors SaasC (aromatic carbons with an attached substituent 

atom) and nArNHR are well related with interactions formed via π- interactions (π-alkyl and π-π T-shaped) 

between the protein and ligands and define the importance of this descriptor as we have observed in 

compound nos. 67, 231, 208, and 276 (Figures 4.55 and 4.56). But in contrast, in the case of compounds 

87 and 145 (least active), the descriptor NNRS (normalized number of ring systems) contributes negatively 

to the response and is found to be related to π- π-T-shaped, and π-alkyl bonding interactions with those 

fragments in the docking experiments (Figure 4.57). Thus, from the above-said information, we can 

conclude that hydrogen bonding, hydrophobicity, and alkyl (π interaction) features obtained from both the 

2D-QSAR model and docking results are essential for inhibitory activity against β-amyloid aggregation. 

4.3.4. Comparisons of the performance of the reported models with previously published models 

In this investigation, a comparative study was performed of the best models of this study with previously 

published models (Leal et.al. 2015384, Zhao et al. 2013385, Aswathy et al. 2018386, Hossein et al. 2019387, 

Xiangji 2006388, Yang et al. 2010389, Najmeh et al. 2014390 and Sehan et al. 2015391) for the prediction of 

the bioactivity against β-amyloid plaques, as depicted in the Table 4.12. The details of different internal 

and external validation parameters obtained from our models and those obtained from previous models are 

given in Table 4.12. Based on the statistical quality in terms of both internal and external validation criteria, 

the models reported in this work are statistically significant and robust enough as compared to the 

previously reported models (Table 4.12). Moreover, the models presented in this study are derived from a 

larger set of molecules than those reported in the previous studies.  
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Table 4.12. Comparisons of the proposed study with previously published studies against β-amyloid 

aggregation. 

Sources E. L.  LV Model Training set Test set 

n R2 Q2 n R2
pred 

Model-1 in this study 12 6 PLS 252 0.664 0.621 62 0.763 

Model-2 in this study 13 7 PLS 252 0.684 0.638 62 0.769 

Leal et.al. 2015384 5 - HQSAR 36 0.937 0.757 10 0.659 

Zhao et.al 2013385 - 5 CoMFA 32 0.877 0.431 7 0.834 

Zhao et.al 2013385 - 8 CoMSIA 32 0.836 0.447 7 0.617 

Zhao et.al 2013385 - 5 CoMFA 34 0.828 0.522 5 0.915 

Zhao et.al 2013385 - 6 CoMSIA 34 0.800 0.493 5 0.902 

Aswathy et.al. 2018386 4 - HQSAR 24 0.931 0.615 6 0.956 

Aswathy et.al. 2018386 - 5 CoMFA 24 0.787 0.687 6 0.731 

Aswathy et.al. 2018386 - 3 CoMSIA 24 0.972 0.743 6 0.713 

Aswathy et.al. 2018386 6 - MLR 24 0.908 0.747 6 0.807 

Hossein et al 2019387 4  MLR 28 0.912 0.915 12 0.836 

Xiangji 2006388 4 - PLS 22 0.857 - - - 

Yang et al. 2010389 - 6 CoMSIA 21 0.911 0.512 - - 

Najmeh et al. 2014390 5 - PCA 25 0.631 - - - 

Sehan et al. 2015391 - - 3D-QSAR 63 0.93 0.89 26 0.89 

Abbreviations: LV= Latent variables, E. L. = Equation length, MLR= Multiple linear regression, CoMFA=Comparative Molecular 

Field Analysis, CoMSIA= Comparative molecular similarity index analysis, PCA = Principal component analysis and HQSAR= 

Hologram QSAR. 
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4.4. Study 4- Chemometric modeling of structurally diverse carbamates for the inhibition of 

acetylcholinesterase enzyme (AChE) in Alzheimer’s disease 

4.4.1. QSAR analysis 

The statistically significant 2D-QSAR and GQSAR models derived using the PLS regression-based 

technique along with the values of their validation parameters are shown below in equations 4.7 and 4.8. 

The obtained results suggested that the models were acceptable in terms of fitness, stability, and classical 

predictivity measures. The reported 2D-QSAR model was developed by using 6 descriptors with 

corresponding latent variables of 3, while the GQSAR model was developed by using 7 descriptors with 

corresponding latent variables of 6. The descriptors appearing in the models define the structural and 

functional requirements which can improve the inhibitory activity of molecules against the AChE enzyme. 

The proximity of the observed and predicted values for the AChE enzyme inhibitors in the data set can be 

further established from the scatter plots as shown in Figure 4.58. The quantitative contributions of 

similar/dissimilar descriptors (similar descriptors are placed in close proximity) and the interrelationships 

between the X-variables and the Y-response are depicted in the loading plots in Figure 4.59. Additionally, 

we have also performed a Y-Randomization test to check whether the models were obtained by any chance 

or not. The results obtained from the randomized models in the case of 2D-QSAR (Model 1: R2rand = -

0.0166 and Q2rand = -0.379) and GQSAR (Model 2: R2rand = 0.0545 and Q2rand = -0.606) suggested that 

the developed models were not obtained by any chance correlation as given in Figure 4.60. The list of 

Carbamate derivatives present in the dataset with their name, SMILES notation of respective compounds 

and observed and predicted activities (2D-QSAR and GQSAR) against the AChE enzyme are given in 

Table 4.13. 
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Figure 4.58. Scatter plots of observed and predicted values of final PLS (2D QSAR and GQSAR) models 

against AChE enzyme (A: 2D QSAR, B: GQSAR). 



Chapter 4 Results and discussions 

 

 

 

 

 
163 

 

  

 

Figure 4.59. Loading plot for final PLS (2D QSAR and GQSAR) models against AChE enzyme (A: 2D 

QSAR, B: GQSAR). 
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Figure 4.60. Model Randomization plots for final PLS (2D QSAR and GQSAR) models against AChE 

enzyme (A: 2D QSAR, B: GQSAR). 

4.4.1.1. Mechanistic interpretation of modeled descriptors obtained from the 2D-QSAR model 

pIC50(µ𝑀) = −9.011 − 0.541 × 𝐶 − 006 − 0.466 × 𝐹07[𝐶 − 𝑁] − 0.190 × 𝐻 − 052 + 28.395 ×

𝑋2𝐴 + 0.554 × 𝐹06[𝐶 − 𝑁] +  0.481 × 𝑁𝑅𝑆                               Equation 4.7 

Ntraining=  63, R2=  0.789, Q2
LOO=  0.732, Avgrm2

 (LOO) =  0.634, Δrm2 =  0.149, LV= 3, EL = 6, 

Prediction quality=  𝑀𝑂𝐷𝐸𝑅𝐴𝑇𝐸; Ntest = 15, Q2F1 = 0.883, Q2F2 = 0.883, Avg rm2 = 0.852, Δrm2 =

0.062, CCC = 0.935, MAE = 0.261, SD = 0.174, Prediction quality =  𝐺𝑂𝑂𝐷. 

The descriptors in the PLS models are arranged accordingly to their importance and then described 

separately. The significance level and contribution of the model descriptors towards the AChE inhibitory 

activity are determined based on the variable importance plot (VIP) and regression coefficient plot as shown 

in Figure 4.61368.  
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Figure 4.61. Variable importance plot (VIP) and regression coefficient plot of final PLS (2D QSAR) 

models against AChE enzyme (A: VIP plot and B: Regression coefficient plot). 

The descriptor C-006 belongs to the class of atom-centered fragments that encodes information about the 

topological environment of an atom. This descriptor indicates the number of CH2RX functional groups (X: 

heteroatom (O, N, S, P, Se or halogens), R: any group linked through carbon) that describes each atom by 

its atom type and the bond types and atom types of its first neighbors392. The neighbors of a carbon atom in 

this case can be hydrogen (represented as H), carbon (represented as R), or hetero atoms (represented as 

X). On the other hand, 2D atom pair descriptor, F07[C-N], is simply characterized by the frequency of C-

N at topological distance 7. The negative regression coefficients of these descriptors suggest that the 

absence of such fragments in the compounds may increase the inhibitory activity against the AChE enzyme 

as observed in (See Figure 4.62) case of compounds 18 (pIC50: 2.045) and 55 (pIC50: 1.886), whereas the 

presence of such fragments correlates to lower inhibitory activity as observed in (See Figure 4.62) 

compounds 52 (pIC50: -2.309) and 73 (pIC50: -2.309). 
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Figure 4.62. Contributions of C-006 and F07[C-N] descriptors on AChE enzyme inhibitory activity. 

Another atom-centered fragments descriptor, H-052, describes H (hydrogen) attached to C(sp3) with 1X 

(heteroatom) attached to the next C69. It is a simple molecular descriptor defined as the number of specific 

atom types in a molecule, and it is calculated by knowing the molecular composition and atom connectivity. 

The negative sign of H-052 indicates that compounds with the higher number of H atoms attached to 

C0(sp3) with 1X (X=O) attached to next C would show lower inhibitory activity as observed in (See Figure 

4.63) compounds 73 (pIC50: -2.369) and 52 (pIC50: -2.309) while lower numerical values of this fragment 

correlate the higher inhibitory activity as shown in compounds 18 (pIC50: 2.045) and 55 (pIC50: 1.886) (See 

Figure 4.63). Another 2D atom pair descriptor, F06[C-N], indicates the frequency of C-N at the topological 

distance 6. The positive regression coefficient of this descriptor indicates that the presence of the C-N 

fragment at the topological distance 6 may favor the inhibitory activity against the AChE enzyme as found 

in (See Figure 4.63) compounds 18 (pIC50: 2.045) and 19 (pIC50: 1.858) (containing descriptor value of 4 

for all the cases). On the other hand, compounds with lower numerical values of this descriptor show lower 

inhibitory activity as observed in (See Figure 4.63) compounds 40 (pIC50: -2.720) and 43 (pIC50: -2.642). 
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Figure 4.63. Contributions of H-052 and F06[C-N] descriptors on AChE enzyme inhibitory activity. 

The connectivity descriptor, X2A, corresponds to the average connectivity index 2χ and represents the steric 

feature of the molecule. The positive coefficient of X2A indicates that an increase in the values of the 

descriptor will increase inhibitory activity. This is observed in (See Figure 4.64) case of compound 61 

(pIC50: 0.795), 77 (pIC50: 0.769) (descriptor value 0.333 and 0.32 respectively), and the opposite is seen in 

compound 40 (pIC50: -2.720) and 43 (pIC50: -2.642) as depicted in Figure 4.64. The functional group count 

descriptor, NRS, indicates the number of ring systems present in the compounds, which contributes 

positively towards the AChE enzyme inhibitory activity. Hydrophobicity plays an important role in better 

AChE inhibitory activity as we have observed in compounds (See Figure 4.64) such as 8 (pIC50: 0.522) 

and 35 (pIC50: -0.250) containing descriptor values 4 and 3 respectively showing higher inhibitory activity, 

while compounds 40 (pIC50: -2.720), 43 (pIC50: -2.642) and 73 (pIC50: -2.369) (containing lower descriptor 

values 1 in all three cases) (See Figure 4.64) show lower inhibitory activity. 
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Figure 4.64. Contributions of X2A and NRS descriptor on AChE enzyme inhibitory activity. 

4.4.1.2. Mechanistic interpretation of modeled descriptors obtained from GQSAR analysis 

pIC50(µM)=1.681 − 0.650 × 𝑅2 − 𝑋𝐾𝑀𝑜𝑠𝑡𝐻𝑦𝑑𝑟𝑜𝑝ℎ𝑜𝑏𝑖𝑐𝐻𝑦𝑑𝑟𝑜𝑝ℎ𝑖𝑙𝑖𝑐 + 0.071 × 𝑅2 −

+𝑣𝑒𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙𝑆𝑢𝑟𝑓𝑎𝑐𝑒𝐴𝑟𝑒𝑎 − 0.0001 × 𝑅1 − 𝐻𝑜𝑠𝑜𝑦𝑎𝐼𝑛𝑑𝑒𝑥 − 0.483 × 𝑅1 − 𝑆𝑠𝑠𝐶𝐻2𝑐𝑜𝑢𝑛𝑡 −

0.015 × 𝑅1 − +𝑣𝑒𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙𝑆𝑢𝑟𝑓𝑎𝑐𝑒𝐴𝑟𝑒𝑎 − 0.276 × 𝑅3 − 𝑀𝑀𝐹𝐹_1 + 0.0007 × 𝑅3 −

𝑀𝑜𝑚𝐼𝑛𝑒𝑟𝑡𝑖𝑎𝑋                                                                        Equation 4.8 

Ntrain = 63, R2 = 0.625, Q2 = 0.538, EL = 7, LV = 6; Ntest = 15, Q2F1 = 0.735, Q2F2 = 0.734, Avg rm2 = 

0.681, Δrm2 = 0.151, SD = 0.231, Prediction quality = Moderate. 

Equation 4.8 corresponds to the best G-QSAR model that comprises 7 descriptors. The descriptors 

appearing in the model are arranged accordingly to their importance and then described separately. The 

VIP and regression coefficient plot368 defines the importance of each variable obtained from the final PLS 

models that are responsible to regulate the AChE enzyme inhibitory activity as shown in Figure 4.65 in the 

regression coefficient plot. 
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Figure 4.65. Variable importance plot (VIP) and Regression coefficient plot of final PLS (GQSAR) models 

against AChE enzyme (A: VIP and B: Regression coefficient plot). 

The physicochemical descriptor, R2-XKMostHydrophobicHydrophilicDistance, belonging to the subclass 

Hydrophobicity XlogpK, implies the distance between the most hydrophobic and hydrophilic point on the 

VdW surface computed using the Kellog XlogP method392. For each fragment, the descriptor value is 

calculated by generating the van der Waals surface of the fragment (R2 position), putting a probe atom at 

each point on the van der Waals surface, and calculating the distance between most hydrophobic and 

hydrophilic points. It shows a negative contribution to the inhibitory activity which suggests that relatively 

less distance between the most hydrophobic and hydrophilic group at the R2 position may favor the 

inhibitory activity against the AChE enzyme. For instance, most active compounds (See Figure 4.66) 76 

(pIC50: -0.938) and 42 (pIC50: -0.845) in the dataset contain methyl group at R2 position with minimum 

distance from nitrogen group in contrast the least active compounds (See Figure 4.66) 32 (pIC50: -1.053) 
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and 33 (pIC50: -1.86) in the dataset containing methyl group at R2 position with maximum distance from 

nitrogen group. 

 

Figure 4.66. Contribution of XKMostHydrophobicHydrophilicDistance descriptor at R2 position on AChE 

enzyme inhibitory activity. 

Another physicochemical descriptor, +vePotentialSurfaceArea, belongs to the subclass Electrostatic 

descriptors, which signifies the total van der Waals surface area with the positive electrostatic potential of 

the compounds having electron accepting or positive centers at substitution sites. The most contributing 

descriptor in position R2 with a positive coefficient value is +vePotentialSurfaceArea which suggests that 

an increase in the positive electrostatic potential of fragment R2 may lead to an increase in the inhibitory 

activity against AChE enzyme. We have observed that the most active compounds (See Figure 4.67) 75 

(pIC50: -0.486) and 58 (pIC50: -0.892) in the dataset showed higher inhibitory activity whereas the least 

active compounds (See Figure 4.67) 52 (pIC50: -2.31) in the dataset with descriptor values 21.624 show 

lower inhibitory activity. In contrast, +vePotentialSurfaceArea is detrimental for the R1 position in the 

compounds as we have observed from the least active compounds (See Figure 4.67) 52 (pIC50: -2.31) and 

73 (pIC50: -2.369) in the data set containing higher number electron accepting or positive centers at R1 

substitutions site, whereas the most active compounds (See Figure 4.67) 18 (pIC50: 2.046) and 19 (pIC50: 

1.585) from dataset contain a lower number of the electron-accepting group at the R1 position. 
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Figure 4.67. Contributions of +vePotentialSurfaceArea descriptor at R2 position and 

+vePotentialSurfaceArea descriptor at R1 position on AChE enzyme inhibitory activity. 

The distance-based topological descriptor, R1-HosoyaIndex, belonging to the family of physicochemical 

descriptors, signifies the topological index or Z index of a graph which is the total number of matching in 

it plus 1 ("plus 1" accounts for the number of matchings with 0 edges), and it can be calculated through 

equation 4.9, 

Z= ∑ 𝑚(𝐺, 𝑘)
[
𝑛

2
]

𝑘=0
                 Equation 4.9 

where n is the number of the vertices of graph G (order of graph G), [n/2] stands for the integer part of n/2, 

and m (G, k) is the number of k-matchings of graph G393. It shows a negative contribution to the inhibitory 

activity against the AChE enzyme and suggests that relatively lower numerical values of this fragment may 

contribute to the inhibitory activity. We have observed that the most active compounds (See Figure 4.68) 

58 (pIC50: -0.892) and 19 (pIC50: -1.585) in the data set containing a single phenyl ring at R1 position have 
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lower numerical values for this descriptor, while the least active compounds (See Figure 4.68) 43 (pIC50: -

2.642) and 73 (pIC50: -2.369) in the data set contain indene ring on R1 position (which means a higher 

number of edge and vertices) show higher numerical values for this descriptor. 

 

Figure 4.68. Contributions of HosoyaIndex descriptor at R1 position on AChE enzyme inhibitory activity. 

The physicochemical descriptor, R1-SssCH2count, belongs to the sub-class E-state numbers. It indicates 

the total number of –CH2 groups which are connected with the help of two single bonds. It shows a negative 

contribution at the R1 substitution site of the compounds hinting that a reduction in the number of such 

groups would be better for the inhibitory activity of the compounds. We have observed that in the most 

active compounds (See Figure 4.69) 2 (pIC50: 0.036) the absence of such fragment at the R1 position shows 

higher inhibitory activity whereas in the case of the least active compounds (See Figure 4.69) 43 (pIC50: -

2.642), 52 (pIC50: -2.31) and 40 (pIC50: -2.72), there is the higher number of the such fragment at R1 position 

which is detrimental for inhibitory activity.  

R3-MMFF_1 is an atom type count descriptor and is based on MMFF atom types and their count in each 

molecule (N-CH3 group at R3 position). It shows a negative contribution to the inhibitory activity and 

suggests that the absence of this group at the R3 position may favor the inhibitory activity against the AChE 

enzyme. For instance, the most active compounds (See Figure 4.69) 36 (pIC50: 0.26) in the dataset found 

the absence of methyl group at the R3 position; in contrast, the least active compounds (See Figure 4.69) 

52 (pIC50: -2.31) and 28 (pIC50: -1.615) in the dataset contain N-CH3 group at the R3 position, which is 

detrimental for inhibitory activity. 
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R3-MomInertiaX is a distance-based topological descriptor. It refers to the moment of inertia at the X-axis 

of the molecules and implies that incorporation of any group at the R3 position that increases the resistance 

or restricts the internal rotation of the molecule will increase the AChE enzyme inhibitory activity. It shows 

a positive contribution to the inhibitory activity against the AChE enzyme. We have observed from the 

most active compounds (See Figure 4.69) 18 (pIC50: 2.046) and 55 (pIC50: 1.886) in the data set that an 

increase in the value of this descriptor adds to the activity profiles of the molecules. On the other hand, the 

least active compounds (See Figure 4.69) 73 (pIC50: -2.369) in the data set show lower numerical values 

of this descriptor. 

 

Figure 4.69. Contributions of SssCH2count descriptor at the R1 position, MMFF_1 descriptor at the R3 

position, and MomInertiaX descriptor at the R3 position on AChE enzyme inhibitory activity. 
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Table 4.13. The list of Carbamate derivatives present in the dataset with their name, SMILES notation of 

respective compounds, observed and predicted activities (2D-QSAR and GQSAR) against the AChE 

enzyme. 

Name SMILES notation Observed value 

(pIC50 µM) 

Predicted value (pIC50 µM) 

2D QSAR GQSAR 

1* c1ccc(cc1[C@H](N(C)C)C)OC(=O)N

(C)C 

1.522 1.171 1 

2 c1ccc(cc1[C@H](N(C)C)C)OC(=O)N

(CC)C 

0.036 -0.153 -0.175 

3 c12CC[C@H](c1cc(cc2)OC(=O)N(C)

C)N 

0.119 0.235 0.660 

4 c12CC[C@H](c1cc(cc2)OC(=O)N(C

C)C)N 

-1.278 -1.05 -1.237 

5 c12CC[C@H](c1cc(cc2)OC(=O)N(C

CC)C)N 

-0.863 -0.765 -0.481 

6* c12CC[C@H](c1cc(cc2)OC(=O)N(C)

CCCCCC)N 

0.275 -0.035 -0.375 

7 c12CC[C@H](c1cc(cc2)OC(=O)N(C)

C1CCCCC1)N 

-0.597 -0.364 -0.649 

8 c12CC[C@H](c1cc(cc2)OC(=O)N(C)

c1ccc(cc1)OC)N 

0.522 0.900 0.828 

9 c12CC[C@H](c1cc(cc2)OC(=O)NCC

)N 

-1.247 -0.916 -1.002 

10 c12CC[C@H](c1cc(cc2)OC(=O)NCC

C)N 

-0.170 -0.656 -0.458 

11 c12CC[C@H](c1cc(cc2)OC(=O)N(C)

C)NC 

-0.029 0.115 0.409 

12 c12CC[C@H](c1cc(cc2)OC(=O)N(C

C)C)NC 

-1.586 -1.162 -1.439 

13 c12CC[C@H](c1cc(cc2)OC(=O)N(C)

C)NCC 

-1.389 -1 -0.308 

14 c12CC[C@H](c1cc(cc2)OC(=O)N(C)

CC)NCCC 

-0.556 -2 -1.300 

15 c1c2c([C@@H](CC2)N)c(cc1)OC(=

O)N(C)C 

0.337 0.147 0.788 

16* c1c2c(c(cc1)OC(=O)N(CC)C)[C@@

H](CC2)N 

-1.021 -1 -0.915 

17 c1c2c(c(cc1)OC(=O)N(C)C)[C@@H]

(CC2)NC 

0.292 -0.435 0.626 

18 c1ccc(c2CC[C@H](c12)N)OC(=O)N(

C)C 

2.045 1.622 1 

19 c1ccc(c2CC[C@H](c12)N)OC(=O)N(

CC)C 

1.585 0.336 -1 

20 c12CCC[C@H](c1cc(cc2)OC(=O)N(

C)C)N 

-0.170 0.300 -0.091 

21* c12CCC[C@H](c1cc(cc2)OC(=O)N(

CC)C)N 

-0.793 -1 -2 

22 c12CC[C@H](Cc1cc(cc2)OC(=O)N(

C)C)N 

-0.510 -0.426 -0.056 

23* c12CC[C@H](Cc1cc(cc2)OC(=O)N(

CC)C)N 

-1.900 -2 -2 
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24 c12CC[C@H](c1cc(cc2)OC(=O)N(C)

C)NCC#C 

-0.462 -0.268 -0.340 

25 c12CC[C@H](c1cc(cc2)OC(=O)N(C

C)C)NCC#C 

-1.672 -2 -2 

26 c12CC[C@H](c1cc(cc2)OC(=O)N(C

CC)C)NCC#C 

-1.164 -1 -1.303 

27 c12CC[C@H](c1cc(cc2)OC(=O)N(C)

CCCCCC)NCC#C 

-1.195 -1 -1.720 

28 c12CC[C@H](c1cc(cc2)OC(=O)N(C)

C1CCCCC1)NCC#C 

-1.614 -1 -1.654 

29* c12CC[C@H](c1cc(cc2)OC(=O)N(C)

c1ccc(cc1)OC)NCC#C 

0.065 0.414 -0.293 

30 c12CC[C@H](c1cc(cc2)OC(=O)NCC

)NCC#C 

-1.136 -1 -1 

31* c12CC[C@H](c1cc(cc2)OC(=O)NCC

C)NCC#C 

-0.376 -1 -1.026 

32 c12CC[C@H](c1cc(cc2)OC(=O)N(C

CCC)C)NCC#C 

-1.053 -1 -1.542 

33 c12c(cc(cc2)OC(=O)N(CCCC)CC)[C

@@H](CC1)NCC#C 

-1.859 -2 -2 

34 c12CC[C@H](c1cc(cc2)OC(=O)N(C

C)C1CCCCC1)NCC#C 

-1.252 -2 -1.207 

35 c12CC[C@H](c1cc(cc2)OC(=O)N(C)

Cc1ccccc1)NCC#C 

-0.250 -0.492 -0.282 

36 c12CC[C@H](c1cc(cc2)OC(=O)N(C)

c1ccccc1)NCC#C 

0.259 -0.086 -0.282 

37 c12CC[C@H](c1cc(cc2)OC(=O)N(C)

C)N(C)CC#C 

-1.110 -0.335 -0.487 

38 c12CC[C@H](c1cc(cc2)OC(=O)N(C)

C)N(CC)CC#C 

-1.252 -2 -1 

39 c1c2c([C@@H](CC2)NCC#C)c(cc1)

OC(=O)N(C)C 

-0.397 -1 -0.100 

40 c1c2c([C@@H](CC2)NCC#C)c(cc1)

OC(=O)N(CC)C 

-2.720 -2 -2 

41 c1c2c(c(cc1)OC(=O)N(CCC)C)[C@

@H](CC2)NCC#C 

-1.653 -1.803 -1 

42 c1c2c([C@@H](CC2)N(C)CC#C)c(c

c1)OC(=O)N(C)C 

-0.845 -1.340 -0.272 

43 c1c2c([C@@H](CC2)N(C)CC#C)c(c

c1)OC(=O)N(CC)C 

-2.642 -2.59 -2 

44 c1ccc(c2CC[C@H](c12)NCC#C)OC(

=O)N(C)C 

1.275 1 -0.023 

45 c1ccc(c2CC[C@H](c12)NCC#C)OC(

=O)N(C)CC 

-0.332 -0.139 -1 

46 c12CC[C@H](c1cc(c(Cl)c2)OC(=O)

N(CC)C)NCC#C 

-1.406 -2 -2 

47* c12CC[C@H](c1cc(c(Cl)c2)OC(=O)

N(CCC)C)NCC#C 

-1.642 -1 -1 

48 c12CC[C@H](c1cc(cc2)OC(=O)N(C)

C)N[C@H](C#C)C 

-0.255 -0.287 -0.161 

49 c12CCC[C@H](c2cc(cc1)OC(=O)N(

C)C)NCC#C 

-0.595 -0.212 -1 
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50 c12CCC[C@H](c2cc(cc1)OC(=O)N(

CC)C)NCC#C 

-1.719 -1 -2 

51 c12CC[C@H](Cc2cc(cc1)OC(=O)N(

C)C)NCC#C 

-0.612 -1 -1 

52 c12ccc(cc2C[C@@H](CC1)NCC#C)

OC(=O)N(C)CC 

-2.309 -2 -1 

53 c1ccc(c2CC[C@H](c12)N(C)CC#C)

OC(=O)N(CC)C 

-1.173 -0.188 -2 

54 c12CC[C@H](c2cc(cc1)OC(=O)N(C)

C)N(C)C 

-0.332 0.279 0.353 

55 c1ccc(c2CC[C@H](c12)N(C)C)OC(=

O)N(C)C 

1.886 2 0.482 

56* c1ccc(cc1CCN)OC(=O)N(C)C 0.638 0.458 1.071 

57 c1ccc(cc1CCN)OC(=O)N(CC)C -1.550 -1 -1 

58 c1ccc(cc1CCN)OC(=O)N(CCC)C -0.892 -1 -0.067 

59 c1ccc(cc1CCNC)OC(=O)N(C)C 0.552 1 0.832 

60 c1ccc(cc1CCNC)OC(=O)N(CC)C -1.315 -1 -1.414 

61 c1ccc(cc1CCN(C)C)OC(=O)N(C)C 0.795 1 -0.128 

62 c1ccc(cc1CCNCC#C)OC(=O)N(C)C 0.657 0.033 -0.128 

63 c1ccc(cc1CCNCC#C)OC(=O)N(C)C

C 

-1.480 -1.309 -0.450 

64 c1ccc(cc1CCNCC#C)OC(=O)N(CCC

)C 

-1.187 -1.047 -1 

65 c1ccc(cc1CCN(CC#C)C)OC(=O)N(C

)C 

0.070 -0.005 -0.335 

66* c1ccc(cc1CCN(CC#C)C)OC(=O)N(C

C)C 

-1.220 -1 -2 

67 c1ccc(cc1C[C@H](C)NCC#C)OC(=O

)N(C)C 

0.267 -0.021 0.150 

68 c1ccc(cc1C[C@@H](C)NCC#C)OC(

=O)N(CC)C 

-1.530 -1.345 -2 

69* c1ccc(cc1C[C@@H](C)NCC#C)OC(

=O)N(CCC)C 

-1.281 -1 -1.126 

70* c1ccc(cc1C[C@@H](NCC#C)C)OC(

=O)N(C)C1CCCCC1 

-0.556 -1 -1 

71 c1ccc(cc1C[C@@H](C)NCC#C)OC(

=O)N(C)CCCC 

-1.086 -1.054 -1 

72* c1ccc(cc1C[C@H](C)N(CC#C)C)OC

(=O)N(C)C 

-0.214 -0.193 0.148 

73 c1ccc(cc1C[C@@H](C)N(C)CC#C)O

C(=O)N(CC)C 

-2.369 -1.495 -2 

74* c1ccc(cc1C[C@@H](N(C)CC#C)C)O

C(=O)N(CCC)C 

-1.519 -1.237 -1.197 

75 c1ccc(cc1C[C@@H](N(CC#C)C)C)O

C(=O)N(CCCCCC)C 

-0.485 -0.581 -1 

76 c1ccc(cc1C[C@H](C)N(CC#C)C)OC

(=O)N(C)C1CCCCC1 

-0.938 -0.935 -1 

77 c1c(CCN[C@@H](C#C)C)cc(cc1)OC

(=O)N(C)C 

0.769 -0.067 0.179 

78* c1ccc(cc1CCN[C@@H](C#C)C)OC(

=O)N(CC)C 

-1.143 -1.389 -1.521 

*Test set compounds 
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4.4.1.3. Applicability domain of the PLS models 

In the current work, applicability domain criteria were checked for test set compounds at a 99% confidence 

level as described by Roy et al and Khan et al.352, 394 using the DModX (distance to model in X-space) 

approach available in SIMCA-P 10.0 software (Available from https://umetrics.com/products/simca). 

Figure 4.70 have demonstrated that all the test set compounds in both 2D-QSAR and GQSAR models are 

within the critical DModX values (Model 1: D-Crit =2.412, Model 2: D-Crit = 3.506).  

 

Figure 4.70. Applicability domain DModX values of the test set compounds at 99% confidence level of 

the developed PLS (2D QSAR and GQSAR) model against AChE enzyme (A: 2D QSAR and B: GQSAR). 

4.4.2. 3D-Pharmacophore model analysis  

In this study, ten different pharmacophore models were developed using a training set of 23 compounds. 

From ten different pharmacophore hypotheses, Hypo-2 with a high correlation coefficient (r: 0.858), lower 

root mean square deviation (rmsd: 2.061), error 66.77, lower configuration cost (9.909), and weight 1.12 

were found to be of acceptable quality. Based on reported metrics (Table 4.14), Hypo-2 was found to be 

the best one among the ten hypotheses with one HBA, one HBD, one RA, and one hydrophobic feature 

(Figure 4.71). External validation of the model has been carried out by mapping the test set molecules 

(Figure 4.71) on Hypo-2 with the same settings as employed for the pharmacophore generation by the 

BEST method. After mapping, we observed that 50 molecules from the test set of 55 compounds were 

mapped, and only 5 compounds failed in absence of the features found in the developed model. The values 

https://umetrics.com/products/simca
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of different validation parameters for the training, as well as test sets, are given in Table 4.14 (qualitative 

validation parameters). The F-test confirms the non-randomness of the developed pharmacophore (Hypo-

2). The original and randomized total cost and correlation values of the hypotheses for the F-test are given 

in Figure 4.72. The correlation of the 3D pharmacophore model with QSAR (2D-QSAR and GQSAR) 

models is depicted in Table 4.15. 

 

Figure 4.71. (A) Pharmacophore hypothesis (Hypo-2) with one hydrogen bond acceptor (HBA), one 

hydrophobic (HYD), one hydrogen bond donor, and one ring aromatic (RA) features and interfeature 

distance (A°); (B) Mapping of the most active compound 77 of the test set (pharmacophore mapping) on 

the Hypo-2, (C) Mapping of the least active compound 52 of the test set (pharmacophore mapping) on 

Hypo-2. 
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Figure 4.72. The original and randomized total cost and correlation values of the hypotheses for the F-test 

Table 4.14. Different quantitative and qualitative validation parameters of the Hypo-2 model were 

obtained for the training and test sets generated by the HypoGen algorithm. 

Quantitative validation parameters 

Hypo. 

 

Total cost 

 

ΔCosta 

 

ΔCostb 

 

RMS Correlation Features 

 

2 137.453 109.27 59.649 2.061 0.858 HBA, HBD, HYD, RA 

Dataset No. of 

compounds 

             Qualitative validation parameters 

Sensitivity Specificity Accuracy Precision F-measure G-Means 

Train 23 100 95 97.36 94.73 97.29 97.46 

Test 55 80 95.91 94.44 66.66 72.72 87.59 

Cost differencea= Null cost - total cost, Cost differenceb= Total cost - fixed cost, Null cost = 246.725, Fixed Cost = 

77.804, Best records in pass: 3, Config. Cost: 9.909, C= Best Hypothesis, Note: RA: Ring aromatic, HYD: 

Hydrophobic, HBA: Hydrogen bond acceptor, HBD: Hydrogen bond donor 

 

 

 

 

 



Chapter 4 Results and discussions 

 

 

 

 

 
180 

 

  

Table 4.15. Correlation of 3D-QSAR pharmacophore model with QSAR (2D-QSAR and GQSAR) models. 

Pharmacophoric features 

 

Correlation with QSAR (2D-QSAR and GQSAR) models 

Ring aromatic The compounds present in the dataset have at least one ring aromatic 

feature, which is either pyrazole/pyridine/thiazole/phenyl or another 

heterocycle. The RA features are the preliminary requirements for the 

inhibitory activity against the AChE enzyme. The RA features are in 

accordance with the NRS descriptor of the 2D-QSAR model (Eqs. 7). This 

observation we can see from the most active compound of the test set (77 

IC50: 0.17µM) (Figure 4.71) one benzene ring lies in the RA region. 

Hydrogen bond acceptor The HBA feature (-CO) of the pharmacophore model is also in accordance 

with the +vePotentialSurfaceArea and MomInertiaX (moment of inertia at 

X-axis) descriptors of the GQSAR models at R2 and R3 positions 

respectively in the compounds (Eq. 8). The most contributing descriptor in 

position R2 is +vePotentialSurfaceArea, which suggests that an increase in 

the positive electrostatic potential of the fragment at R2 site may lead to an 

increase in the inhibitory activity against AChE enzyme. As found in the 

most active compound of the test set (Figure 4.71) (77 IC50: 0.17µM), the 

presence of these features in the compound shows higher inhibitory 

activity. 

Hydrogen bond donor Hydrogen bond donor feature from the obtained model in accordance with 

the F06 [C-N] descriptor of the 2D-QSAR model. 

Hydrophobic The hydrophobic feature (-CH3) from the developed model is in 

accordance with the X2A descriptor of the 2D-QSAR model (Eqs. 7). We 

have observed from the most active compound of the test set (77 IC50: 

0.17µM) Figure 4.71, hydrophobic feature on Hypo 2 mapped completely 

with the molecule.  
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4.4.3. Molecular docking 

A molecular docking study was performed using the most active (19, 18, 44, 55, and 61) (Figure 4.73) and 

least active (33, 40, 43, 52, and 73) (Figure 4.74) compounds of the dataset. The details of docking 

interactions are depicted in Table 4.16 and their correlations with the final QSAR (2D-QSAR and GQSAR) 

models are shown in Table 4.17. 

Table 4.16. Details of docking interactions (Most and Least active compounds from the dataset). 

Sr. 

No. 

Name of compound Docking interactions 

1 19 The most active compound from the dataset; it interacted with the amino acid 

residues through hydrogen bonding (SER A: 293, TYR A: 341, and TYR A: 

124), alkyl, π-alkyl, π-π stacked and π-cation interactions (TRP A: 286 and 

TYR A: 341 respectively) and salt bridge formation (LEU A: 289 and ASP A: 

74) (Figure 4.73). 

2 18 Figure 4.73 showed that compound 18 (the most active compound in the 

dataset) interacted with SER A: 293, TYR A: 341, and TYR A: 124 amino 

acid residues through hydrogen bonding interaction, TYR A: 341 and TRP A: 

286 through π-cation, π-alkyl and π-π stacked) and ASP A: 74 amino acid 

through salt bridge formation. 

3 44 Figure 4.73 showed that compound 44 interacted with SER A: 293 and TYR 

A: 124 (through hydrogen bonding), LEU A: 289, VAL A: 294, TYR A: 124, 

PHE A: 297, TRP A: 286 and TYR A: 341 (alkyl, π-alkyl and π-π-stacked 

bond respectively) amino acid residues.  

4 55 Compound 55 (Figure 4.73) interacted with the amino acid residues through 

hydrogen bonding (TYR A: 341 and SER A: 293) and π-alkyl and π-π-stacked 

(TYR A: 337, PHE A: 297, PHE A: 338, TYR A: 341 and TRP A: 286 

respectively) amino acid residues. 

5 61 The most active compound from the dataset, compound 61 (Figure 4.73) 

interacted with TYR A: 337 and TYR A: 72 (through hydrogen bonding), TYR 

A: 337, PHE A: 297 TRP A: 286 (through π-alkyl and π-cation respectively), 

TYR A: 341 and ASP A: 74 (via π-π stacked and pi-cation) amino acid 

residues.  

6 33 The least active compound from the dataset, compound 33 (Figure 4.74), 

interacted with TYR A: 124 and TYR A: 73 (through hydrogen bonding), PHE 

A: 338, TRY A: 337, PHE A: 297, TYR A: 124, TYR A: 341, TYR A: 286 

(through π-alkyl interaction), TRP A: 286 (via π-π stacked interaction) and 

LEU A: 76 (through alkyl bond) amino acid residues. 

7 40 Another least active compound from the dataset, compound 40, interacted with 

the amino acid residues through hydrogen bonding (SER A: 293, TRP A: 286, 

TYR A: 341), π-alkyl (TYR A: 72, TRP A: 286 and TYR A: 341) alky (LEU 

A: 289 and VAL A: 294) and π-π stacked interactions (TRP A: 286 and TYR 

A: 341) (Figure 4.74). 
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8 43 Figure 4.74 showed that compound 43 (one of the least active compounds from 

the dataset) interacted with SER A: 293 and TYR A: 73 amino acid residues 

through hydrogen bonding interaction, TYR A: 72, TRP A: 286, TYR A: 341 

amino acid residues through π-alkyl interaction, LEU A: 289 via alkyl bond 

and TYR A: 341 and TRP A: 286 amino acids via π-π stacked interaction. 

9 52 Compound 52 (See Figure 4.74 interacted with the amino acid residues 

through hydrogen bonding (TYR A: 124), π-alkyl (TYR A: 72, TYR A: 337, 

TRP A: 286 and TYR A: 341), and π-π-stacked interactions (TRP A: 286 and 

TYR A: 341) amino acid residues. 

10 73 Figure 4.74 showed that compound 73 interacted with TYR A: 124 (through 

hydrogen bonding), TYR A: 337, PHE A: 338, TYR A: 72 and TYR A: 341 

through π-alkyl, TYR A: 341 and VAL A: 294 via alkyl bond and TRP A: 286 

via π-π-stacked bond) amino acid residues.  

Table 4.17. Docking results and their correlation with the final QSAR (2D QSAR and GQSAR) models. 

S. No. Compound 

Number 

- CDocker 

interaction 

energy 

(kcal/mol) 

Interacting 

residues 

Interactions Correlation 

with QSAR 

model 

1 18 (high pIC50) 40.306 SER A: 293, TYR 

A: 341, ASP A: 74, 

TYR A: 124 and 

TRP A: 286 

Hydrogen bonding 

(Classical and non-

classical), electrostatics 

(Salt bridge, attractive 

charges and π-cation) 

and hydrophobic (π-π 

stacked and π-alkyl) 

NRS, R2-

+vePotentialSurf

aceArea and R3-

MomInertiaX 

2 19 (high pIC50) 42.26 LEU A: 289, SER 

A: 293, TRP A: 286, 

TYR A: 341, ASP 

A: 74 and TYR A: 

124 

Hydrogen bonding 

(Classical, non-classical 

and Salt bridge), 

electrostatics (Salt 

bridge, attractive charges 

and π-cation) and 

hydrophobic (π-π 

stacked, π-alkyl and 

alkyl) 

NRS and R2-

+vePotentialSurf

aceArea  

3 44 (high pIC50) 36.76 LEU A: 289, SER 

A: 293, TRP A: 286, 

TYR A: 341, VAL 

A: 249, PHE A: 297 

and TYR A: 124 

Hydrogen bonding 

(Classical, non-classical 

and Salt bridge) and 

hydrophobic (π-π 

stacked, π-alkyl and 

alkyl) 

NRS, X2A, R2-

+vePotentialSurf

aceArea and R3-

MomInertiaX 

4 55 (high pIC50) 40.88 TRP A: 286, SER 

A: 293, TYR A: 

341, PHE A: 297, 

Hydrogen bonding 

(Classical and non-

classical) and  

NRS, R2-

+vePotentialSurf
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PHE A: 338 and 

TYR A: 337 

hydrophobic (π-π 

stacked and pi-alkyl)  

aceArea and R3-

MomInertiaX 

5 61 (high pIC50) 42.625 PHE A: 297, TYR 

A: 341, TRP A: 286, 

ASP A: 74, TYR A: 

72 and TYR A: 337 

Hydrogen bonding (Non-

classical), Electrostatics 

(attractive charges and π-

cation), hydrophobic (π-

π stacked and π-alkyl) 

NRS, R2-

+vePotentialSurf

aceArea and R3-

MomInertiaX 

6 33 (low pIC50) 34.295 TYR A: 124, TYR 

A: 73, PHE A: 338, 

TRY A: 337, PHE 

A: 297, TYR A: 341, 

TRP A: 286 and 

LEU A: 76 

Hydrogen bonding 

(Classical and non-

classical), hydrophobic 

(π-π stacked, alkyl and  

π-alkyl) 

NRS, X2A, R1-

+vePotentialSurf

aceArea 

7 40 (low pIC50) 31.686 SER A: 293, TRP A: 

286, TYR A: 341, 

TYR A: 72, LEU A: 

289, VAL A: 294 

and TYR A: 341 

Hydrogen bonding (non-

classical), hydrophobic 

(π-π stacked and  π-

alkyl) 

NRS, X2A, R1-

+vePotentialSurf

aceArea  

8 43 (low pIC50) 31.129 SER A: 293, TYR A: 

72, TYR A: 341, 

LEU A: 289 and 

TRP A: 286 

Hydrogen bonding (non-

classical), hydrophobic 

(π-π stacked, alkyl and  

π-alkyl) 

NRS, X2A, R2-

+vePotentialSurf

aceArea 

9 52 (low pIC50) 34.114 TYR A: 124, TYR 

A: 72, TYR A: 337, 

TRP A: 286 and 

TYR A: 341 

Hydrogen bonding 

(Classical and non-

classical), hydrophobic 

(π-π stacked and π-alkyl) 

X2A, R2-

+vePotentialSurf

aceArea 

10 73 (low pIC50) 32.807 TYR A: 124, TYR 

A: 337, PHE A: 338, 

TYR A: 72, TYR A: 

341, VAL A: 294, 

TRP A: 286 

Hydrogen bonding (non-

classical), hydrophobic 

(π-π stacked, alkyl and 

π-alkyl) 

NRS, X2A, R2-

+vePotentialSurf

aceArea 
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Figure 4.73. Docking interactions of most active compounds of dataset (compound 18, 19, 44, 55 and 61). 

 

Figure 4.74. Docking interactions of least active compounds of dataset (compound 33, 40, 43, 52 and 73). 
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4.4.3.1. Relationship of the docking results with QSAR (2D QSAR and GQSAR) results 

The molecular docking analysis revealed that the formation of hydrogen bonds (classical and non-classical), 

hydrophobic bonding (π-π Stacked, π-π-T-Shaped, alkyl, and π-alkyl) and some other electrostatic 

interactions such as π-cation and attractive charges between the ligand and the protein play a vital role in 

the binding process. Hydrogen and hydrophobic bonding can be correlated with X2A, R2-

+vePotentialSurfaceArea, R3-MomInertiaX, and NRS descriptors in the QSAR models. X2A, R2-

+vePotentialSurfaceArea, and R3-MomInertiaX are related to hydrogen bonding and electrostatic 

interactions between protein and ligand. The descriptor, NRS, gives evidence of hydrophobic interaction. 

The descriptor +vePotentialSurfaceArea contributes positively to the substitution site R2; but in contrast, it 

contributes negatively in the case of the R1 substitution site as we have observed in the least active 

compounds from dataset like 33 and 40 (Figure 4.74). Furthermore, the R3-MomInertiaX (moment of 

inertia at X-axis) descriptor supports the evidence of hydrophobic interactions along with hydrogen bonding 

interactions as we have observed in (Figure 4.73) most active compounds from the dataset (19, 18, 44, 55, 

and 61), Thus, from above-stated information, we can conclude that hydrogen bonding, hydrophobicity, 

electrostatic interactions and unsaturation (π-π interaction) features as obtained from both QSAR and 

docking study are essential for the inhibitory activity against the AChE enzyme.   

4.4.4. Comparison of the performance of the present QSAR models with previously published models 

In the present work, a comparison of the best models of this study with previously published models395, 101, 

104, 396, 102, 397, 103, 398 was performed for the prediction of the bioactivity against the AChE enzyme, as depicted 

in Table 4.18. The details of different internal and external validation parameters obtained from our models 

and those obtained from previous models are given in Table 4.18. It is important to note that the models 

developed in this study show better quality models of low equation length and less number of variables of 

LVs and consider more diverse compounds as compared to previously reported models.  
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Table 4.18. Comparisons of the proposed study with previously published studies against AChE enzyme. 

Sources EL LV Model Training set Test set 

n R2 Q2 n R2
pred 

Model 2 (2D QSAR) 6 3 PLS 63 0.789 0.732 15 0.88 

Model 2 (GQSAR) 7 6 PLS 63 0.625 0.538 15 0.735 

Brahmachari et al. 2015395 8 5 PLS 325 0.647 0.625 105 0.675 

Shen et al. 2007101 - 5 CoMFA 36 0.974 0.784 9 0.968 

Shen et al. 2007101 - 4 CoMSIA 36 0.947 0.736 9 0.927 

de Souza et al. 2012104 - 8 HQSAR 29 0.965 0.787 7 - 

Goyal M et al. 2014396 4 4 PLS 19 0.822 0.683 5 0.789 

Solomon KA et al. 2009102 5 - GFA 62 0.857 0.803 26 0.882 

Karmakar A et al. 2019397 3 - GFA 28 0:683 0:589 - 0:641 

Gupta et al 2011103 6 - GFA 31 0.88 0.838 11 0.75 

Gupta et al 2011103 6 - GPLS 31 0.889 0.739 11 0.706 

Gupta et al 2011103 - - SVM 31 0.798 - 11 0.762 

Gupta et al 2011103 - - ANN 31 0.753 - 11 0.694 

Bernd., et al 2003398 - - CoMFA 28 0.974 0.671 4 - 

Abbreviations: LV= Latent variables, MLR= Multiple linear regression, CoMFA= Comparative Molecular Field Analysis, 

CoMSIA= Comparative molecular similarity index analysis, ANN = Artificial neural network, SVM = Support vector machine, 

PLS= Partial least square, GFA= genetic function approximation and HQSAR= Hologram QSAR. 
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4.5. Study 5- In silico modeling for dual inhibition of acetylcholinesterase (AChE) and 

butyrylcholinesterase (BuChE) enzymes in Alzheimer’s disease 

4.5.1. 2D QSAR analysis 

In this research, PLS regression-based 2D-QSAR models were developed for AChE and BuChE enzyme 

inhibitory activities. In the datasets, some compounds have both AChE and BuChE inhibitory values. A 

PLS regression-based 2D-QSAR model has been developed based on their selectivity (AChEI-BuChEI). 

The details of the different validation metrics values for the models are summarized in equations 4.10, 

4.11, and 4.12. The statistical results obtained from the models suggested that the developed models are 

acceptable in terms of stability, predictive, and fitness criteria. The nearness of the observed and predicted 

values for the AChE and BuChE enzyme inhibitors and also the selectivity values can be further established 

from the scatter plots as shown in Figures 4.75 and 4.76. The quantitative contributions of 

similar/dissimilar descriptors and the interrelationships between the X-variables and the Y-response are 

depicted in the loading plots of Figure 4.77. Moreover, we have also employed the Y-Randomization test 

to cross-verify whether the models were obtained by any chance or not using Simca-P 10.0 software  

(Available from https://umetrics.com/products/simca). The results obtained from the randomized models, 

in the case of AChE inhibitors (Model 1: R2int (intercept values) = -0.0011 and Q2int = -0.157), whereas in 

the case of BuChE inhibitors (Model 2: R2int = 0.0017 and Q2int = -0.184) and in case of selectivity based 

model (Model 3: R2int = -0.0013 and Q2int = -0.26), suggested that the developed models were not obtained 

by any chance correlation as depicted in Figure 4.78.  

 

Figure 4.75. Scatter plots of developed PLS models (observed and predicted values) against (A) AChE and 

(B) BuChE enzymes. 
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Figure 4.76. Scatter plot of the model based on selectivity (AChE-BuChE enzyme) (observed and predicted 

values). 
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Figure 4.77. Loading plot for the final PLS models: Model 1 = AChE, Model 2 = BuChE enzyme and 

Model 3 = based on selectivity. 
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Figure 4.78. Model Randomization plots for the final PLS models: Model 1 = AChEI, Model 2 = BuChEI 

and Model 3 = based on selectivity. 



Chapter 4 Results and discussions 

 

 

 

 

 
191 

 

  

4.5.1.1. Mechanistic interpretation of modeled descriptors 

4.5.1.1.1. 2D-QSAR analysis against AChE enzyme: Model 1 

Box 4.2. 2D-QSAR model and statistical validation parameters obtained from the developed model against 

the AChE enzyme. 

pIC50=  −2.806 + 0.148 × 𝑆𝑠𝑠𝐶𝐻2 − 0.905 × 𝑡𝑜𝑡𝑎𝑙𝑐ℎ𝑎𝑟𝑔𝑒 − 0.027 × 𝐹09[𝐶 − 𝐶] + 0.504 ×
𝑛𝐴𝑟𝑁𝐻𝑅 + 0.004 × 𝐷/𝐷𝑡𝑟05 + 0.588 × 𝐵08[𝑁 − 𝑁] + 6.32076 × 𝐸𝑇𝐴_𝑆ℎ𝑎𝑝𝑒_𝑃 − 0.007 × 𝐷/
𝐷𝑡𝑟12 + 0.009 × 𝐷/𝐷𝑡𝑟08 + 1.125 × 𝑈𝑖 − 0.284 × 𝐵06[𝐶 − 𝑁] − 0.337 × 𝐵08[𝐶 − 𝑁] +
0.361 × 𝐹10[𝑁 − 𝑂] + 0.669 × 𝑛𝐴𝑟𝐶𝑂 − 0.209 × 𝐹04[𝑂 − 𝑂]                                   Equation  10 
 

Internal Validation Parameters: ntrain=  798, r2=  0.662, Q2=  0.645, EL = 15, LV = 6, Prediction 

quality = Good. 

External Validation Parameters: ntest=  199, Q2F1=  661, Q2F2=  660, Prediction quality = Good. 

The descriptors appearing in the model have been ranked accordingly to their significance, and then 

described individually. The importance and contribution of the obtained descriptors in the models towards 

the AChE inhibitory activity are identified based on the variable importance plot (VIP) and regression 

coefficient plot as shown in Figure 4.79111. The importance of each descriptor against the AChE enzyme 

has been analyzed with their appropriate examples.  

 

Figure 4.79.Variable importance plot (VIP) and regression coefficient plot of final PLS model against 

AChE enzyme. 
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According to the VIP plot, SssCH2 is the most important descriptor contributing positively to the response. 

It is an atom-type E-state index encoding information about the sum of ssCH2 count in the compounds. 

Sharma et al.399 suggested that the descriptor represents the electro-topological state for the number of –

CH2- groups. The positive contribution suggests that the AChE enzyme inhibitory activity may be increased 

by an increase in the number of such -CH2- groups in the molecules. A higher number of –CH2– groups 

(not more than the descriptor SssCH2 values 40) in compounds leads to better inhibitory activity against 

the AChE enzyme as longer chain compounds with a higher number of -CH2 groups would be more 

lipophilic resulting in improved brain permeability. Compounds like 597 and 841 (Figure 4.80) have a 

higher number of -CH2- groups in their structure, showing higher descriptor values (32.05 and 24.37), 

leading to their higher range of AChE enzyme inhibitory activity (-1.418 and -0.365 respectively). On the 

other hand, compounds 884 and 896 showed AChE enzyme inhibitory activity in very a lower range (-

5.505 and -5.361 respectively), due to the absence of such a group in the compounds. The extended 

topochemical atom (ETA) descriptor, ETA_Shape_P, represents the effect of branching in the cationic 

structure (one central atom is attached to three other non-hydrogen atoms) on the inhibitory activity against 

the AChE enzyme. This descriptor particularly denotes the branching where one central atom is attached to 

three other non-hydrogen atoms, making a Y-shaped structural fragment305. The positive contribution of 

this descriptor indicates that the inhibitory activity of compounds is directly proportional to the numerical 

value of ETA_Shape_P. Therefore, the compounds with the higher numerical value of this descriptor may 

enhance the AChE enzyme inhibitory activity as shown in (Figure 4.80) compounds like 735 (pIC50: -

1.929) and 740 (pIC50: -1.875) and their corresponding descriptor values are 0.367 and 0.314, respectively. 

In contrast, compounds like 379 (pIC50: -5.414) and 723 (pIC50: -5) have no such fragment that shows lower 

inhibitory activity (Figure 4.80). 

 

Figure 4.80. Impact of SssCH2 and ETA_Shape_P descriptors on AChE enzyme inhibitory activity. 
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The functional group count descriptor, nArNHR, simply represents the higher number of secondary 

aromatic amines (not more than descriptor values 4) in the compounds. The fragment contributes 

significantly to increasing the intermolecular interactions by strong H-bonds (discussed later in the docking 

part). Here we have represented the general structure of secondary aromatic amine (1) to allow the beginners 

a proper understanding of the important structural fragment responsible for the inhibition. 

N

Ar

R H

  

(1) 

As per the regression coefficient plot, this descriptor contributed positively toward AChE enzyme inhibitory 

activity. Thus, the compounds with a higher number of this fragment (secondary aromatic amines) may 

enhance the AChE inhibitory activity as shown in compounds 3 (pIC50: 0.698) and 18 (pIC50: 1.154) 

(containing descriptor values 2) (Figure 4.81). On the other hand, the compounds containing no such 

fragments have lower inhibitory activity as observed in compounds 675 (pIC50: -7.683) and 681 (pIC50: -

7.152). 

The descriptor Ui belongs to the class of molecular properties of an unsaturation index. The positive 

contribution (as per the regression coefficient plot) of this descriptor implies that it has a positive impact 

on the AChE enzyme inhibitory activity. Therefore, the compounds bearing higher unsaturation index may 

have enhanced inhibitory activity as presented in compounds (Figure 4.81) 18 (pIC50: 1.154) and 3 (pIC50: 

0.698) (containing descriptor value 3.584), while the compounds with a lower unsaturation index may have 

lower AChE enzyme inhibitory activity as displayed in compounds (Figure 4.81) 848 (pIC50: -5.414). 

The 2D atom pair descriptor, B08[N-N], signifies the presence/absence of N-N at the topological distance 

8. As per the regression coefficient plot, this descriptor positively influences the inhibitory activity against 

the AChE enzyme. Therefore, the compounds containing a higher number of N-N fragments at the 

topological distance 8 may have higher AChE enzyme inhibitory activity as shown by compounds 18 

(pIC50: 1.154) and 3 (pIC50: 0.698) (their corresponding descriptors values are 1) (Figure 4.81). Again, the 

compounds with no such fragments show lower inhibitory activity as shown in compounds 675 (pIC50: -

7.683), and 681 (pIC50: -7.152). 
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Figure 4.81. Impact of nArNHR, Ui and B08[N-N] descriptors on AChE enzyme inhibitory activity. 

2D atom pair descriptor, F09[C-C], represents the frequency of C - C at the topological distance 9. This 

descriptor negatively influences the inhibitory activity against the AChE enzyme as per the negative 

regression coefficient value. So, the higher number of this fragment correlates to lower AChE enzyme 

inhibitory activity as observed in compounds numbers 675 (pIC50:-7.683), and 681 (pIC50: -7.152) (Figure 

4.82), while the absence of this feature correlates to the higher potency of AChE enzyme inhibitory activity 

as observed in compounds 747 (pIC50: -1.785) and 740 (pIC50: -1.875). 

The descriptor, B06[C-N] belong to the family of 2D atom pair descriptor and defines the presence/absence 

of C-N at the topological distance 6. The negative contribution (as per the regression coefficient plot) of 

this descriptor suggests that the descriptor is inversely related to the AChE inhibitory activity. The same 

has been observed in compounds (Figure 4.82) 675 (pIC50: -7.683) and 681 (pIC50: -7.152) (lower enzyme 

inhibitory activity as their corresponding numerical descriptor values are in the higher range), whereas the 

inverse phenomena have been observed in compounds (Figure 4.82) 747 (pIC50: -1.785), 740 (pIC50: -

1.875) (increases in enzyme inhibitory activity as their corresponding numerical descriptor value is in the 

lower range). 

Another 2D atom pair descriptor, B08[C-N], signifies the presence/absence of C-N at the topological 

distance 8. This descriptor negatively affects the activity of AChE enzyme inhibitors as indicated by its 

negative regression coefficient. So, the compounds with the higher number of C-N fragments at the 

topological distance 8 may have lower AChE enzyme inhibitory activity as evidenced by compounds 675 

(pIC50: -7.683), 681 (pIC50: -7.152) (their corresponding descriptors values are 1). Again, the compounds 

with no such fragments show improved inhibitory activity as supported by compounds 747 (pIC50: -1.785), 

and 740 (pIC50: -1.875) (Figure 4.82). 
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The ring descriptors, D/Dtr05, D/Dtr08, and D/Dtr12, denote the distance/detour ring index of order 5, 8, 

and 12 respectively (size of the ring system) in the compounds. Among these descriptors, D/Dtr05 and 

D/Dtr08 contribute positively to the inhibitory activity, whereas the descriptor D/Dtr12 influences the 

inhibitory activity negatively against the AChE enzyme. As per the above information, it can be concluded 

that a lower size of the ring (size of the ring not more than ring index of order 8) may be more favorable 

for the inhibitory activity against the AChE enzyme instead of a larger size of the ring. The positive 

regression coefficients of the descriptors (D/Dtr05 and D/Dtr08) suggest that a higher numerical value of 

these descriptors leads to improved inhibitory activity as verified by the compounds (Figure 4.82) 947 

(pIC50: -1.633) and 717 (pIC50: -1.278) in case of D/Dtr05 and 841 (pIC50: -0.365) and 837 (pIC50: -1.907) 

in case of D/Dtr08. Again, the compounds with no such fragments show lower AChE enzyme inhibitory 

activity as found in the compounds, such as 123 (pIC50: -6.143) and 871 (pIC50: -6) (D/Dtr05 and D/Dtr08). 

The descriptor D/Dtr12 negatively influences the inhibitory activity as suggested by the regression 

coefficient plot. The negative contribution indicates the higher number of this fragment in the compounds 

shows the lower inhibitory activity as supported by compounds (Figure 4.83) 675 (pIC50: -7.683) and 681 

(pIC50: -7.152). On the other hand, the absence of this feature in the compounds shows higher AChE enzyme 

inhibitory activity as observed in the case of compounds (Figure 4.83) 18 (pIC50: 1.154) and 3 (pIC50: 

0.698). 

 

Figure 4.82. Impact of F09[C-C], B06[C-N], B08[C-N], D/Dtr05 and D/Dtr08 descriptors on AChE 

enzyme inhibitory activity. 

Totalcharge is a constitutional index that negatively influences the inhibitory activity against the AChE 

enzyme. In the dataset, there are only 44 compounds with non-zero values for this descriptor, with a 

descriptor value of 2 in the case of compound number 872, and 1 in the rest of all 43 compounds (compound 

numbers 685-687, 847-849, 851-858, 860, 862-866, 869-871, 873-877, 879, 880, 882-884, 888, 890, 892, 

893, 897, 898, 900, 934, 937 and 938). The descriptor encoded the information about the total charges 
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present in the compounds. The descriptor negatively influences the inhibitory activity and suggested that 

the presence of this feature in the compounds correlates to low inhibitory activity as shown in compounds 

872 (pIC50: -5.079) and 871 (pIC50: -6) (containing descriptor values 2 and 1 respectively) (Figure 4.83). 

On the other hand, the uncharged compounds have higher inhibitory activity as shown in compounds 18 

(pIC50: 1.154) and 3 (pIC50: 0.698). 

The last descriptor in this model, F04[O-O] belongs to the family of 2D atom pair descriptors that defines 

the frequency of two oxygen atoms at the topological distance 4. As per the regression coefficient plot, the 

descriptor contributes negatively to the inhibitory activity against the AChE enzyme. So, the compounds 

with such fragments express the lower inhibitory activity as proved by the (Figure 4.83) compounds 902 

(pIC50: -4.799) and 133 (pIC50: -5.423) (their corresponding descriptor values are 6 and 5 respectively), 

whereas compounds with no such fragments show higher AChE enzyme inhibitory activity as shown in 

compounds 18 (pIC50: 1.154) and 3 (pIC50: 0.698) (Figure 4.83). 

2D atom pair descriptor, F10[N-O], defines the frequency of N-O at the topological distance 10. As per the 

regression coefficient plot, the descriptor contributed positively toward the inhibitory activity against the 

AChE enzyme. Thus, the evidence obtained from this descriptor suggests that the molecules containing the 

N - O fragment at the topological distance 10 show higher AChE enzyme inhibitory activity as shown in 

compounds (Figure 4.83) 107 (pIC50: -0.692) and 719 (pIC50: -0.342) (containing descriptor value 2 

respectively), while compounds 675 (pIC50: -7.683), 681 (pIC50: -7.152) show lower inhibitory activity due 

to the absence of this fragment (Figure 4.83). 

The functional group count descriptor, nArCO, denotes the number of aromatic ketone groups present in 

molecules. The positive regression coefficient of this descriptor suggests that the ketone group attached 

with an aromatic ring (not less than 2 fragments) is favorable for AChE enzyme inhibitory activity, as found 

in the case of compounds (Figure 4.83) 653 (pIC50: -0.619) and 1131 (pIC50: -0.619) and vice versa founds 

in case of compounds 675 (pIC50: -7.683) and 681 (pIC50: -7.152). 
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Figure 4.83. Impact of Totalcharge, D/Dtr12, F04[O-O], F10[N-O], and nArCO descriptors on AChE 

enzyme inhibitory activity. 

4.5.1.1.2. 2D-QSAR analysis against BuChE enzyme: Model 2 

Box 4.3. 2D QSAR model and statistical validation parameters obtained from the developed model against 

BuChE enzyme. 

pIC50=  −4.13393 + 0.617 × 𝐶 − 028 − 0.059 × 𝐹05[𝐶 − 𝑂] + 0.018 × 𝑇(𝑁. . 𝑁) − 0.219 ×

𝐵06[𝑂 − 𝑂] − 0.931 × 𝐵03[𝑁 − 𝑁] + 0.041 × 𝐹09[𝐶 − 𝑂] − 2.192 × 𝑛𝑇ℎ𝑖𝑎𝑧𝑜𝑙𝑒𝑠 + 0.276 ×

𝐵09[𝐶 − 𝑂] + 0.727 × 𝐶 − 041 − 0.981 × 𝐶 − 019 + 0.374 × 𝑛𝐴𝑟𝐶𝑂𝑁𝐻𝑅 + 0.194 × 𝐵07[𝑁 −
𝑁] − 0.097 × 𝐻 − 053                

                                                                                                                                           Equation 4.11 

Internal Validation Parameters: ntrain=  603, r2=  0.674, Q2=  0.656, Average rm2=  0.54, EL = 13, 

LV = 5. 

External Validation Parameters: ntest=  158, Q2F1=  0.663, Q2F2 =  0.660, Average rm2=  0.499, 
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Equation 4.11 corresponds to the best PLS regression-based 2D-QSAR model that comprises 13 

descriptors with corresponding latent variables 5 against the BuChE enzyme. The descriptors appearing in 

the model are organized accordingly to their significance and then defined individually. The VIP and 

regression coefficient plot defines the significance level of each variable found from the final PLS model 

that is responsible to regulate the BuChE enzyme inhibitory activity as presented in Figure 4.84 in the 

regression coefficient plot. 

 

Figure 4.84.Variable importance plot (VIP) and regression coefficient plot of final PLS model against 

BuChE enzyme. 

The next 2D atom pair descriptor, F09[C-O], describes the frequency of C-O at the topological distance 9. 

The positive contribution (as per regression coefficient plot) of this descriptor points out that the number 

of the C-O group at the topological distance 9 may favor the inhibitory activity against BuChE enzyme as 

found in compounds (Figure 4.85) 513 (pIC50: -0.863) and 536 (pIC50: -1.778) (containing descriptor values 

6 and 7, respectively) and opposite found in case of compounds (Figure 4.85) 624 (pIC50: -5.605) and 224 

(pIC50: -5.430) (absence of such fragment). 

The next atom-centered fragment descriptor, C-041, exemplifies the fragment (X-C(=X)-X) indicating the 

number of fragments containing C(sp2) atoms that are attached with two electronegative atoms (O, N, S, 

Se, and halogens), i.e., one by a single bond and another by a double bond [10]. The positive regression 

coefficient suggests the influential effect of the feature containing C(sp2) atoms directly attached to two 

electronegative atoms toward the BuChE inhibitory activity. This is witnessed by the compounds (Figure 



Chapter 4 Results and discussions 

 

 

 

 

 
199 

 

  

4.85) 748 (pIC50: -1.462) and 750 (pIC50: -1.531) (descriptor value 1 in both cases), and the opposite is seen 

in compounds 624 (pIC50: -5.605) and 772 (pIC50: -5.594) as depicted in Figure 4.85. 

The functional group count descriptor, nArCONHR, stands for the number of secondary amides (aromatic) 

in the compounds. The fragment contributes significantly to increasing the intermolecular interactions by 

strong H-bonds (discussed later in the docking part). The descriptor contributes positively to the BuChE 

inhibitory activity as specified by the positive regression coefficient. Thus, the molecules bearing such 

fragments may have enhanced BuChE inhibitory activity as presented in compounds (Figure 4.85) 391 

(pIC50: -0.578) and 388 (pIC50: -0.892) (containing descriptor values 1). Although the compounds 

containing no such fragments have lower inhibitory activity as shown in compounds (Figure 4.85) 624 

(pIC50: -5.605) and 772 (pIC50: -5.594). 

The 2D atom pair descriptor, B06[O-O] represents the presence/absence of two oxygen atoms at the 

topological distance 6. The negative contribution of this descriptor indicates that the presence of two oxygen 

atoms at the topological distance 6 may be detrimental to BuChE enzyme inhibitory activity. This is 

evidenced by compounds (Figure 4.85) such as 772 (pIC50: -5.594) and 621 (pIC50: -5.593) (with descriptor 

value 1 in each case), while an absence of this fragment in the compounds leads to a higher inhibitory 

activity as observed in compounds (Figure 4.85) 13 (pIC50: -0.397) and 547 (pIC50: -0.428). 

The functional group count descriptor, nThiazoles, designates the number of thiazole ring present in the 

molecules. As per the regression coefficient plot, this descriptor contributed negatively to the BuChE 

enzyme inhibitory activity. The information obtained from the regression coefficient plot suggests that the 

presence of such fragments in the compounds is inversely proportional to the BuChE enzyme inhibitory 

activity as witnessed by the compounds (Figure 4.85) 135 (pIC50: -5.202) and 137 (pIC50: -5.073) (both 

compounds have descriptor value 1), even though the absence of such ring system in the compounds 

(Figure 4.85) leads to an improved inhibitory activity as detected in the compounds 13 (pIC50: -0.397) and 

547 (pIC50:-0.428). 

The next atom-centered fragment descriptor, C-019, simply refers to CRX, where R represents any group 

connected through carbon atom; X signifies any heteroatom (O, N, S, P, Se, and halogens) [10]. This 

descriptor negatively influences the inhibitory activity of BuChE enzyme inhibitors as specified by its 

negative regression coefficient, which indicates that this feature does not enhance the BuChE enzyme 

inhibitory activity of molecules as found in compounds (Figure 4.85) 66 (pIC50: -4.100) and 793 (pIC50: -

5.096) (containing descriptor values 2 in both cases). But, the compounds with no such fragment have 

higher inhibitory activity as shown in compounds (Figure 4.85) 13 (pIC50: -0.397) and 547 (pIC50: -0.428). 
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Figure 4.85. Contribution of F09[C-O], C-041, nArCONHR, B06[O-O], nThiazoles, and C-019 descriptors 

for the inhibition of the BuChE enzyme. 

The most contributing descriptor, C-028, an atom-centered fragment descriptor, describes each atom by its 

atom type and the bond types and atom types of its first neighbors (R--CR-X)305. In this situation, R--CR-

X can be defined as a central carbon atom (C) on an aromatic ring that has one carbon neighbor (R) and 

one heteroatom neighbor (X) on the same aromatic ring and the third neighbor outside this ring is a carbon 

(R)305. The positive contribution of this descriptor to the BuChE inhibitors indicates that by increasing the 

number of heteroatoms (with R--CR-X format) in compounds, the value of this descriptor increases, 

increasing its activity values. This has been noticed in compounds (Figure 4.86) 13 (pIC50:-0.397) and 547 

(pIC50: -0.428) having corresponding descriptor value 2 in each case showing higher inhibitory activity, 

whereas, in the case of compounds (Figure 4.86) like 624 (pIC50: -5.594) and 772 (pIC50: -5.605), the 

absence of such fragments in the compounds shows lower inhibitory activity. The 2D atom pair descriptor, 

B09[C-O], stands for the presence/absence of C-O at the topological distance 9. According to the regression 

coefficient plot, this feature positively affects the activity of the BuChE enzyme inhibitors. So, the 

compounds with the higher number of C-O fragments at the topological distance 9 may have improved 

BuChE enzyme inhibitory activity as verified by (Figure 4.86) compounds 13 (pIC50: -0.397) and 547 

(pIC50: -0.428) (their corresponding descriptors values are 1). But, the compounds with no such fragment 

show lower inhibitory activity as revealed in compounds 624 (pIC50: -5.605) and 224 (pIC50: -5.430). The 

2D atom pair descriptor in this model, B07[N-N], describes the presence/absence of two nitrogen atoms at 

the topological distance 7. As per the regression coefficient plot, the descriptor positively influences the 

inhibitory activity against the BuChE enzyme. This phenomenon is well observed in compounds (Figure 

4.86) 547 (pIC50: -0.428) and 555 (pIC50: -0.715), and the reverse is seen in the case of compounds (Figure 

4.86) 624 (pIC50: -5.605) and 772 (pIC50: -5.594) (no such fragment at topological distance 7). The 

descriptor, B03[N-N] belongs to the family of 2D atom pairs and describes the presence/absence of two 

nitrogen atoms at the topological distance 3. As per the regression coefficient plot, the descriptor 

contributed negatively to the inhibitory activity against BuChE enzyme, suggesting that compounds 
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containing a lower number or absence of such fragments have good inhibitory activity against BuChE 

enzyme as presented in compounds (Figure 4.86) 13 (pIC50: -0.397) and 547 (pIC50: -0.428) (absence of 

such fragment), while a higher number of this fragment shows the lower inhibitory activity as detected in 

compounds (Figure 4.86) 624 (pIC50: -5.605) and 772 (pIC50: -5.594). 

 

Figure 4.86. Contribution of C-028, B09[C-O], B07[N-N], and B03[N-N] descriptors for the inhibition of 

the BuChE enzyme. 

The next important descriptor, F05[C-O], belongs to the family of 2D atom pair descriptor that defines the 

frequency of C and O atoms at the topological distance 5. As per the regression coefficient plot, the 

descriptor negatively influenced the inhibitory activity against the BuChE enzyme. Therefore, the 

compounds having such fragment show lower values of inhibitory activity as proved by (Figure 4.87) 

compounds 74 (pIC50: -4.212) and 75 (pIC50: -4.394) (their corresponding descriptor values are 21 and 19 

respectively), whereas the absence of such fragment in the compounds show higher BuChE enzyme 

inhibitory activity as presented in compounds 466 (pIC50: -0.929) and 2 (pIC50: -1) (Figure 4.87). The 

descriptor, T(N..N), stands for the 2D atom pair descriptor, and simply characterizes the sum of topological 

distances between two nitrogen atoms. This descriptor contributes positively to the BuChE inhibitory 

activity as suggested by the positive regression coefficient. Thus, the molecules bearing higher topological 

distance between two nitrogen atoms may have higher BuChE inhibitory activity as presented in (Figure 

4.87) compounds 8 (pIC50: -0.908) and 466 (pIC50: -0.929) (containing descriptor values 59 and 124 

respectively), whereas in contrary, compounds 770 (pIC50: -5.539) and 779 (pIC50: -5.459) which do not 

contain any such fragment showed less BuChE inhibitory activity. From this observation, it can be 

concluded that the topological distances between two nitrogen atoms should be higher for improved 

inhibitory activity against the BuChE enzyme. The last atom-centered fragment descriptor in this model, 

H-053, simply refers to H atoms attached to C0(sp3) with 2X connected to the next C, where X signifies any 

heteroatom (O, N, S, P, Se, and halogens) and the superscript characterizes the formal oxidation number69. 

The formal oxidation number of a carbon atom equals the sum of the conventional bond orders with 

electronegative atoms69. This descriptor is defined as the number of definite atom types in a compound and 



Chapter 4 Results and discussions 

 

 

 

 

 
202 

 

  

can be calculated by knowing only molecular composition and atom connectivity69. The negative regression 

coefficient of this descriptor suggested that compounds containing a larger number of such hydrogen atoms 

have lower inhibitory activity against BuChE enzyme as shown in compounds (Figure 4.87) 280 (pIC50: -

4.989) and 296 (pIC50: -4.935), and their corresponding descriptor values are 6 in both cases. On the other 

hand, compounds 13 (pIC50: -0.397) and 597 (pIC50: -0.428) show higher inhibitory activity because of the 

absence of such an H atom. 

 

Figure 4.87. Contribution of F05[C-O], T(N..N) and H-053 descriptors for the inhibition of BuChE 

enzyme. 
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4.5.1.1.3. 2D-QSAR analysis based on the selectivity of AChE and BuChE enzyme inhibitors: Model 3 

Box 4.4. 2D QSAR model and statistical validation parameters obtained from the developed model based 

on selectivity (AChEI-BuChEI). 

Selectivity[pIC50]=  −0.891 − 0.720 × 𝐹05[𝑁 − 𝑂] + 79.839 × 𝐸𝑇𝐴_𝑆ℎ𝑎𝑝𝑒_𝑋 − 2.607 × 𝑛𝐶𝑞 +

0.505 × 𝑛𝐴𝑟𝑂𝑅 + 5.599 × 𝐸𝑇𝐴_𝑑𝐵𝑒𝑡𝑎𝑃 + 2.962 × 𝐵10[𝐶 − 𝐶]                                    Equation 

4.12 

Internal Validation Parameters: ntrain=  159, r2=  0.679, Q2=  0.650, Average rm2=  0.524, EL = 

6, LV = 5, External Validation Parameters: ntest=  39,  Q2F1=  0.787, Q2F2=  0.785, Average rm2=

 0.686, Δrm2=  0.176, 

In the brain, two varieties of cholinesterase enzymes (AChE and BuChE) are capable of hydrolyzing 

acetylcholine neurotransmitters400. Throughout the development of AD, BuChE activity increases by 40–

90% in the temporal cortex and hippocampus, while at the same time AChE activity decreases400. Therefore, 

the concurrent inhibition of both AChE and BuChE should provide extra benefits in the treatment of AD. 

In this research, PLS regression-based 2D-QSAR model was developed based on selectivity for both AChE 

and BuChE (difference of pIC50 values between them). The descriptors found in the developed model are 

organized as per the VIP plot (see Figure 4.88) and then defined individually. The regression coefficient 

plot111 describes the contribution of each descriptor in the model for the inhibition of both cholinesterase 

enzymes (see Figure 4.88). 

 

Figure 4.88. Variable importance plot (VIP) and regression coefficient plot of final PLS selectivity-based 

model. 
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The next most significant descriptor, ETA_Shape_X, simply refers to the shape index X369. We can find 

out the effect of molecular shape on the inhibitory activity against cholinesterase enzymes with the help of 

this descriptor. The positive regression coefficient of the descriptor suggests that the above feature of the 

compounds is more specific for AChE enzyme inhibitory activity as compared to the BuChE enzyme 

inhibitory activity. The higher numerical value of this descriptor correlates to higher AChE enzyme 

inhibitory activity as observed in the case of compounds (Figure 4.89) 31 (pIC50: 2.986) and 104 (pIC50: 

2.98) and opposite in the case of compounds (Figure 4.89) 57 (pIC50: -2.238) and 58 (pIC50: -1.995). The 

extended topochemical atom (ETA) descriptor, ETA_dBetaP, demonstrates the measure of the unsaturation 

content relative to molecular size369. The positive regression coefficient of this descriptor proposes that the 

highest unsaturation content related to their molecular size in the compounds is more specific for AChE 

enzyme inhibitory activity. It has been found that with an increase in the numerical value of this descriptor, 

the inhibitory activity of the compound also increases against AChE enzyme as presented in the case of 

compounds (Figure 4.89) 203 (pIC50: 3.212) and 11 (pIC50: 4.325), while the lower numerical value 

indicated the less specificity against the AChE enzyme as found in case of compounds (Figure 4.89) 160 

(pIC50: -1.122) and 158 (pIC50: -1.477). Thus, we can conclude from the above information that unsaturation 

content related to their molecular size is more specific for AChE enzyme inhibitory activity compared to 

the BuChE enzyme inhibitory activity.   

 

Figure 4.89. Contribution of ETA_Shape_X and ETA_dBetaP descriptors for the dual inhibition of AChE 

and BuChE enzyme. 



Chapter 4 Results and discussions 

 

 

 

 

 
205 

 

  

The descriptor, F05 [N-O], belonging to the class of 2D atom pairs, indicates the frequency of N-O at the 

topological distance 5. The negative contribution (as per the regression coefficient plot) of this descriptor 

suggested that the frequency of N-O at the topological distance 5 is more specific to BuChE enzyme 

inhibitory activity than AChE enzyme inhibitory activity.  Thus, the higher number of this fragment 

correlates with lower AChE enzyme inhibitory activity as noticed in the case of compounds (Figure 4.90) 

160 (pIC50: -1.122) and 57 (pIC50: -2.238). On the other hand, compounds having no such fragments show 

better AChE enzyme inhibitory activity values as observed in the compounds (Figure 4.90) 11 (pIC50: 

4.256) and 44 (pIC50: 4.041). 

The functional group count descriptor, nCq, denotes the number of total quaternary carbons (sp3) present 

in the molecules. As per the regression coefficient plot, the descriptor negatively influences the inhibitory 

activity and suggests that the presence of the number of quaternary carbon in the compounds is more 

specific to the BuChE enzyme inhibitory activity compared to the AChE enzyme inhibitory activity. From 

the descriptor contribution, it can be suggested that molecules containing this fragment may not be 

favorable for the AChE enzyme inhibitory activity as presented in compound numbers (Figure 4.90) 164 

(pIC50: -1.852) and 158 (pIC50: -1.477). The reverse is seen in compounds (Figure 4.90) 11 (pIC50: 4.256) 

and 44 (pIC50: 4.041). 

The descriptor, nArOR, belongs to the family of functional group count descriptors and designates the 

number of aromatic ether groups present in compounds. The positive regression coefficient of this 

descriptor advises that the ether group attached with an aromatic ring is more specific and favorable for the 

AChE enzyme inhibitory activity, as found in the case of compound numbers (Figure 4.90) 97 (pIC50: 

3.974) and 88 (pIC50: 3.960), whereas, the lack of such fragment in the compounds leads to a decrease in 

the AChE enzyme inhibitory activity as shown in compound number (Figure 4.90) 2 (pIC50: -1.249) and 

204 (pIC50: -1.175). Thus, it can be concluded that the fragment is more specific for AChE enzyme 

inhibitory activity compared to the BuChE enzyme inhibitory activity.   

The last 2D atom pair descriptor in this model, B10[C-C], describes the presence/absence of two carbon 

atoms at the topological distance 10. The positive contribution (as per the regression coefficient plot) of 

this descriptor specifies that the presence of two carbon fragments at the topological distance 10 is more 

specific for AChE enzyme inhibitory activity than the BuChE enzyme inhibitory activity. This phenomenon 

is well noticed in compounds (Figure 4.90) 11 (pIC50: 4.256) and 44 (pIC50: 4.041) and the reverse is seen 

in the case of compounds (Figure 4.90) 195 (pIC50: -1.570) and 2 (pIC50: -1.249) (no such fragment at the 

topological distance 10). 
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Figure 4.90. Contribution of F05 [N-O], nCq, nArOR, and B10[C-C] descriptors for the inhibition of both 

AChE and BuChE enzymes. 

4.5.1.2. Applicability domain criteria 

The applicability domain for the test set compounds was checked at a 99% confidence level by applying 

the DModX (distance to model in X-space) approach available in SIMCA-P 10.0 software (available from 

https://umetrics.com/products/simca) as described by the Roy et al. and Khan et al.394, 352. Figure 4.91 

revealed that there is only one compound (compound 666) in the test set found outside the DModX value 

(D-Crit=1.623) in the case of Model 1 (AChEI model). In the case of the reported Model 2 (see Figure 

4.91), there was only one compound (compound 138) in the test set traced outside the critical DModX value 

(D-Crit=1.67), whereas in case of Model 3 (selectivity-based model) (see Figure 4.91), there was also only 

one compound (Compound 30) in the test set is found outside the DModX value (D-Crit=3.066). 
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Figure 4.91. Applicability domain DModX values of the test set compounds at 99% confidence level of 

the developed PLS models: Model 1 = AChEI, Model 2 = BuChEI, and Model 3 = based on selectivity. 
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4.5.2. Molecular docking 

In the present work, molecular docking studies were performed using the most and least active compounds 

from the two datasets, i.e., AChE and BuChE enzyme inhibitors. In the case of AChE enzyme inhibitors, 

we have selected the two most active compounds, i.e., 15 and 19, and the two least active compounds 123 

and 674, from the dataset; in the case of BuChE inhibitors dataset, we have selected two most active 

compounds, such as 13 and 547 and least active compounds 621 and 624 to understand the docking 

interactions with the active site of enzymes. The details of docking interactions and their relation with 2D-

QSAR results are depicted in Table 4.19. Here, we have discussed the details of docking interaction as well 

as their analysis below. 

4.5.2.1. Molecular docking analysis of the selected compounds from the AChE enzyme inhibitors dataset 

In this analysis, the two most active compounds (15 and 19) from the dataset (pIC50 =0.221 and0.522 

respectively) linked with the active site amino acid residues (LEU A:289, TRP A:286, SER A: 293, TYR 

A: 124, TRP A: 86, HIS A:447, GLU A:292, GLN A: 291, ASN A: 87, TYR A: 72, TYR A:337 and TYR 

A: 341) through interacting forces, such as hydrogen bonding (conventional and carbon-hydrogen bonds), 

π-bonding (π-donor hydrogen bond, π-π stacked, π-alkyl, π-cation, π-π T-shaped), alkyl, and halogen. One 

of the most active compounds form the dataset, compound 15 (see Figure 4.92.), interacts with the active 

site cavity through Hydrogen bonding (TYR A:337, ASN A:87, SER A:293, GLU A:292, and GLN A:291), 

π-donor hydrogen bonding (TYR A:124), Halogen (fluorine) (TRP A: 86 and TRP A: 87), π-π stacked 

(TRP A:286, TRP A:86), π-π T-shaped (TYR A:124), Alkyl (LEU A:289) and π-Alkyl (TRP A: 86, HIS 

A:447, TYR A:72, TRP A:286, and LEU A:289). Another most active compound 19 of the dataset 

interacted with amino acid residues, such as TYR A: 341, SER A: 293 and TYR A: 337 (hydrogen bond), 

TYR A: 124 (π-donor hydrogen bond), TRP A: 286 (π-cation), TRP A: 286 and TRP A: 86 (π- π stacked), 

PRO A: 88 and LEU A: 289 (alkyl bond), TRP A: 86 and HISA: 447 (π-alkyl bonding) and ASN A: 87 

(halogen bond) (see Figure 4.92.). 

 

Figure 4.92. Docking interactions of most active compounds (15 and 19) from the dataset of AChE enzyme 

inhibitors. 
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In this investigation, two least active compounds (123 and 674) from the dataset (pIC50 = -6.143 and -6.495 

respectively) linked with the active site amino acid residues (ARG A:296, TYR A:341, SER A:293, TRP 

A: 286, HIS A:287, PHE A: 338, TYR A: 337,) through interacting forces, such as Hydrogen bonding 

(conventional and carbon-hydrogen bonds) and π-bonding (π-π stacked, π-alkyl). One of the least active 

compounds of the dataset, compound 123 (Figure 4.93) interacts with amino acid residues like ARG A: 

296 and SER A: 293 through hydrogen bonding and TYR A: 341 via π- π stacked bonding. Figure 4.93 

displays that compound 674 interacts with amino acid residues, such as HIS A: 287, SER A: 293 (through 

hydrogen bonding) and TRP A: 286, TYR A: 337 (via π-alkyl bond). 

Figure 4.93. Docking interactions of least active compounds (123 and 674) from dataset of AChE enzyme 

inhibitors. 

4.5.2.2. Molecular docking analysis of the selected compounds from BuChE enzyme inhibitors dataset 

In this work, the two most active compounds (13 and 547) from the dataset (pIC50 = -0.397 and -0.428 

respectively) are linked with the active site amino acid residues, like THR A: 120, GLU A: 197, TRP A: 

82, HIS A: 438, TYR A: 440, GLY A: 116, PHE A: 329, SER A: 287, SER A: 79, ASP A: 70, TYR A: 

332, SER A: 198 and ALA A: 328, through interacting forces such as hydrogen bonding (conventional and 

carbon-hydrogen bonds), π-bonding (π-π stacked, π-alkyl, amide π-stacked, π-cation, π-π T-shaped), alkyl, 

and attractive charges. Figure 4.94 shows that compound 547 interacts with amino acid residues, such as 

SER A: 79, ASP A: 70, TYR A: 332, HIS A: 438, SER A: 198 (hydrogen bonding), PHE A: 329, TRP A; 

82 (π-π T-shaped), ASP A: 70, GLU A: 197 (attractive charges), TYR A: 332 (π-π stacked, π-cation), TRP 

A; 82, ALA A: 328 (π-alkyl), GLY A: 116 (Amide π-stacked). One of the most active compounds from the 

dataset, compound 13 (Figure 4.94), interacts with amino acid residues, THR A: 120, GLU A: 197 TRP 

A: 82, HIS A: 438, TYR A: 440, SER A: 287 via hydrogen bonds, PHE A: 329 through π-π T-shaped, TRP 

A: 82 via π-π stacked, GLY A: 116 Amide π-stacked. 
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Figure 4.94. Docking interactions of most active compounds (13 and 547) from the dataset of BuChE 

enzyme inhibitors. 

In this analysis, we have selected the two least active compounds (621 and 624) from the dataset (pIC50 = -

5.593 and -5.605 respectively) which interacted with the active site amino acid residues, such as SER A: 

79, ASP A: 70, GLN A: 71, TYR A: 332, GLU A: 197 and TRP A: 82, through interacting forces, such as 

Hydrogen bonding (conventional, carbon-hydrogen bonds and π-donor hydrogen bond), π-bonding (π-π 

stacked, π-cation) and salt bridge. One of the least active compounds from the dataset, compound 624 

(Figure 4.95), interacts with amino acid residues such as SER A: 79, ASP A: 70, and TRP A: 82 through 

hydrogen bonding and TRP A: 82 via the π-π stacked bond. Another least active compound of the dataset, 

compound 621 (Figure 4.95), interacts with amino acid residues such as GLU A: 197, GLN A: 71 (via 

hydrogen bonding), TYR A: 332, TRP A: 82 (π-π stacked), TRP A: 82 (through π-cation) and GLU A: 197 

(via salt bridge). 

 

Figure 4.95. Docking interactions of least active compounds (621 and 624) from the dataset of BuChE 

enzyme inhibitors. 
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Table 4.19. Docking results and correlation with 2D-QSAR models in this study. 

S. 

No. 

Compound 

Number 

-CDocker 

interaction 

energy 

(kcal/mol) 

Interacting residues Interactions Correlation with 

QSAR model 

AChE enzyme inhibitors 

1 15 (high 

pIC50) 

70.674 TYR A:337, ASN 

A:87, SER A:293, GLU 

A:292, GLN A:291, 

TYR A:124, TRP A: 

87, TRP A:286, TRP 

A:86, LEU A:289, HIS 

A:447, TYR A:72 and 

LEU A:289 

Hydrogen bonding, 

π-donor hydrogen 

bonding, Halogen 

(fluorine), π-π 

stacked, π-π T-

shaped, Alkyl and π-

Alkyl 

SssCH2, nArNHR, 

ETA_Shape_P and Ui,  

2 19 (high 

pIC50) 

80 TYR A: 341, SER A: 

293, TYR A: 337, TYR 

A: 124, TRP A: 286, 

TRP A: 86, PRO A: 88, 

LEU A: 289, HISA: 

447 and ASN A: 87 

Hydrogen bond, π-

donor hydrogen 

bond, π-cation, π- π 

stacked, alkyl, π-

alkyl and Halogen 

(fluorine) 

SssCH2, nArNHR, 

ETA_Shape_P and Ui 

3 123 (low 

pIC50) 

31.26 ARG A: 296, SER A: 

293 and TYR A: 341 

Hydrogen bonding 

and π- π stacked 

B06[C-N] 

4 674 (low 

pIC50) 

43 HIS A: 287, SER A: 

293, TRP A: 286 and 

TYR A: 337 

Hydrogen bonding 

and π-alkyl 

D/Dtr12, F09[C-C], 

F04[O-O] and B06[C-

N] 

BuChE enzyme inhibitors 

1 13 (high 

pIC50) 

63.977 THR A: 120, GLU A: 

197, TRP A: 82, HIS A: 

438, TYR A: 440, GLY 

A: 116, PHE A: 329, 

SER A: 287 

Hydrogen bonding, 

π-π stacked, Amide 

π-stacked and π-π T-

shaped 

F09[C-O], B09[C-O] 

and C-028 

2 547 (high 

pIC50) 

72.494 SER A: 79, ASP A: 70, 

TYR A: 332, HIS A: 

438, TRP A: 82, SER 

A: 198, GLY A: 116, 

GLU A: 197, PHE A: 

329, ALA A: 328 

Hydrogen bonding, 

attractive charges, π-

cation, π-π stacked, 

π-π T shaped, Amide 

π-stacked, alkyl and 

π-alkyl 

B07[N-N], T(N..N), 

F09[C-O], B09[C-O] 

and C-028 
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3 624 (low 

pIC50) 

20.491 SER A: 79, ASP A: 70 

and TRP A: 82 

Hydrogen bonding, 

π-π stacked and π-

donor hydrogen bond 

F05[C-O], B03[N-N] 

4 621 (low 

pIC50) 

38.333 GLN A: 71, TYR A: 

332, GLU A: 197 and 

TRP A: 82 

Hydrogen bonding, 

π-cation, π-donor 

hydrogen bond and π-

π stacked bond 

F05[C-O], B03[N-N], 

B06[O-O] 

4.5.2.3. Correlation with the developed 2D-QSAR models 

From the above investigation, we have concluded that hydrogen bonding and π-interaction among the ligand 

and receptor play important roles in the interactions. Hydrogen bonding may associate through the 

descriptor nArNHR (against AChE enzyme inhibitor model), C-028, F09[C-O], B09[C-O], B07[N-N] and 

T(N..N) (against BuChE enzyme inhibitors model) of the developed 2D-QSAR models. Descriptors 

nArNHR, ETA_Shape_P, and Ui (against AChE enzyme), C-028, B07[N-N], and T(N..N) (against BuChE 

enzyme) are well corroborated with interactions made via π- interactions (π-π stacked, π-cation, π-alkyl, 

and π-π T-shaped) between the protein and ligand. The above-mentioned features are observed in 

compounds in the case of AChE enzyme inhibitors such as 15 and 19 (most active) (Figure 4.92) and the 

case of BuChE enzyme inhibitors, such as 547 and 13 (most active) (Figure 4.94). But in contrast, the 

descriptors B06[C-N], D/Dtr12, F09[C-C], F04[O-O] and B06[C-N] (against AChE enzyme), F05[C-O],  

B03[N-N], B06[O-O] (against BuChE enzyme) contributed negatively in the 2D-QSAR model and this has 

been observed in case of AChE enzyme inhibitors such as 123, 674, 621 and 624 (least active) respectively 

(see Figure 4.93, and Figure 4.95). Thus, from the above investigation, we can conclude that features 

obtained from molecular docking studies and 2D-QSAR models are in agreement and essential for the 

inhibitory activity against both AChE and BuChE enzymes. 

4.5.3. Comparisons of the performance of the reported models with previously published models 

In this investigation, a comparison of the best models of this study with previously published models 

(Shrivastava et al. 2019401, Bukhari et al 2014402, De Souza et al. 2012104 and Pang et al 2017 et al.183) for 

the prediction of the bioactivity against AChE and BuChE enzymes was performed, as depicted in the Table 

4.20. The details of different internal and external validation parameters obtained from our models and 

those obtained from previous models are given in Table 4.20. Based on the statistical quality in terms of 

both internal and external validation criteria, the models reported in this work are statistically significant 

and robust enough as compared to the previously reported models (Table 4.20). Moreover, the models 

presented in this study are derived from a larger set of molecules than those reported in the previous studies. 

 

 

 

 

 



Chapter 4 Results and discussions 

 

 

 

 

 
213 

 

  

Table 4.20. Comparisons of the proposed study with previously published studies against AChE and 

BuChE enzymes. 

Sources E. L.  LV Model Training set Test set 

n R2 Q2 n Q2F1 

AChE (Present work) 15 6 PLS 798 0.662 0.645 199 0.661 

BuChE (Present work) 13 5 PLS 603 0.674 0.656 158 0.663 

Selectivity (Present work) 6 5 PLS 159 0.679 0.650 39 0.787 

Shrivastava et al. 2019401 - - PLS 26 0.792 0.713 6 0.542 

Bukhari et al 2014402 2 - GA-MLR 14 0.855 0.792 3 0.771 

De Souza et al. 2012104 2 - HQSAR 29 0.965 0.787 7 - 

De Souza et al. 2012104 2 - HQSAR 29 0.952 0.904 7 - 

Pang et al 2017 et al.183 - - 3D-QSAR 35 0.925 - 10 0.850 

Pang et al 2017 et al.183 - - 3D-QSAR 35 0.883 - 10 0.881 

Abbreviations: LV= Latent variables, E.L. = Equation length, PLS = Partial least square, GA-MLR= Genetic 

algorithm multiple linear regression, 3D-QSAR = Three dimensional quantitative structure activity relationship and 

HQSAR= Hologram QSAR. 
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4.6. Study 6- Multi-target QSAR modeling for the identification of novel inhibitors against 

Alzheimer's disease 

The current research aimed at developing statistically significant 2D-QSAR models against 12 major targets 

with easily interpretable descriptors and using them to check the applicability domain of four chemical 

drug-like databases (ZINC12, Asinex, NCI, and InterBioscreen databases) and providing a prioritized set of 

compounds for experimental detection of their performance as anti-Alzheimer’s drugs. The interpretations 

from the 2D-QSAR models were further confirmed by molecular docking strategies. The current work 

comprises five phases: (1) development of a well-validated 2D-QSAR model (individual, selectivity-based, 

and QSAAR) against 12 major targets; (2) chemical Read-Across analysis; (3) prediction of inhibitory 

activity of four chemical compound databases against 12 major targets, using the developed 2D-QSAR 

models; (5) molecular docking of the most and least active compounds of the modeled datasets. 

4.6.1. 2D QSAR analysis 

In this analysis, PLS-based 2D-QSAR models against 12 major targets (AChE enzyme, BuChE enzyme, 

BACE1 enzyme, β-amyloid aggregation, 5-HT6, CDK-5, Gamma-secretase enzyme, Glutaminyl Cyclase 

enzyme, GSK-3β enzyme, MAO-B enzyme, NMDA receptor and phosphodiester enzyme (PDE 10A)) were 

developed to search for novel anti-Alzheimer’s agents and identify important structural features responsible 

for inhibiting the enzymes involved in AD. Additionally, 10 Selectivity-based models (6-PLS-based and 4-

MLR-based models) and 17 QSAAR-based models (15-PLS-based and 2-MLR-based models) were also 

developed for the identification of features with dual inhibitory activity. The details about the developed 

models and their various validation metrics are given in Tables 4.21, 22, and 23. The statistical results 

indicated that all the models were acceptable in terms of stability, predictive ability, and fitness. The 

obtained features define the structural and functional requirements for compounds to improve their 

inhibitory activity against the respective enzymes. The scatter plot (Figs. 4.96-102) describes the closeness 

of the observed and predicted values for the modeled enzyme inhibitors. Moreover, we have also performed 

the Y-randomization test using the SIMCA-P 10.0 software and MLRPlusValidation1.3 tool by randomly 

reshuffling (100 permutations) the dependent variable to ensure that the developed models were not 

obtained by any chance. The R2 and Q2 values for the random models (Y-axis) are plotted against the 

correlation coefficient between the original Y values and the permuted Y values (X-axis). The statistical 

results obtained from randomized models suggested that the developed models were not found by any 

chance. The variable importance plot (VIP) and regression coefficient plot, were used to determine the 

significance and contribution of the obtained features in the models toward the inhibitory activity. 
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Table 4.21. Individual 2D QSAR models and their statistical validation matrics were obtained from the developed models. 

Target Equation LV 

Training Set Test Set 

Train R2 Q2
(LOO) PQ Test Q2F1 Q2F2 PQ 

5-HT6 antagonist pIC50 (nM) = −1.671 + 0.449 × 𝑚𝑖𝑛𝑠𝑠𝑁𝐻 + 0.155 × 𝐹04[𝐶 − 𝑂] +
 0.465 × 𝑛𝐶𝑝 + 1.710 × 𝑛𝐴𝑟𝑁𝐻2 − 0.226 × 𝑀𝑎𝑥𝑇𝐷 + 0.393 × 𝑛𝐵𝑛𝑧 

5 60 0.800 0.742 B 20 0.786 0.784 M 

AChE inhibitors pIC50 (nM) = −5.907 + 0.192 × 𝑋2𝑣 + 0.30397 × 𝐷𝐵𝐼 + 0.56431 ×
𝐵07[𝑁 − 𝑁] + 0.00419 × 𝐷/𝐷𝑡𝑟05 − 0.01895 × 𝑁𝑑𝑠𝐶𝐻 − 0.15889 ×
𝐶 − 016 − 0.28519 × 𝐹04[𝑂 − 𝑂] − 0.25533 × 𝑁𝑠𝑠𝑠𝑁 + 0.89374 ×
𝐹04[𝑁 − 𝐶𝑙] − 0.01257 × 𝑇(𝑁. . 𝐶𝑙) + 1.44516 × 𝐵05[𝐶 − 𝑁] −
1.08240 × 𝐵01[𝑁 − 𝑁] − 3.08774 × 𝑛𝑅𝑂𝐶𝑂𝑁 − 0.56172 × 𝐵09[𝑁 −
𝑂] + 0.04808 × 𝑚𝑖𝑛𝑠𝑠𝑂 − 1.06153 × 𝑡𝑜𝑡𝑎𝑙𝑐ℎ𝑎𝑟𝑔𝑒 − 0.38974 ×
𝐶𝐴𝑇𝑆2𝐷_02_𝐴𝑃 − 0.57236 × 𝐵02[𝑁 − 𝑁] +  1.05258 × 𝐵04[𝑂 − 𝑆] −
0.07341 × 𝐶𝐴𝑇𝑆2𝐷_08_𝐴𝐿 + 1.42829 × 𝑛𝑅#𝐶𝐻/𝑋 − 0.41181 × 𝐶 −
008 + 0.26843 × 𝐶𝐴𝑇𝑆2𝐷_08_𝐴𝐴 − 1.01794 × 𝐵06[𝑂 − 𝑆] + 1.95405 ×
𝐶𝐴𝑇𝑆2𝐷_01_𝐷𝐷 + 0.47598 × 𝐶𝐴𝑇𝑆2𝐷_06_𝐴𝑃 − 1.58252 × 𝐵09[𝑂 −
𝐹] +  0.36591 × 𝑛𝐴𝑟𝐶𝑂 

7 1325 0.635 0.621 - 408 0.678 0.678 M 

BACE1 

inhibitors 
pIC50 (nM) = −11.3326 + 0.2442 × 𝑆𝐴𝑠𝑐𝑜𝑟𝑒 + 0.2420 × 𝐹08[𝑁 − 𝑁] +
2.0777 × 𝑈𝑖 + 0.4070 × 𝑋5𝑣 − 0.1594 × 𝐹04[𝑂 − 𝑂] + 0.0720 ×
𝑚𝑖𝑛𝑑𝑂 + 0.3921 × 𝑛𝑅#𝐶𝐻/𝑋 − 0.4098 × 𝐵02[𝑂 − 𝑂] − 0.0706 ×
𝑆𝑎𝑎𝐶𝐻 − 0.3112 × 𝐹04[𝐹 − 𝐹] − 0.9326 × 𝑚𝑖𝑛𝑎𝑎𝑎𝐶 − 0.5385 × 𝑂 −
058 − 0.0108 × 𝐷/𝐷𝑡𝑟04 + 0.5356 × 𝑛𝑅04 + 0.1804 × 𝐵06[𝑂 − 𝑂] +
0.1890 × 𝐹09[𝐶 − 𝐶𝑙] + 0.9600 × 𝑛𝑁 = 𝐶 − 𝑁 < −0.4325 × 𝐵05[𝑁 −
𝐶𝑙] 

9 680 0.669 0.650 - 225 0.675 0.674 M 

β-amyloid 

inhibitors 
pIC50 (nM) = −9.3579 + 0.1369 × 𝑆𝑠𝑠𝐶𝐻2 − 0.2513 × 𝐹02[𝑁 − 𝑁] −
0.1060 × 𝐹05[𝐶 − 𝑂] + 20.6914 × 𝑃𝑊3 − 0.3449 × 𝑀𝐴𝑋𝐷𝑁 +
0.3534 × 𝐹04[𝑁 − 𝑂] 

4 197 0.729 0.705 M 65 0.844 0.844 G 

BuChE 

inhibitors 
pIC50 (nM) =  −0.64834 + 0.10456 × 𝐶 − 002 + 0.87920 × 𝑁 − 070 −
0.02751 × 𝑛𝐶𝑠 − 0.18997 × 𝑛𝐴𝑟𝑁𝐻𝑅 + 0.55922 × 𝑀𝑎𝑥𝑎𝑎𝑎𝐶 +
1.07712 × 𝑛𝐴𝑟𝑂𝐶𝑂𝑁 − 0.60012 × 𝑃𝑠𝑖_𝑒_𝐴 − 0.08769 × 𝐻 − 051 +
0.00608 × 𝑀𝐷𝐸𝐶 − 22 + 0.07105 × 𝐹04[𝐶 − 𝑁] − 0.10931 × 𝑀𝐴𝑋𝐷𝑃 +
0.44817 × 𝐵07[𝑁 − 𝑁] + 1.01229 × 𝑁 − 077 + 1.95654 × 𝑛𝐴𝑟𝐶 = 𝑁 −

8 1882 0.689 0.668 M 625 0.702 0.702 M 
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2.11509 × 𝐶 − 036 − 0.55208 × 𝐵03[𝑁 − 𝑁] + 1.64662 × 𝐶 − 035 +
3.47045 × 𝑛𝑁 − 𝑁 + 1.34851 × 𝐵𝐿𝐼 − 0.32650 × 𝐹02[𝑁 − 𝑁] +
0.08134 × 𝑆𝑑𝑠𝑁 + 0.02974 × 𝑚𝑖𝑛𝑠𝐹 + 0.76341 × 𝐶 − 009 + 2.59201 ×
𝑛𝑅𝑂𝐶𝑂𝑁 − 1.20613 × 𝐶 − 037 + 0.24057 × 𝐵04[𝑂 − 𝑂] − 0.23948 ×
𝑛𝑅09 − 0.19739 × 𝑛𝐶𝑠𝑝 

CDK-5 

inhibitors 
pIC50 (nM) =  −2.82109 + 0.52376 × 𝑁𝑎𝑎𝑎𝐶 − 0.33618 × 𝑃𝐵𝐹 −
0.01011 × 𝑇(𝑆. . 𝑆) + 0.21105 × 𝑆𝑎𝑎𝑠𝐶 − 0.02307 × 𝑇(𝑁. . 𝐹) −
1.65453 × 𝑆 − 106 − 0.37066 × 𝐹07[𝑁 − 𝑆] 

4 169 0.675 0.652 - 56 0.790 0.790 G 

Gamma-

secretase 

inhibitors 

pIC50 (nM) =  −15.4364 + 0.0155 × 𝑃_𝑉𝑆𝐴_𝑀𝑅_7 − 1.1252 × 𝑛𝑂𝐻𝑝 −
0.6246 × 𝐵05[𝑁 − 𝑁] − 0.9356 × 𝑛𝑅𝐶𝑂𝑂𝐻 − 0.5702 ×
𝐶𝐴𝑇𝑆2𝐷_07_𝑁𝐿 − 0.5050 × 𝐹05[𝑁 − 𝑂] + 2.3424 × 𝐴𝑇𝑆6𝑠 − 0.5725 ×
𝐵09[𝐶 − 𝑆] + 0.4953 × 𝐹08[𝑂 − 𝑆] + 0.1089 × 𝑉𝐸3𝑠𝑖𝑔𝑛_𝐷 + 0.4441 ×
𝐵10[𝑂 − 𝐹] + 0.1313 × 𝑉𝐸3𝑠𝑖𝑔𝑛_𝐷/𝐷𝑡 − 1.4220 × 𝐵07[𝑂 − 𝐶𝑙] −
0.1858 × 𝐹06[𝐹 − 𝐹] − 1.9204 × 𝑛𝑆(= 𝑂)2 + 0.7022 × 𝐶 − 029 

7 172 0.773 0.720 - 45 0.734 0.734 M 

Glutaminyl 

Cyclase  

inhibitors 

pIC50 (nM) = −1.24512 + 1.87780 × 𝐶 − 034 − 6.43315 ×
𝐸𝑇𝐴_𝑆ℎ𝑎𝑝𝑒_𝑌 − 0.21722 × 𝐹05[𝐶 − 𝑆] − 0.43309 × 𝑃𝐵𝐹 + 0.46170 ×
𝐵09[𝐶 − 𝑂] − 0.24517 × 𝐹02[𝑁 − 𝑁] + 0.02157 × 𝑇(𝑁. . 𝑆) 

5 99 0.944 0.934 G 33 0.956 0.956 G 

GSK-3β 

inhibitors 
pIC50 (nM) =  −5.65151 + 0.98713 × 𝑛𝑇ℎ𝑖𝑎𝑧𝑜𝑙𝑒𝑠 + 0.09410 × 𝑆𝑎𝑎𝑠𝐶 +
2.20185 × 𝑃𝐷𝐼 + 0.08050 × 𝑆𝑎𝑎𝑎𝐶 − 0.14490 × 𝑚𝑖𝑛𝑑𝑠𝐶𝐻 + 0.57896 ×
𝐵03[𝑂 − 𝐵𝑟] + 0.21992 × 𝐹06[𝑁 − 𝑂] − 0.31342 × 𝐵03[𝐶 − 𝑂] −
0.00636 × 𝑛𝑃𝑦𝑟𝑟𝑜𝑙𝑒𝑠 + 0.09118 × 𝐵05[𝑁 − 𝑂] 

5 118 0.703 0.648 - 41 0.763 0.763 M 

MAO-B 

inhibitors 
pIC50 (nM) =  −7.74797 − 0.48129 × 𝑚𝑖𝑛𝑑𝑠𝐶𝐻 + 1.46202 × 𝐹02[𝑂 −
𝑂] + 0.09291 × 𝐶% + 0.63918 × 𝑛𝑅𝐶𝑁 − 0.54786 × 𝐵06[𝑂 − 𝐶𝑙] −
0.10809 × 𝐴𝐿𝑂𝐺𝑃 − 0.34911 × 𝐹05[𝐶 − 𝑁] − 1.36772 × 𝐵01[𝐶 − 𝑂] +
0.71091 × 𝐵03[𝑁 − 𝑁] − 0.39179 × 𝑚𝑖𝑛𝑠𝑠𝐶𝐻2 + 1.04117 × 𝑆𝐴𝑠𝑐𝑜𝑟𝑒 −
1.99700 × 𝐸𝑇𝐴_𝐸𝑡𝑎_𝐵_𝑅𝐶 − 0.94480 × 𝑛𝐴𝑟𝑁𝐻𝑅 

6 125 0.722 0.649 - 45 0.639 0.639 - 

NMDA receptor 

antagonist 
pIC50 (nM) =  0.81523 − 0.04386 × 𝑆𝑎𝑎𝑁 − 0.87822 × 𝑀𝐷𝐸𝑁 − 23 −
0.00678 × 𝑇𝑃𝑆𝐴(𝑁𝑂) − 1.66542 × 𝐶 − 043 − 0.04382 × 𝐴𝑇𝑆𝐶2𝑚 +
0.00139 × 𝐴𝑇𝑆𝐶1𝑝 − 0.81419 × 𝑀𝐴𝑇𝑆4𝑖 + 0.10333 × 𝐶 − 028 +
0.00021 × 𝑇𝑃𝑆𝐴(𝑇𝑜𝑡) − 0.12093 × 𝑀𝐷𝐸𝐶 − 24 − 0.92317 ×
𝐺𝐴𝑇𝑆2𝑚 − 0.39657 × 𝐺𝐴𝑇𝑆8𝑣 − 0.11764 × 𝐹05[𝐶 − 𝑂] + 0.19022 ×
𝐵10[𝐶 − 𝑂] 

7 267 0.740 0.708 G 89 0.640 0.639 G 
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Phosphodiester 

enzyme 
pIC50 (nM) =  −7.87353 + 1.09932 × 𝑁 − 070 + 0.00916 × 𝐴𝑀𝑅 +
0.99679 × 𝑚𝑖𝑛𝑠𝐶𝐻3 − 1.22178 × 𝑀𝐷𝐸𝑁 − 23 − 0.06459 × 𝑀𝑎𝑥𝐷𝐷 −
0.34705 × 𝑛𝐹𝑢𝑟𝑎𝑛𝑒𝑠 + 7.19158 × 𝐸𝑡𝑎_𝑒𝑝𝑠𝑖_2 − 1.74389 × 𝐵03[𝑁 −
𝐹] − 1.36496 × 𝐹09[𝑁 − 𝑁] − 0.57580 × 𝑛𝐴𝑟𝑁𝑅2 − 0.82639 ×
𝑛𝑅𝐶𝑂𝑂𝑅 + 1.07168 × 𝐵09[𝑁 − 𝑁] − 1.49240 × 𝑁𝑁𝑅𝑆 − 0.52332 ×
𝑚𝑖𝑛𝑑𝑠𝑠𝐶 − 1.39784 × 𝐵06[𝑂 − 𝐹] 

9 222 0.722 0.677 M 67 0.739 0.730 M 

 

Table 4.22. Selectivity-based models and their statistical validation matrics were obtained from the developed models. 

Target 

(Selectivity) 
Equation LV 

Training Set Test Set 

Train R2 Q2
(LOO) PQ Test Q2F1 Q2F2 PQ 

AChEI - BACE1 Selectivity (AChEI-BACE1) =  −0.42092 + 1.61441 × 𝐹08[𝑁 − 𝑂] −
1.82470 × 𝐵05[𝑁 − 𝑂] + 0.45021 × 𝑋2𝑣 − 0.56114 × 𝐹10[𝑂 − 𝑂] +
0.90094 × 𝑆𝑠𝑠𝑠𝐶𝐻 − 0.10198 × 𝐹05[𝐶 − 𝐶] 

5 34 0.827 0.744 G 9 0.627 0.624 G 

AChEI -β-amyloid Selectivity (AChEI-β-Amyloid) =  −2.06170 + 0.70243 × 𝐵07[𝐶 − 𝑁] −
1.34266 × 𝑛𝐴𝑟𝑁𝐻2 + 1.01867 × 𝐹06[𝐶 − 𝐶𝑙] + 0.30819 × 𝑆𝐴𝑠𝑐𝑜𝑟𝑒 −
1.12566 × 𝐹10[𝐶 − 𝐶𝑙] + 1.04712 × 𝐸𝑇𝐴_𝑆ℎ𝑎𝑝𝑒_𝑌 − 0.10865 × 𝑃𝐽𝐼2 

6 62 0.787 0.679 G 21 0.901 0.898 G 

AChEI -BuChEI Selectivity (AChEI-BuChEI) =  3.15944 + 0.81697 × 𝐹06[𝑁 − 𝑂] −
3.26082 × 𝐵03[𝑁 − 𝑁] − 0.71013 × 𝐵03[𝑁 − 𝑂] − 1.80289 × 𝑛𝑅𝑂𝑅 +
1.63240 × 𝑛𝑅12 − 0.22007 × 𝑁% − 8.65969 × 𝐺𝐷 − 1.24833 × 𝐵02[𝑁 −
𝑁] + 0.20227 × 𝑛𝐷𝐵 − 0.21524 × 𝐼𝐶𝑅 − 0.04797 × 𝑃𝐻𝐼 

6 90 0.785 0.717 G 23 0.732 0.709 G 

AChEI - MAO-B Selectivity (AChEI-MAO-B) =  5.01821 − 1.81468 × 𝑆𝑠𝑠𝑠𝐶𝐻 − 0.53685 ×
𝑂% − 0.23837 × 𝐹10[𝐶 − 𝐶] − 0.47260 × 𝐹10[𝐶 − 𝑁] + 0.17398 ×
𝐹09[𝐶 − 𝐶] + 1.97941 × 𝑀𝑎𝑥𝑠𝐶𝐻3 − 2.36195 × 𝑚𝑖𝑛𝑠𝐶𝐻3 

6 42 0.778 0.651 - 10 0.725 0.723 M 

BACE1 - GSK-3β Selectivity (BACE1-GSK3B) =  0.401 + 1.85 × 𝐿𝑖𝑝𝑖𝑛𝑠𝑘𝑖𝐹𝑎𝑖𝑙𝑢𝑟𝑒𝑠 −
0.299 × 𝑛𝑅𝑜𝑡𝐵 − 2.83 × 𝐴𝐴𝑇𝑆𝐶1𝑠 

- 15 0.889 0.766 G 5 0.876 0.870 G 

BuChEI - BACE1 Selectivity (BuChEI-BACE1) =  0.260 + 0.877 × 𝑛𝐴𝑟𝐶𝑂 − 3.90 × 𝑛𝑅 =
𝐶𝑡 + 0.176 × 𝑁𝑎𝑎𝑠𝐶 + 2.51 × 𝑚𝑖𝑛𝑎𝑎𝑎𝐶 − 0.0159 × 𝐴𝐿𝑂𝐺𝑃2 +
0.000332 × 𝑍𝑀1𝐾𝑢𝑝 

- 39 0.903 0.863 G 12 0.866 0.828 G 
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BuChEI - β-

amyloid 
Selectivity (BuChEI-β-amyloid) =  3.69262 + 0.83031 × 𝐵04[𝑁 − 𝑁] +
0.00558 × 𝐷/𝐷𝑡𝑟10 − 0.46510 × 𝐵10[𝑁 − 𝑂] − 3.56920 × 𝐵10[𝐶 − 𝑁] ×
3.24186 × 𝐵08[𝐶 − 𝑁] + 0.48410 × 𝐵10[𝐶 − 𝑂] − 0.62086 × 𝐵08[𝑂 −
𝑂] + 2.72960 × 𝐸𝑇𝐴_𝑑𝐸𝑝𝑠𝑖𝑙𝑜𝑛_𝐵 − 0.30788 × 𝐿𝑂𝐺𝑃99 − 9.01720 ×
𝐸𝑇𝐴_𝑆ℎ𝑎𝑝𝑒_𝑌 − 2.20437 × 𝑃𝐽𝐼2 

7 93 0.821 0.763 M 30 0.696 0.656 M 

BuChEI - MAO-B Selectivity (BuChEI-MAO-B) =  2.92274 − 2.35759 × 𝑆𝑠𝑠𝑠𝐶𝐻 −
0.97195 × 𝐵08[𝑁 − 𝑂] − 0.26699 × 𝑁𝑑𝑠𝑠𝐶 +  0.72489 × 𝐵06[𝑁 − 𝑂] −
1.99605 × 𝑚𝑖𝑛𝑠𝐶𝐻3 − 0.01919 × 𝑆𝐴𝑎𝑐𝑐 + 0.94967 × 𝑆𝑠𝑠𝑠𝑁 

3 38 0.756 0.637 - 10 0.826 0.801 M 

*AChEI – GSK-3β Selectivity (AChEI-GSK3B) =  −17.8 − 113 × 𝐸𝑇𝐴_𝐵𝑒𝑡𝑎𝑃_𝑛𝑠_𝑑 + 10.7 ×
𝑃𝑠𝑖_𝑖_𝐴 − 0.143 × 𝐹02[𝐶 − 𝑂] 

- 18 0.766 0.664 M 3* 0.784 0.765 G 

*BuChEI - GSK-

3β 
Selectivity (BuChEI-GSK3B) =  −6.54 − 2.39 × 𝐸𝑇𝐴_𝐵𝑒𝑡𝑎_𝑛𝑠_𝑑 + 4.43 ×
𝑃𝑠𝑖_𝑖_𝐴 + 0.867 × 𝑛𝐶𝐿 

- 18 0.735 0.647 M 3* 0.770 0.752 G 

* Models were developed by SmallDataModeler_betaVersion 
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Table 4.23. QSAAR models and their statistical validation matrics were obtained from the developed models. 

Variable 

Equation LV 

Training Set Test Set 

Y X Train R2 Q2
(LOO) PQ Test Q2F1 Q2F2 PQ 

AChEI BACE1 

pIC50 (nM)_AChEI =  −9.09333 + 0.41826 × 𝑛𝐶𝑟𝑠 × 1.26840 ×
𝑀𝑎𝑥𝑎𝑎𝑠𝐶 + 0.00358 × 𝑙𝑜𝑔_𝐵𝐴𝐶𝐸1 +  9.75454 × 𝑃𝑊3 

3 33 0.896 0.843 G 10 0.746 0.744 G 

BACE1 AChEI 

pIC50 (nM)_ BACE1 =  −3.37330 + 0.27402 × 𝑋5𝑣 − 0.23660 × 𝐶 −
001 − 0.20158 × 𝑛𝐶𝑐𝑜𝑛𝑗 − 0.55996 × 𝑛𝐴𝑟𝑂𝐻 + 0.97466 × 𝐵08[𝑂 −
𝑂] + 0.02858 × 𝑙𝑜𝑔_𝐴𝐶ℎ𝐸𝐼 

4 33 0.766 0.637 - 10 0.772 0.749 M 

AChEI 

β-

amyloid 

pIC50 (nM)_AChEI =  −3.32884 + 0.85551 × 𝑙𝑜𝑔_𝐵𝑒𝑡𝑎 𝐴𝑚𝑦𝑙𝑜𝑖𝑑 +
0.34000 × 𝑛𝐴𝑟𝐶𝑂 +  2.12019 × 𝐵10[𝑁 − 𝐶𝑙] +  6.27610 × 𝑃𝑊3 +
0.70658 × 𝐵07[𝐶 − 𝑁] 

3 63 0.962 0.949 G 20 0.968 0.968 G 

β-

amyloid AChEI 

pIC50 (nM)_ β-amyloid =  3.16964 + 1.00643 × 𝑙𝑜𝑔_𝐴𝐶ℎ𝐸𝐼 − 1.78556 ×
𝐸𝑇𝐴_𝐸𝑡𝑎𝑃_𝐹_𝐿 − 1.99421 × 𝐵10[𝑁 − 𝐶𝑙] − 0.65971 × 𝐵07[𝐶 − 𝑁] −
0.55678 × 𝑆𝐴𝑠𝑐𝑜𝑟𝑒 

4 63 0.947 0.924 G 20 0.972 0.972 G 

AChEI BuChEI 

pIC50 (nM)_AChEI = −5.82692 + 0.71516 × 𝑁𝑠𝑠𝑁𝐻 + 0.40986 ×
𝑛𝑅10 + 1.23241 × 𝐼𝐶𝑅 + 0.94089 × 𝐵04[𝑁 − 𝑂] − 0.24740 × 𝐹08[𝐶 −
𝑁] + 0.09780 × 𝑙𝑜𝑔_𝐵𝑢𝐶ℎ𝐸𝐼 + 0.61060 × 𝐹06[𝑁 − 𝑂] − 1.26313 ×
𝑛𝑅𝑂𝑅 + 1.04963 × 𝐵04[𝑁 − 𝐶𝑙] + 0.51418 × 𝑛𝐶𝑟𝑡 

5 89 0.867 0.808 G 29 0.749 0.736 G 

BuChEI AChEI 

pIC50 (nM)_ BuChEI =  −0.767384 + 0.126111 × 𝑁𝑎𝑎𝐶𝐻 −
0.753111 × 𝐹06[𝑁 − 𝑂] − 0.883081 × 𝑀𝑎𝑥𝑠𝐶𝐻3 +  0.419744 ×
𝐷𝐸𝐶𝐶 + 0.302945 × 𝑙𝑜𝑔_𝐴𝐶ℎ𝐸𝐼 + 0.756970 × 𝐵10[𝑁 − 𝑂] −
0.293615 × 𝐸𝑇𝐴_𝐸𝑡𝑎𝑃_𝐹 − 0.124508 × 𝑛𝐶𝑟𝑠 − 0.126071 × 𝑅𝑎𝑚 −
0.064782 × 𝑛𝐶𝑏 − 

6 89 0.789 0.724 - 29 0.767 0.756 M 

AChEI GSK-3β 

pIC50 (nM)_ AChEI =  −8.9587 − 0.6585 × 𝐶 − 026 + 0.6051 ×
𝑙𝑜𝑔_𝐺𝑆𝐾3𝐵 + 15.8263 × 𝐸𝑇𝐴_𝐸𝑝𝑠𝑖𝑙𝑜𝑛_1 

2 14 0.847 0.761 - 4 0.837 0.824 G 

GSK-3β AChEI 

pIC50 (nM)_ GSK-3β = −4.25506 + 0.31626 × 𝑙𝑜𝑔_𝐴𝐶ℎ𝐸𝐼 + 2.20735 ×
𝑀𝑎𝑥𝑎𝑎𝑠𝐶 

1 14 0.891 0.858 - 4 0.943 0.939 G 



Chapter 4 Results and discussions 

 

 

 

 
 

220 
 

  

AChEI MAO-B 

pIC50 (nM)_ AChEI =  37.6420 + 0.4495 × 𝐹01[𝐶 − 𝑁] − 0.7457 ×
𝑁% +  1.0504 𝑀𝑎𝑥𝑑𝑠𝑠𝐶 − 27.2159 × 𝐸𝑇𝐴_𝐸𝑝𝑠𝑖𝑙𝑜𝑛_5 − 4.0017 ×
𝑀𝑎𝑥𝑎𝑎𝐶𝐻 + 0.3758 × 𝐵05[𝑁 − 𝐶𝑙] − 2.2041 × 𝑀𝐴𝑋𝐷𝑃 + 0.1345 ×
𝑙𝑜𝑔_𝑀𝐴𝑂 − 𝐵 

6 42 0.793 0.677 - 10 0.755 0.638 M 

BACE1 GSK-3β 

pIC50 (nM)_ BACE1 =  −3.10715 + 0.11713 × 𝑚𝑎𝑥_𝑐𝑜𝑛𝑗_𝑝𝑎𝑡ℎ −
0.12209 × 𝑚𝑖𝑛𝑠𝑂𝐻 + 0.62254 × 𝐶 − 025 +  0.81474 × 𝑙𝑜𝑔_ 𝐺𝑆𝐾 − 3𝛽 

3 15 0.862 0.662 - 5 0.808 0.779 G 

GSK-3β BACE1 

pIC50 (nM)_ GSK-3β =  −2.50148 − 2.03802 × 𝑀𝐴𝑇𝑆2𝑒 + 0.14716 ×
𝑙𝑜𝑔_𝐵𝐴𝐶𝐸1 − 0.02185 × 𝑍𝑀𝐼𝐶4 +  0.10199 × 𝑀𝐴𝑋𝐷𝑁 − 0.04842 ×
𝐴𝐴𝑇𝑆3𝑠 

3 15 0.808 0.569 - 5 0.668 0.666 - 

BACE1 BuChEI 

pIC50 (nM)_ BACE1 =  −3.5140 + 0.58485 × 𝑀𝑎𝑥𝑠𝐶𝐻3 − 0.13063 ×
𝐹01[𝐶 − 𝑂] + 0.94806 × 𝑛𝐹𝑢𝑟𝑎𝑛𝑒𝑠 + 0.06244 × 𝑙𝑜𝑔_𝐵𝑢𝐶ℎ𝐸𝐼 +
1.37864 × 𝐵05[𝑂 − 𝑂] − 0.07915 × 𝑛𝐶𝐼𝐶 

5 39 0.943 0.882 G 12 0.942 0.940 G 

BuChEI BACE1 

pIC50 (nM)_ BuChEI =  −3.12300 − 1.57604 × 𝑛𝐹𝑢𝑟𝑎𝑛𝑒𝑠 + 9.30594 ×
𝑅𝐹𝐷 − 0.00055 × 𝐹08[𝐶 − 𝐶] + 1.97203 × 𝑛𝑅09 + 0.09518 ×
𝑙𝑜𝑔_𝐵𝐴𝐶𝐸1 − 2.62602 × 𝐵04[𝑂 − 𝑂] 

- 39 0.956 0.857 G 12 0.942 0.941 G 

β-

amyloid BuChEI 

pIC50 (nM)_ β-amyloid =  −2.12671 − 4.83670 × 𝐸𝑇𝐴_𝐸𝑡𝑎𝑃_𝐹 +
0.13649 × 𝑙𝑜𝑔_𝐵𝑢𝐶ℎ𝐸𝐼 + 1.32042 × 𝑚𝑖𝑛𝑠𝑠𝐶𝐻2 + 0.16273 × 𝑆𝑎𝑎𝑠𝐶 +
0.09384 × 𝐹08[𝐶 − 𝐶] − 0.11038 × 𝐹06[𝐶 − 𝐶] + 1.01759 × 𝑈𝑐  

4 93 0.805 0.771 M 30 0.776 0.776 M 

BuChEI 

β-

amyloid 

pIC50 (nM)_BuChEI =  −2.17 + 0.00370 × 𝐷/𝐷𝑡𝑟10 − 0.0654 × 𝑛𝐶𝑝 +
1.45 × 𝑛𝐶𝑟𝑡 + 1.73 × 𝑛𝑅𝑁𝐻𝑅 + 0.403 × 𝑙𝑜𝑔_𝐵𝑒𝑡𝑎 𝐴𝑚𝑦𝑙𝑜𝑖𝑑 −
0.0696 × 𝑛𝐴𝐵 

- 93 0.879 0.837 G 30 0.910 0.910 G 

GSK-3β BuChEI 

pIC50 (nM)_ GSK-3β =  −3.38300 + 0.22068 × 𝑁% + 0.14374 ×
𝑙𝑜𝑔_𝐵𝑢𝐶ℎ𝐸𝐼 + 0.30867 × 𝑚𝑖𝑛𝑠𝑠𝐶𝐻2 

2 14 0.946 0.858 M 4 0.922 0.922 G 

MAO-B BuChEI 

pIC50 (nM)_ MAO-B =  −7.47908 + 1.04311 × 𝑛𝐶𝑡 + 2.00343 ×
𝑚𝑖𝑛𝑠𝐶𝐻3 + 0.61755 × 𝐵08[𝑁 − 𝑂] + 0.24486 × 𝐹06[𝐶 − 𝑂] +
0.06530 × 𝑙𝑜𝑔_𝐵𝑢𝐶ℎ𝐸𝐼 + 1.33039 × 𝑛𝑅𝑂𝐻 + 2.42118 × 𝑛𝑅𝑁𝐻𝑅 −
0.67456 × 𝐸𝑇𝐴_𝐵𝑒𝑡𝑎_𝑛𝑠_𝑑 

6 39 0.758 0.638 - 12 0.771 0.771 - 
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Figure 4.96. Scatter plots of observed v/s predicted values for 5-HT6, AChE, BACE1, β-amyloid, BuChE, 

and CDK-5 models. 
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Figure 4.97. Scatter plots of observed v/s predicted values for γ-secretase, Glutaminyl Cyclase, GSK-3β, 

MAO-B, NMDAR, and PDE 10A models. 
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Figure 4.98. Scatter plots of observed v/s predicted values for selectivity based (AChE-BACE1, AChE-β-

Amyloid, AChE-BuChE, AChE-GSK-3β, AChE-MAO-B, and BACE1-GSK-3β) models. 
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Figure 4.99. Scatter plots of observed v/s predicted values for selectivity-based (BuChE-BACE1, BuChE-

β-Amyloid, BuChE-GSK-3β, and BuChE-MAO-B) models. 
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Figure 4.100. Scatter plots of observed v/s predicted values for QSAAR (BACE1 (X)-AChE (Y), AChE 

(X)-BACE1 (Y), β-Amyloid (X)-AChE (Y), AChE (X)-β-Amyloid (Y), BuChE (X)-AChE (Y) and AChE 

(X)-BuChE (Y)) models. 
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Figure 4.101. Scatter plots of observed v/s predicted values for QSAAR (GSK-3β (X)-AChE (Y), AChE 

(X)-GSK-3β (Y), BuChE (X)-BACE1 (Y), GSK-3β (X)-BACE1 (Y), BACE1 (X)-GSK-3β (Y) and BACE1 

(X)-BuChE (Y)) models. 
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Figure 4.102. Scatter plots of observed v/s predicted values for QSAAR (BuChE (X)-β-Amyloid (Y), β-

Amyloid (X)-BuChE (Y), MAO-B (X)-AChE (Y), BuChE (X)-GSK-3β (Y) and BuChE (X)-MAO-B (Y)) 

models. 

4.6.1.1. Mechanistic interpretation of the Descriptors Involved in the Developed Individual QSAR 

Models 

4.6.1.1.1. 5-hydroxytryptamine receptor 6 (5-HT6) 

The first most important descriptor in this model is minssNH, the value of minssNH is 2.844 for the most 

active compound 1 and 0 for the least active compound 74. The positive regression coefficient of this 

descriptor indicates that the higher value of the descriptor leads to an improved inhibitory activity against 

the enzyme. The second most significant descriptor in this series is F04[C-O], the value of F04[C-O] 

descriptor is 6 for the most active compound 3 and 0 for the least active compound 74. The positive sign of 

the coefficient of this descriptor confirms that the larger the value of the descriptor higher the inhibitory 

activity towards the enzyme. According to the discussion made above, the minssNH, and F04[C-O] of the 

most active compounds must be higher than those of the less active compounds (see Figure 4.104).  

4.6.1.1.2. Acetylcholinesterase (AChE) enzyme 

In this model, the first most significant descriptor is X2v which belongs to the class of connectivity index 

and is related to molecular branching and shape information. The positive regression coefficient sign 

confirms that the AChE enzyme inhibitory activity may be increased by an increase in molecular branching 

and shape (bond angles) in the compounds. For instance, we can see the most active compound 1754 has a 

higher value leading to better inhibitory activity, while the least active compound 698 has the lowest value 

for this descriptor. Another positively correlated descriptor, DBI, represents the branching nature of the 

compound. With an increase in the branching index, the inhibitory activity will increase as observed in 
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compound 3 (most active). The next positively correlated descriptor, B07[N-N], leads to better inhibitory 

activity against the enzyme as the value of the descriptor is 1 for the most active compound 842 and zero 

for the compound 725. The ring descriptor, D/Dtr05, having a positive regression coefficient suggests that 

a higher numerical value of this descriptor leads to an improved inhibitory activity as verified by the 

compound 841 (most active), and the compounds with no such fragment show lower AChE enzyme 

inhibitory activity as found in the compound 710 (least active) (see Figure 4.103). 

4.6.1.1.3. Butyrylcholinesterase (BuChE) enzyme 

Among the essential features enhancing BuChE enzyme inhibitory activity are nArOCON, N-070, 

MaxaaaC, C-002, F04[C-N], and MDEC-22. As lipophilicity is an important parameter for AD drugs, it 

can be traced from variables nArOCON, C-002, MDEC-22, and MaxaaaC which contributed positively 

towards the inhibitory activity as evidenced by the compounds 593, 416, and 415 (most active) respectively. 

The enhanced concentration of electronegative atom count in a molecule has a direct impact on the 

improved inhibitory activity. This hypothesis can be confirmed by the presence of variables N-070 and 

F04[C-N] which contributed positively as evidenced by the compounds 415 and 416 (most active) 

respectively. Again, variables nCs, nArNHR, H-051, and Psi_e_A contributed negatively which means that 

the presence of these features in the molecules leads to lower inhibitory activity as observed in the 

compounds 2330, 402, 399, and 411 (least active) respectively(see Figure 4.103). 

 

Figure 4.103. Possible mechanistic interpretation of the most significant descriptors obtained from the 

models against AChE and BuChE enzymes. 

4.6.1.1.4. Beta-secretase 1 (BACE1) enzyme 

The final equation comprises 28 descriptors, among which five descriptors (SA score, F08[N-N], Ui, X5v, 

and F04[O-O]) contributed most against the enzyme as shown by the VIP statistic (VIP score > 1). Among 

them, four variables showed positive contribution towards an inhibitory activity which include SA score, 

F08[N-N], Ui, and X5v, which means that the presence of these features in the molecules leads to better 

inhibitory activity as found in the compounds 455 and 463 (in case of X5v). The negative contribution of 
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F04[O-O] denotes the frequency of two oxygen atoms at topological distance 4, suggesting that a higher 

number of electronegative atom count in a molecule has a direct impact on the inhibitory activity as 

observed in the compound 819 (least active) (see Figure 4.104). 

4.6.1.1.5. β-amyloid aggregation 

The major group of positive contributing descriptors involved in the developed equation by PLS is 

subgroups like SssCH2, PW3, and F04[N-O]. The direct relationship of the descriptor SssCH2 suggested 

that the presence of the number of such -CH2- groups in the molecules leads to better β-amyloid aggregation 

inhibitory activity as longer chain compounds with a higher number of -CH2- groups would be more 

lipophilic resulting in improved brain permeability. This assumption can be confirmed by compound 57 

having a higher number of -CH2- groups in their structure, showing higher descriptor values leading to 

their higher range of inhibitory activity. The descriptor, PW3 can be considered as a shape descriptor whose 

value increases with increased branching in the vertices. The descriptor F04[N-O] denotes the frequency of 

nitrogen and oxygen atoms at the topological distance 4. These two contribute positively towards inhibitory 

activity as evident by the compound 59. Again, descriptors F05[C-O], F02[N-N], and MAXDN contributed 

negatively which means that the presence of these features in the molecules shows lower inhibitory activity 

as observed in the compounds 149, 262 and 175 respectively (see Figure 4.104). 

4.6.1.1.6. Cyclin Dependent Kinase 5 (CDK-5) protein 

In this model, NaaaC is the most contributing descriptor toward inhibitory activity. It denotes the number 

of atoms of type aaaC (π), aromatic fused carbons. The fragment has a positive contribution toward 

inhibitory activity against protease. A compound like 195 shows higher inhibitory activity due to the 

presence of a high number of aaaC fragments. The next most important descriptor PBF denotes the Plane 

of best fit in the compounds having a negative coefficient towards the inhibitory activity. Therefore, for 

improved activity, their values must be augmented as low as possible. This statement can be confirmed by 

compound 146 having higher descriptors values, showing their lower range of inhibitory activity (see 

Figure 4.105). 

4.6.1.1.7. Gamma-secretase enzyme  

As per the VIP plot, P_VSA_MR_7 is the most significant with a positive coefficient feature towards the 

inhibitory activity in this model. P_VSA_MR_7 belongs to P_VSA-like descriptors that are calculated from 

the amount of van der Waals surface area (VSA), thus being related to the lipophilic feature. Compound 

209 with a high value of P_VSA_MR_7 showed strong inhibitory activity (see Figure 4.104). The variables 

nOHp, B05[N-N], and nRCOOH, contributed negatively suggesting that the presence of these features in 

the compounds will result in a lower inhibitory activity as observed in the compounds 41, 207, and 66 (least 

active) respectively (see Figure 4.104). 

4.6.1.1.8. Glutaminyl Cyclase (QCs) enzyme 

The developed QSAR model showed that the features C-034, ETA_Sh_Y, F05[C-S], and PBF are important 

for defining the inhibitory activity against the QCs enzyme. Lipophilicity is a significant parameter for AD 

drugs as can be noticed from the variable C-034 which contributed positively towards the inhibitory activity 

as evidenced by compound 34 (most active). C-034 enhancing lipophilicity represents the feature R-CR..X, 

where R is any group linked through carbon; X is an electronegative atom (O, N, S, P, Se, halogens); ‘-‘is 

an aromatic bond as in benzene or delocalized bonds such as the N, O bond in a nitro group; .. denotes 

aromatic single bond). In this series, variables ETA_Sh_Y, F05[C-S], and PBF contributed negatively 
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suggesting that the presence of these features in the compounds will result in a lower inhibitory activity as 

evidenced by the molecules 33, 31, and 72 (least active) respectively (see Figure 4.104). 

 

Figure 4.104. Mechanistic interpretation of the most significant descriptors obtained from the models 

against β-amyloid aggregation, 5-HT6, BACE1, γ-Secretase, and Glutaminyl Cyclase. 

4.6.1.1.9. Glycogen synthase kinase-3β (GSK-3β) enzyme 

The first and most crucial feature important for the GSK-3β enzyme inhibitory activity was nThiazoles, 

which designates the number of thiazole rings present in the molecules. The lipophilicity accompanying 

molecular bulk was the next most significant feature responsible for enzyme inhibitory activity which 

appeared as SaaaC, SaasC, and PDI. SaaaC is an atom-type E-state index for carbons with three aromatic 

connections and SaasC is for aromatic carbons with an attached substituent atom. The positive coefficients 

of SaaaC and SaasC in the model were considered to be a consequence of the importance of aromatic rings 

in controlling the inhibitory activity of the compounds, both in determining the compound's hydrophobicity 

and its π-π interactions with the target as witnessed in the molecular docking study. The packing density 

index (PDI) is a molecular property descriptor. PDI is designated as the ratio between the McGowan volume 

and the total surface area403. The positive sign of the coefficient of these descriptors confirms that the larger 

the value of descriptors higher is the inhibitory activity towards the enzyme as witnessed by compound 153 

(most active). Again, the next significant descriptor mindsCH designates the minimum atom-type E-State: 

=CH- contributed negatively means the presence of this feature in the compounds shows the lower 

inhibitory activity as observed in compound 161 (least active) (see Figure 4.105). 
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4.6.1.1.10. Monoamine oxidase B (MAO-B) enzyme 

As per the VIP score, mindsCH is the most significant descriptor that appeared in this equation which 

contributed negatively towards the inhibitory activity as observed in compound 25 (least active). This 

feature also appeared in the previous model (GSK-3β) with a negative coefficient toward inhibitory activity. 

In this series next most significant descriptors are F02[O-O], C%, and nRCN. The positive regression 

coefficient sign confirms that the inhibitory activity increases with the presence of the above fragments 

which can be verified by the most active compounds 86 (in the case of F02[O-O] and C%) and 72 (in the 

case of nRCN) in their structure(see Figure 4.105). The other significant features were polar oxygen groups 

(B06[O-Cl], B01[C-O]), molecular branching (Eta_B), secondary aromatic amine (nArNHR), minssCH2, 

logP, and F05[C-N] contributed negatively suggesting that the presence of these features in the compounds 

will result in lower inhibitory activity. 

4.6.1.1.11. N-methyl-D-aspartate (NMDA) receptor 

The higher concentration of electronegative atom count in a compound has a direct impact on the lowering 

of antagonistic activity against the target protein. This hypothesis can be confirmed by the presence of 

variables SaaN, TPSA(NO), C-043, ATSC2m, and MDEN-23 contributed negatively as evidenced by the 

compounds 483 and 446 (least active). According to the VIP scores, SaaN is the most contributing 

descriptor in the model which encodes information about both the topological environment of the particular 

atom and the electronic interactions due to all other atoms in the molecule. SaaN is the sum of E-State 

values of all nitrogen atoms with two aromatic bonds found in the molecule (see Figure 4.105). 

4.6.1.1.12. Phosphodiester 10A (PDE 10A) enzyme 

The leading group of positive contributing descriptors involved in the developed model is subgroups like 

N-070, and AMR. The direct association of the descriptor N-070 suggested that the presence of the number 

of N atoms in the Ar-NH-Al group with Al representing aliphatic groups in the compounds leads to better 

enzyme inhibitory activity. The hydrophobicity associated with molecular bulk was the next most 

significant feature responsible for the inhibitory activity which appeared as AMR variables, as the higher 

the features in the compounds higher would be the lipophilicity resulting in improved brain permeability. 

This concept can be confirmed by compound 226 (most active) (see Figure 4.105). 
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Figure 4.105. Contributions of the most significant descriptors obtained from the models against CDK-5, 

PDE 10A, NMDAR, GSK-3β, and MAO-B enzymes. 

4.6.1.2. Mechanistic interpretation of the descriptors involved in the development of selectivity-based 

models 

4.6.1.2.1. Selectivity of AChE and BACE1 enzyme inhibitors 

According to the VIP score, F08 [N–O] is the most significant positively contributing descriptor in the 

model for more specific inhibition to AChE enzyme than BACE1 enzyme inhibitory activity. Thus, the 

higher number of this fragment leads to better AChE enzyme inhibitory activity as noticed in the case of 

compound 2. Again, the variable B05[N-O] contributed negatively and is more specific to BACE1 enzyme 

inhibitory activity than AChE enzyme inhibitory activity. So, the higher number of this fragment correlates 

with lower AChE enzyme inhibitory activity as observed in the case of compound 28 (see Figure 4.106). 

4.6.1.2.2. Selectivity of AChE enzyme and β-amyloid aggregation inhibitors 

The important group of the positive contributing variables more specific to the AChE enzyme inhibitory 

activity involved in the developed model is subgroups like B07[C-N], F06[C-Cl], SAscore, and 

ETA_Shape_Y. In these features, ETA_Shape_Y signifies the measure of molecular shape. The straight 

connotation of these descriptors suggested that the presence of the above groups in the compounds leads to 

better AChE enzyme inhibitory activity. This concept can be confirmed from compound 60 (most active). 

The next significant features of negative contributing more specific to β-amyloid aggregation inhibitory 

activity than AChE enzyme inhibitory activity appeared in the developed equation are subgroups like 

nArNH2, F10[C-Cl], and PJI2. In this series, variable nArNH2 signifies the presence of the number of 

primary aromatic amines in the compounds. The above specification can be confirmed by compounds 3 (in 

the case of nArNH2) and 10 respectively (see Figure 4.106). 
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4.6.1.2.3. Selectivity of AChE and BuChE enzyme inhibitors 

Among the crucial features improving AChE enzyme inhibitory activity are F06[N-O] and nR12, as 

lipophilicity is an important parameter for AD drugs and can be outlined from variable nR12. Thus, the 

higher number of these fragments leads to better AChE enzyme inhibitory activity as noticed in the case of 

compound 81 (most active). Again, variables constituting electronegative atoms (B03[N-N], B03[N-O], 

nROR, N%, and GD) contributed negatively suggesting that the presence of these features in the compounds 

more specific to BuChE inhibitory activity as observed in the compounds 93, 92 and 94 respectively (see 

Figure 4.106). 

4.6.1.2.4. Selectivity of AChE and MOA-B enzyme inhibitors 

The most significant features enhancing lipophilicity (SsssCH, and F10[C-C]), and constituting 

electronegative and polar atoms (O%, F10[C-N], and minsCH3) contributed negatively suggesting that the 

presence of these features in the compounds are more favorable for MOA-B enzyme inhibitory activity as 

evidenced by the compounds 52, 44, 25 and 35. In this series, the next most significant descriptors that 

contributed positively are F09[C-C], and MaxsCH3, which are more specific to the AChE enzyme 

inhibitory activity than MOA-B enzyme inhibitory activity. Thus, the higher number of this fragment leads 

to better AChE enzyme inhibitory activity as observed in compounds 27 and 18 respectively(see Figure 

4.106). 

 

Figure 4.106. Mechanistic interpretation of the most significant descriptors obtained from the selectivity-

based (AChE-BACE1, AChE-β-Amyloid, AChE-BuChE, and AChE-MAO-B) models. 
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4.6.1.2.5. Selectivity of BACE1 and GSK-3β enzyme inhibitors 

The significant descriptors in this series are nRotB and AATSC1swhichcontributed negatively toward the 

inhibitory activity against the BACE1 enzyme; accordingly, these features are more specific to GSK-

3βenzyme inhibitory activity. Thus, the higher number of this fragment shows lower BACE1 enzyme 

inhibitory activity as seen in compounds 5 and 12 respectively (see Figure 4.107). 

4.6.1.2.6. Selectivity of BuChE and BACE1 enzyme inhibitors 

In the MLR equation, variables NaasC, minaaaC, nArCO, and ZM1Kup contributing positively were the 

most significant descriptors toward the inhibitory activity against the BuChE enzyme, which means the 

presence of these features in the compounds are most specific to the BuChE enzyme inhibitory activity than 

BACE1 as observed in the molecules 7, 2, and 3 respectively. While variables constituting lipophilicity 

(ALOGP2, and nR=Ct) contributed negatively suggesting that the presence of these features in the 

molecules is more specific to BACE1inhibitory activity as observed in compound 8 (see Figure 4.107). 

4.6.1.2.7. Selectivity of BuChE enzyme and β-amyloid aggregation inhibitors 

The higher concentration of electronegative atom count and aromaticity in a compound has a direct impact 

on the better inhibitory activity against the BuChE enzyme. This premise can be confirmed from the 

presence of variables D/Dtr10 (aromatic ring count) and B04[N-N], B10[C-O], B08[C-N], 

ETA_dEpsilon_B (electronegative atom counts) contributed positively as evidenced by the compounds 35, 

1 and 4 (most active) respectively. The other features B10[C-N], LOGP99, B10[N-O], PJI2, B08[O-O], 

and ETA_Shape_Y contributed negatively to the model are more specific to the β-amyloid aggregation 

inhibitory activity than BuChE enzyme inhibitory activity as observed in the compounds 124, 118, 120, 

and 14 respectively (see Figure 4.107).  

4.6.1.2.8. Selectivity of BuChE and MOA-B enzyme inhibitors 

The molecules constituting variables containing tertiary nitrogen atoms (SsssN) and nitrogen and oxygen 

atoms at the topological distance 6 (B06[N-O])are more specific to the BuChE enzyme inhibitory activity 

than the MOA-B enzyme inhibitory activity as seen in the compound 23. The variables imparting 

lipophilicity (minsCH3, SsssCH, NdssC, and SAacc) and electronegativity (B08[N-O]) of the compound 

are more specific to the MOA-B enzyme inhibitory activity than the BuChE enzyme inhibitory activity as 

observed in the compounds 4, 47, and 51 (see Figure 4.107). 

4.6.1.2.9. Selectivity of AChE and GSK-3β enzyme inhibitors 

The variable Psi_i_A contributed positively suggesting that the presence of such fragment in the molecule 

is more specific to the AChE enzyme inhibitory activity than GSK-3β enzyme inhibitory activity as seen in 

compound 10. The negatively contributing descriptors ETA_BetaP_ns_d, and F02[C-O] are more specific 

to the GSK-3β enzyme inhibitory activity than the AChE enzyme inhibitory activity as observed in the 

compound 14 (see Figure 4.107). 

4.6.1.2.10. Selectivity of BuChE and GSK-3β enzyme inhibitors 

As we can see in both selectivity-based models, we found similar features contributed accordingly to the 

inhibitory activity. The variables Psi_i_A and nCL suggested that the presence of such fragments in the 

compounds is more specific to the BuChE enzyme inhibitory activity as seen in compounds 13 and 7 

respectively. As the previous model descriptor, ETA_Beta_ns_d contributed negatively, the same effect 

exerted in this equation also suggests that the presence of this feature in the molecule is more specific to 
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the GSK-3β enzyme inhibitory activity than BuChE enzyme inhibitory activity as observed in the 

compound 12 (see Figure 4.107). 

 

Figure 4.107. Probable mechanistic interpretation of the most significant descriptors obtained from the 

selectivity-based (BACE1-GSK-3β, BuChE-BACE1, BuChE-β-Amyloid, BuChE-GSK-3β, BuChE-MAO-

B, and AChE-GSK-3β) models. 

4.6.1.3. Mechanistic interpretation of the descriptors involved in the development of QSAAR-based 

models 

The QSAAR models are the in silico analysis of activity-activity correlations that can be used to evaluate 

the dual inhibitory activity of a molecule. The QSAAR analysis usually comprises the use of activity values 

of one of the endpoints as the response variable (i.e., Y-variable), whereas the activity to the other endpoint 

is used as one of the predictor variables (i.e., X-variable). If the activity values of the identified molecules 

for one endpoint correspond strongly to the values for another endpoint, the chemicals are likely to have a 

similar mode of action for both and vice versa. This section provides a concise and more relevant description 

of the mechanistic interpretation of various QSAAR models. 

4.6.1.3.1. BACE1 enzyme inhibitory activity as a predictor (X) and AChE enzyme inhibitory activity as 

the response (Y) and vice versa 

The activity of both targets is shown to be the most significant predictor variable, positively contributing 

to each other. Other important descriptors in the BACE1 (X)-AChE (Y) and AChE (X)-BACE1 (Y) models 

include nCrs, MaxaasC, PW3, X5v, B08[O-O] (having positive regression coefficients), C-001, nCconj and 

nArOH (having negative regression coefficients) respectively, as established by the VIP plots. The next 
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most important inhibitory activity-enhancing features identified were hydrophobicity, molecular bulk, and 

electronegativity. The descriptors proving this hypothesis were hydrophobicity variables (nCrs, and 

MaxaasC), molecular bulk (PW3), electronegativity (B08[O-O]), and size index (X5v). Thus, the presence 

of these features in the compounds leads to better inhibitory activity (see Figure 4.108). 

4.6.1.3.2. AChE enzyme inhibitory activity as a predictor (X) and β-amyloid inhibitory activity as a 

response (Y) and vice versa 

The activity terms (both contributing positively) are the highest contributing descriptors by the 

corresponding VIP and loading plots. In the β-amyloid (X)-AChE (Y) model, all the identified variables 

(nArCO, B10[N-Cl], PW3, and B07[C-N]) contributed positively toward inhibitory activity. The other 

recognized significant features were B10[N-Cl] and B07[C-N] having positive regression coefficients in 

the β-amyloid (X)-AChE (Y) model while negative regression coefficients in AChE (X)-β-amyloid (Y) 

model, as per the VIP plot. The remaining two descriptors of the AChE (X)-β-amyloid (Y) models are 

SAscore and ETA_EtaP_F_L inversely correlated to the response as shown by their negative regression 

coefficients (see Figure 4.108). 

4.6.1.3.3. BuChE enzyme inhibitory activity as a predictor (X) and AChE enzyme inhibitory activity as 

the response (Y) and vice versa 

The activities against both targets are directly related (both having positive regression coefficients) and the 

most relevant predictor variables for the respective QSAAR models. In the BuChE (X)-AChE (Y) model, 

the essential features enhancing inhibitory activity were lipophilicity (nR10, and nCr), electronegative 

atoms (NssNH, B04[N-O], F06[N-O] and B04[N-Cl]) and other feature like ICR (radial centric information 

index). As per the regression coefficient plot, the presence of these features in the compounds leads to better 

inhibitory activity. The features contributing negatively were F08[C-N], and nROR which indicate that the 

decrease in the values of these variables affects an increase in the inhibitory activity. In the AChE (X)-

BuChE (Y) model, the variable constituting the lipophilicity (NaaCH), shape (DECC) and electronegative 

atoms (B10[N-O]) are significant for enhancing inhibitory activity. Apart from the above descriptors, the 

other identified variables were F06[N-O], MaxsCH3, ETA_EtaP_F, nCrs, Ram, and nCb- inversely 

correlated to the response as suggested by their negative regression coefficients (see Figure 4.108). 

4.6.1.3.4. GSK-3β enzyme inhibitory as a predictor (X) and AChE enzyme inhibitory activity as the 

response (Y) and vice versa 

The responses against both targets are shown to be the most significant predictor variables, contributing 

positively to each other. Other significant variables in the GSK-3β (X)-AChE(Y) and AChE (X)-GSK-3β 

(Y) models comprise C-026 (having negative regression coefficients), ETA_Epsilon_1 and MaxaasC 

(having positive regression coefficients) respectively, as established by the VIP plots. C-026 inversely 

correlated to the response. Furthermore, variables constituting fragments imparting lipophilicity (MaxaasC) 

and electronegative atoms (ETA_Epsilon_1) in the molecules lead to improved inhibitory activity (see 

Figure 4.108). 
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Figure 4.108. Probable mechanistic interpretation of the most significant descriptors obtained from the 

QSAAR (AChE (X)-BACE1 (Y), BACE1 (X)-AChE (Y), β-Amyloid (X)-AChE (Y), AChE (X)-β-

Amyloid (Y), BuChE (X)-AChE (Y) and AChE (X)-BuChE (Y), GSK-3β (X)-AChE (Y), and AChE (X)-

GSK-3β (Y)) models. 

4.6.1.3.5. MAO-B enzyme inhibitory as a predictor (X) and AChE enzyme inhibitory activity as the 

response (Y)  

The positive regression coefficient of the activity variable specifies that the MAO-B enzyme inhibitory 

value is proportionally related to the AChE enzyme inhibitory activity (response). In this series, the most 

significant variables (having positive regression coefficients) were F01[C-N], MaxdssC, and B05[N-Cl], 

enhancing the inhibitory activity. The other recognized significant features were N%, MAXDP, 

ETA_Epsilon_5, and MaxaaCH inversely associated with the response as suggested by their negative 

regression coefficients (see Figure 4.109). 

4.6.1.3.6. GSK-3β enzyme inhibitory as a predictor (X) and BACE1 enzyme inhibitory activity as the 

response (Y) and vice versa 

The activity end points of both targets (with positive regression coefficients) contributed the most to the 

development of the respective models. The QSAAR model for GSK-3β (X)-BACE1 (Y) includes 

max_conj_path and C-025, which contributed positively towards inhibitory activity. The last variable in 

this model was minsOH having a negative regression coefficient towards the inhibitory activity. In the 

BACE1 (X)-GSK-3β (Y) model, the identified important features were MAXDN (having a positive 

regression coefficient) signifying the maximal electrotopological negative variation in the compounds. The 
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other recognized important variables were MATS2e, ZMIC4, and AATS3s inversely associated with 

inhibitory activity (see Figure 4.109). 

4.6.1.3.7. BuChE enzyme inhibitory as a predictor (X) and BACE1 enzyme inhibitory activity as the 

response (Y) and vice versa 

Similar to the aforementioned QSAAR models delineated above, the activity end points of both targets 

(with positive regression coefficients) contributed the most to the development of the respective models. 

The significant variables in the BuChE(X)-BACE1(Y) model includes MaxsCH3, nFuranes, and B05[O-

O], having positive regression coefficients, thus, the presence of these features in the compounds leads to 

better inhibitory activity. Again, the variables F01[C-O], and nCIC have negative regression coefficients 

and inversely affect the inhibitory activity. In the BACE1(X)-BuChE (Y) model, the second most 

significant inhibitory activity-improving feature was identified as hydrophobicity. The variable evidencing 

this premise was hydrophobicity variables (RFD, F08[C-C], and nR09), thus, the presence of these 

fragments in the molecules leads to enhanced inhibitory activity (see Figure 4.109). 

4.6.1.3.8. BuChE enzyme inhibitory as a predictor (X) and β-amyloid inhibitory activity as the response 

(Y) and Vice Versa 

The inhibitory activities against both targets are shown to be the most important predictor variables, 

contributing positively to each other. Amongst the essential features enhancing inhibitory were hydrophobic 

moieties (SaasC, F08[C-C], Uc, and nCrt), size (D/Dtr10), constituting secondary aliphatic amines 

(nRNHR), and hybrid group (minssCH2), means the presence of these fragments in the molecules leads to 

improved inhibitory activity. In contrast, fragments with inhibitory activity lowering potential against the 

enzyme were ETA_EtaP_F, F06[C-C], nCp, and nAB (see Figure 4.109). 

4.6.1.3.9. BuChE enzyme inhibitory as Predictor (X) and GSK-3β enzyme inhibitory activity as the 

response (Y)  

The positive regression coefficient of the activity variable indicates that the BuChE enzyme inhibitory value 

is proportionally related to the GSK-3 enzyme inhibitory activity (the endpoint). The other important 

variables in this model were N% and minssCH2, having positive regression coefficients towards the 

inhibitory activity (see Figure 4.110). 

4.6.1.3.10. BuChE enzyme inhibitory as Predictor (X) and MAO-B enzyme inhibitory activity as the 

response (Y)  

The positive regression coefficient of the activity variable suggests that the BuChE enzyme inhibitory value 

is consistently connected to the MAO-B enzyme inhibitory activity (endpoint). The essential features 

improving inhibitory activity were hydrophobic moiety (nCt), polar moieties (nROH, F06[C-O], and 

B08[N-O]), constituting secondary aliphatic amines (nRNHR) and hybrid group (minsCH3), which 

suggests that the presence of these features in the compounds leads to better inhibitory activity. On the other 

hand, fragments with inhibitory activity lowering potential against the enzyme are ETA_Beta_ns_d (see 

Figure 4.110). 
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Figure 4.109. Probable mechanistic interpretation of the most significant descriptors obtained from the 

QSAAR (GSK-3β (X)-BACE1 (Y), BACE1 (X)-GSK-3β (Y), BuChE (X)-BACE1 (Y), BACE1 (X)-

BuChE (Y), BuChE (X)-β-Amyloid (Y), β-Amyloid (X)-BuChE (Y) and MAO-B (X)-AChE (Y)) models. 
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Figure 4.110. Possible mechanistic interpretation of the most significant descriptors obtained from the 

QSAAR (BuChE (X)-GSK-3β (Y) and BuChE (X)-MAO-B (Y)) models. 

4.6.1.4. Applicability domain (AD) study 

In the current investigation, the DModX approach404-405 was applied at the 99% confidence level using 

SIMCA-P version 10.0 software to perform the AD evaluation of established PLS models, whereas the AD 

of the developed MLR models was estimated using the standardization approach300 with the help of tool 

developed in our laboratory (http://teqip.jdvu.ac.in/QSAR Tools/). 

4.6.1.4.1. Individual QSAR models  

The DModX outcomes of the PLS models revealed that most of the developed models (against 5-HT6, β-

amyloid aggregation, GSK-3β enzyme, and MAO-B enzyme) had no compound in the test set outside the 

AD. However, in the case of the AChE enzyme model, 48 compounds (i.e. compounds 241, 300, 364, 412, 

458, 520, 655, 720, 764, 765, 776, 814, 839, 1077, 1115, 1135, 1138, 1141, 1212, 1216, 1271, 1275, 1299, 

1300, 1338, 1352, 1357, 1364, 1366, 1368, 1371, 1379, 1398, 1399, 1411, 1463, 1651, 1652, 1656, 1673, 

1679, 1680, 1680, 1688, 1689, 1690, 1693, and 1695) in the test set are located outside the AD. In the case 

of the BuChE enzyme model, 57 compounds (i.e. compounds 186, 210, 255, 257, 281, 294, 419, 438, 451, 

478, 580, 635, 637, 641, 645, 651, 807, 879, 928, 933, 955, 966, 970, 972, 981, 1003, 1006, 1012, 1015, 

1016, 1405, 1580, 1582, 1617, 1733, 1793, 1797, 1799, 1802, 1817, 1819, 1914, 1928, 2052, 2104, 2156, 

2216, 2224, 2237, 2242, 2249, 2256, 2257, 2354, 2374, 2386, and 2387) in the test set are placed outside 

the AD. In the case of the BACE1 enzyme model, we found 16 compounds (i.e. compounds 7, 23, 33, 147, 

336, 409, 464, 574, 684, 695, 788, 791, 820, 824, 830, and 857) in the test set are positioned outside the 

AD. In the case of the CDK-5 protein model, only 3 compounds (i.e. compounds 32, 184, and 186) in the 
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test set are situated outside the AD. In the case of the Gamma-secretase enzyme model, only 2 compounds 

(i.e. compounds 76 and 80) in the test set are positioned outside the AD. In the case of the Glutaminyl 

Cyclase (QCs) enzyme model, only 1 compound (i.e. compound 3) in the test set is located outside the AD. 

In the case of the NMDA receptor model, only 3 compounds (i.e. compounds 107, 338, and 434) in the test 

set are placed outside the AD. In the case of the PDE 10A enzyme model, only 5 compounds (i.e. 

compounds 58, 79, 182, 204, and 206) in the test set are located outside the AD. 

4.6.1.4.2. Selectivity-based QSAR models  

The AD results of the models revealed that the majority of the developed models (BACE1-GSK-3β enzyme 

inhibitors, AChE-GSK-3β enzyme inhibitors, BuChE-GSK-3β enzyme inhibitors, AChE-BACE1 enzyme 

inhibitors, AChE enzyme-β-amyloid aggregation inhibitors, and AChE-MOA-B enzyme inhibitors) had no 

molecules in the test set outside the AD. However, in the case of the AChE-BuChE enzyme inhibitors 

model, only 2 compounds (i.e. compounds 29 and 137) in the test set are positioned outside the AD. In the 

case of the BuChE-BACE1 enzyme inhibitors model, only 1 compound (i.e. compound 1) in the test set is 

located outside the AD. In the case of the BuChE enzyme-β-amyloid aggregation inhibitors model, only 2 

compounds (i.e. compounds 62 and 76) in the test set were placed outside the AD. In the case of the BuChE 

-MOA-B enzyme inhibitors model, only 1 compound (i.e. compound 9) in the test set is situated outside 

the AD. 

4.6.1.4.3. QSAAR-based models 

AD plots of the developed QSAAR models revealed that except for the β-amyloid (X)-BuChE (Y) model 

which contained one test set molecule (molecule 14) and the AChE (X)-β-amyloid (Y) model which contain 

two test set compounds (i.e. compound 26 and 80) outside the AD, all of the developed QSAAR models 

exhibited 100% domain of applicability for all potential combinations. 

4.6.1.5. Activity prediction using the developed 2D-QSAR models 

In the current work, well-validated QSAR models were individually used to predict the inhibitory activity 

of four chemical drug-like databases, which had no reported quantitative experimental response values in 

their source files against the respective targets. Primarily, the established models were utilized to compute 

the predicted values of database compounds; the validated models were capable of precisely predicting the 

inhibitory activity of the majority of the molecules, as suggested by the ‘alvaRunner version 2.0.4’ tool 

(https://www.alvascience.com/alvarunner/). After prediction, we arranged the compounds based on 

predicted values (highest to least active). In a detailed analysis of the predicted chemical databases, we have 

identified the top 56 lead compounds with multitarget inhibitory activity, which are stated in Table 4.24. 
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Table 4.24. List of identified top lead compounds from the databases with multitarget inhibitory activity 

using developed models. 

Compound ID Smiles Targets and their predicted inhibitory activity (IC50nm) 

STOCK7S-

62250 

CC(C1CCC(CC1)(C)c1cc2Cc3cc(c(cc3

O)Cc3cc(O)c(cc3C3(C)CCC(CC3)C(C)

C)Cc3cc(c(cc3O)Cc3cc(c(Cc4c(cc(Cc5c(

cc(Cc6c(cc(Cc1cc2O)c(c6)C1(C)CCC(C

C1)C(C)C)O)c(O)c5)C1(C)CCC(CC1)C(

C)C)c(c4)C1(C)CCC(CC1)C(C)C)O)cc3

C1(C)CCC(CC1)C(C)C)O)C1(C)CCC(C

C1)C(C)C)C1(C)CCC(CC1)C(C)C)C 

AChE BACE1 CDK-5 GSI 

0.000474 2.663E-08 0.00243 0.0282 

118199 O=CN(C)C(=S)S[Sb](SC(=S)N(C=O)C)

SC(=S)Nc1ccc(cc1)S(=O)(=O)Nc1ccc(/

N=N/c2ccccc2)cc1 

AChE BACE1 GSI BuChE 

0.00157 2.794E-05 0.0097 7.870 

118200 S(C(=S)NC(=O)OCC)[Sb](SC(=S)NC(=

O)OCC)SC(=S)Nc1ccc(cc1)S(=O)(=O)N

c1ccc(/N=N/c2ccccc2)cc1 

0.00108 0.00061 7.97E-05 1.629 

BAS 01060168 c12c3c(C(c4c5c6c(cc4)c(ccc6c(n[nH]5)

C)OC)c4ccccc4)ccc1c(ccc2c(n[nH]3)C)

OC 

5-HT6 BuChE CDK-5 

0.0119 1.875 0.059 

BAS 01060169 C(c1c2c3c(cc1)c(ccc3c(n[nH]2)C)OC)(c

1c2c3c(cc1)c(ccc3c(n[nH]2)C)OC)c1ccc

(cc1)OC 

0.0087 1.954 0.046 

STOCK7S-

67258 

CCCC[Sn](OC(=O)CCCC(N1C(=O)C(=

C(C1=O)Cl)Cl)C(=O)O[Sn](CCCC)(CC

CC)CCCC)(CCCC)CCCC 

AChE BACE1 GSI 

6.2906E-06 6.96627E-07 0.0948 

STOCK7S-

70271 

CCCCCCC1c2cc3c4cc2OP(=S)(Oc2c1c

c1c(c2)OP(=S)(Oc2c(C1CCCCCC)cc1C

(c5cc(C3CCCCCC)c(OP(=S)(O4)N(C)C

)cc5OP(=S)(Oc1c2)N(C)C)CCCCCC)N(

C)C)N(C)C 

0.00986 0.000221 2.486E-05 

127500 S(C(=S)NC(=O)OCC)[Sb](SC(=S)NC(=

O)OCC)Sc1nc2c(s1)cc(/N=N/c1ccc(cc1)

NS(=O)(=O)c1ccc(cc1)NC(=O)C(N1CC

1)(N1CC1)N1CC1)cc2 

8.182E-05 5.273E-06 0.001002 

381279 [Si](N([Si](C)(C)C)[Sn](C(Cl)(Cl)Cl)(Cl

)N([Si](C)(C)C)[Si](C)(C)C)(C)(C)C 

1.5761E-06 1.0843E-25 0.062 

633331 P1([Fe+2](P(c2ccccc2)(c2ccccc2)C=C1)

([I-])([C-]#[O+])([C-

](C(F)(F)F)(C(F)(F)F)F)[C-

]#[O+])(c1ccccc1)c1ccccc1 

2.878E-07 1.298E-23 0.1194 

633993 P1([Fe+2](P(CC1)(c1ccccc1)c1ccccc1)([

C-]#[O+])([C-]#[O+])([I-])[C-

](C(F)(F)F)(F)C(F)(F)F)(c1ccccc1)c1ccc

cc1 

1.637E-07 2.149E-28 0.119 
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635009 [Mn+]1([O-]C(=O)C(F)(F)F)([C-

]#[O+])([C-]#[O+])([C-

]#[O+])P(C=CP1(c1ccccc1)c1ccccc1)(c1

ccccc1)c1ccccc1 

0.00635 1.429E-19 0.1122 

643862 [Sn](CCC)(O[Sn](CCC)(OC(=O)c1c(ncc

c1)SC)CCC)(OC(=O)c1cccnc1SC)CCC 

0.00505 6.882E-13 0.0073 

677704 c1c2c(ccc1[N+](=O)[O-])[O-

]1[Cu+2]3([N](=C2)[N-

]C(=[S]3)NCC)[O-

]2c3c(cc(cc3)[N+](=O)[O-])C=[N]3[N-

]C(=[S][Cu+2]123)NCC 

0.00131 3.599E-09 0.0320 

677707 c1c2c(ccc1[N+](=O)[O-])[O-

]1[Cu+2]3([N](=C2)[N-

]C(=[S]3)N(CC)CC)[O-

]2c3c(cc(cc3)[N+](=O)[O-])C=[N]3[N-

]C(=[S][Cu+2]123)N(CC)CC 

0.00021 1.3122E-09 0.0182 

28796-39-6 O=CN(C)C(=S)S[Sb](SC(=S)N(C=O)C)

Sc1nc2c(s1)cc(/N=N/c1ccc(cc1)NS(=O)(

=O)c1ccc(cc1)NC(=O)C(N1CC1)(N1CC

1)N1CC1)cc2 

0.00036 2.548E-07 0.112 

29878-72-6 [Sn](c1ccccc1)(c1ccccc1)([Sn](c1ccccc1

)(c1ccccc1)OC(=O)CCl)OC(=O)CCl 

4.6586E-07 3.2537E-27 0.089 

69272-27-1 c1c(c(c(nc1C)S[Sn](Cl)(Cl)Sc1c(C(=O)

OCC)c(cc(n1)C)C)C(=O)OCC)C 

8.9729E-08 0.00046 0.1039 

82475-53-4 ClCCN(P(=O)(O[Si](c1ccccc1)(C(C)(C)

C)c1ccccc1)O[Si](c1ccccc1)(C(C)(C)C)c

1ccccc1)CCCl 

0.0034 1.1551E-06 0.026 

STOCK7S-

64595 

CCCCC1(CCCC1)c1cc2Cc3cc(c(cc3O)

Cc3cc(O)c(cc3C3(CCCC)CCCC3)Cc3cc

(c(cc3O)Cc3cc(c(Cc4c(cc(Cc5c(cc(Cc6c

(cc(Cc1cc2O)c(c6)C1(CCCC)CCCC1)O

)c(O)c5)C1(CCCC)CCCC1)c(c4)C1(CC

CC)CCCC1)O)cc3C1(CCCC)CCCC1)O)

C1(CCCC)CCCC1)C1(CCCC)CCCC1 

BACE1 GSI CDK-5 

1.7698E-07 0.024 0.00105 

STOCK7S-

65432 

Oc1cc2Cc3cc(O)c(cc3C3(C)CCCC3)Cc

3cc(c(cc3O)Cc3cc(O)c(cc3C3(C)CCCC3

)Cc3cc(c(Cc4c(cc(Cc5c(cc(Cc6c(cc(Cc1

cc2C1(C)CCCC1)c(O)c6)C1(C)CCCC1)

c(c5)C1(C)CCCC1)O)c(O)c4)C1(C)CC

CC1)cc3O)C1(C)CCCC1)C1(C)CCCC1 

6.2808E-05 0.069 0.0028 

STOCK7S-

67132 

NC(=O)COc1cc2Cc3cc(OCC(=O)N)c(cc

3C3(C)CCCCC3)Cc3cc(c(cc3OCC(=O)

N)Cc3cc(OCC(=O)N)c(cc3C3(C)CCCC

C3)Cc3cc(c(Cc4c(cc(Cc5c(cc(Cc6c(cc(C

c1cc2C1(C)CCCCC1)c(OCC(=O)N)c6)

C1(C)CCCCC1)c(c5)C1(C)CCCCC1)O

CC(=O)N)c(OCC(=O)N)c4)C1(C)CCCC

0.00012 0.0248 0.00244 
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C1)cc3OCC(=O)N)C1(C)CCCCC1)C1(

C)CCCCC1 

STOCK7S-

67182 

Oc1cc2Cc3cc(O)c(cc3C3(C)CCCCC3)C

c3cc(cc(c3O)Cc3cc(c(Cc4c(cc(Cc5c(c(C

c1cc2C1(C)CCCCC1)cc(c5)C1(C)CCCC

C1)O)c(O)c4)C1(C)CCCCC1)cc3O)C1(

C)CCCCC1)C1(C)CCCCC1 

0.000313 0.1742 0.0732 

STOCK7S-

67536 

Oc1cc2Cc3cc(O)c(cc3C3(C)CCCCC3)C

c3cc(c(cc3O)Cc3cc(O)c(cc3C3(C)CCCC

C3)Cc3cc(c(Cc4c(cc(Cc5c(cc(Cc6c(cc(C

c1cc2C1(C)CCCCC1)c(O)c6)C1(C)CCC

CC1)c(c5)C1(C)CCCCC1)O)c(O)c4)C1(

C)CCCCC1)cc3O)C1(C)CCCCC1)C1(C

)CCCCC1 

9.8853E-07 0.0513 0.00241 

STOCK7S-

70545 

CCCCCCCC1c2cc3c4cc2OP(Oc2c1cc1c

(c2)OP(OCCCCCCCC)Oc2c(C1CCCCC

CC)cc1C(c5cc(C3CCCCCCC)c(OP(O4)

OCCCCCCCC)cc5OP(Oc1c2)OCCCCC

CCC)CCCCCCC)OCCCCCCCC 

0.00174 0.1682 0.00034 

619178 n12ccc(c3c1c1n(ccc(c1cc3)c1ccccc1)[Co

+3]132(n2ccc(c4c2c2n1ccc(c2cc4)c1ccc

cc1)c1ccccc1)n1ccc(c2c1c1n3ccc(c1cc2)

c1ccccc1)c1ccccc1)c1ccccc1.O=C([O-

])[C@@H]([O-])[C@@H]([O-

])C(=O)[O-] 

6.6985E-05 0.0053 0.043 

STOCK7S-

65614 

CCCCOc1ccc(cc1)/C/1=C/2\C=CC(=N2

)/C(=c\2/cc/c(=C(/C3=N/C(=C(\c4[nH]c

1cc4)/c1ccc(cc1)OCCCC)/C=C3)\c1ccc(

cc1)OCCCC)/[nH]2)/c1ccc(cc1)OCCCC 

GSI CDK-5 BuChE 

0.161 0.0044 1.819 

332889 O(C(=O)Nc1nc(c(c(c1)Cl)N=C(c1ccccc1

)c1ccccc1)N)CC.O(C(=O)Nc1nc(c(c(c1)

Cl)N=C(c1ccccc1)c1ccccc1)N)CCC 

5-HT6 AChE GSI 

0.00045 0.0062 2.848E-05 

618825 

 

P(c1ccccc1)(c1ccccc1)(c1ccccc1)[Cu+](

P(c1ccccc1)(c1ccccc1)c1ccccc1)(/[S]=c\

1/cccc[nH]1)[Cl-] 

5-HT6 AChE BACE1 

0.0079 0.000171 7.793E-17 

1262-78-8 [Sn](CC(c1ccccc1)(C)C)(CC(c1ccccc1)(

C)C)(CC(c1ccccc1)(C)C)CC(c1ccccc1)(

C)C 

0.0082 0.0049 0.00045 

60042-87-7 c1c(cc2c(c1C(C)(C)C)O[Sb](N2)(c1cccc

c1)(c1ccccc1)c1ccccc1)C(C)(C)C 

9.0369E-06 0.0081 0.0164 

60042-88-8 C(c1cc(c2c(c1)N[Sb](O2)(c1ccccc1)(c1c

cccc1)c1ccccc1)C(C)(C)C)(c1ccccc1)(c1

ccccc1)c1ccccc1 

6.0399E-06 0.00498 0.028 

81928-48-5 c1cc(c(cc1)[Sn](c1ccccc1C)(Cl)O[Sn](c

1ccccc1C)(Cl)c1ccccc1C)C 

0.0039 0.00059 3.674E-14 

5424-36-2 5-HT6 BACE1 CDK-5 
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[Sn](c1cccc2ccccc12)(c1c2c(cccc2)ccc1)

(c1cccc2ccccc12)c1c2ccccc2ccc1 

0.0112 0.0056 0.00155 

26246 C12=C3C4=C5[C-

]1[Fe+2]16782345C2=C7[C-

]8C6=C12.II 

AChE BACE1 CDK-5 

0.00134 0.000212 0.0681 

176220 [C-]12C3=C4C5=C1[Fe+2]16782345[C-

]2C1=C6C7=C82.II 

0.00134 0.000212 0.0681 

118016 n1c(c2[nH]cnc2nc1)S[Sn](c1ccccc1)(c1c

cccc1)c1ccccc1.n1c(c2ncn(c2nc1)[Sn](c

1ccccc1)(c1ccccc1)c1ccccc1)S[Sn](c1cc

ccc1)(c1ccccc1)c1ccccc1 

AChE CDK-5 GSI 

3.0972E-06 0.0058 0.00041 

118017 n1c(c2[nH]cnc2nc1)S[Pb](c1ccccc1)(c1c

cccc1)c1ccccc1.n1c(c2ncn(c2nc1)[Pb](c

1ccccc1)(c1ccccc1)c1ccccc1)S[Pb](c1cc

ccc1)(c1ccccc1)c1ccccc1 

6.6093E-09 0.0055 0.000409 

403635 c1ccc(cc1CCCCCCCCCCCCCCC)OC(=

O)Nc1cccc2c1cccc2.c1ccc(cc1CCCCCC

C/C=C/CCCCCC)OC(=O)Nc1cccc2c1cc

cc2.c1ccc(cc1CCCCCCC/C=C/C/C=C/C

CC)OC(=O)Nc1cccc2c1cccc2.c1ccc(cc1

CCCCCCC/C=C/C/C=C/CC=C)OC(=O)

Nc1cccc2c1cccc2 

0.00381 0.000211 0.00644 

700533 c12c(c(c3c(n1)c1c(CC3)ccc(c1)c1c3c(nc

4c1cccc4)cccc3)c1ccc(cc1)OCc1cc(cc(c1

)OCc1cc(cc(c1)C(C)(C)C)C(C)(C)C)OC

c1cc(cc(c1)C(C)(C)C)C(C)(C)C)CCc1c2

cc(cc1)c1c2c(nc3c1cccc3)cccc2 

0.00815 5.435E-08 0.085 

682371 [Pt+2]([Cl-])([Cl-

])(n1ccc(cc1)/C/1=c/2\cc/c(=C(\c3ccc(cc

3)C)/C3=N/C(=C(\c4ccc(/C(=C\5/C=CC

1=N5)/c1ccc(cc1)C)[nH]4)/c1ccc(cc1)C)

/C=C3)/[nH]2)[O]=S(C)C 

BACE1 CDK-5 QC 

0.00696 0.00593 2.973E-05 

1803-10-7 N(c1ccccc1)(c1ccccc1)C(=S)S[Sn](SC(=

S)N(c1ccccc1)c1ccccc1)(c1ccccc1)c1ccc

cc1 

AChE BACE1 BuChE 

0.00646 1.9209E-07 4.130 

118195 S(C(=S)NC(=O)OCC)[Sb](SC(=S)NC(=

O)OCC)Sc1nc2c(s1)cc(cc2)/N=N/c1ccc(

cc1)NS(=O)(=O)c1ccc(cc1)NC(=O)C(Cl

)Cl 

BACE1 GSI BuChE 

1.4771E-05 0.00182 4.130 

636592 

 

c12c(c(c3c4c1c(=O)oc1c4c(c(=O)o3)c(c(

c1O)O)c1c(c(O)c(O)cc1C(=O)OC[C@H

]1[C@@H](OC(=O)c3c2c(c(O)c(O)c3)

O)[C@H]2OC(=O)c3cc(O)c(O)c(O)c3c3

c(C(=O)O[C@H]2[C@@H](O1)O)cc(O)

c(O)c3O)O)O)O 

AChE GSI MAO-B 

0.00087 0.0297 3.672E-07 

676818 c12c3c(c(c(c1O)O)O)c1c(cc(c(c1O)O)O)

C(=O)O[C@H]1[C@H]([C@@H]([C@

H]4[C@@H](C5=C([C@H]2[C@](C5=

0.00124 0.0230 5.799E-06 
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O)(C(=O)OCC)O)C(=O)O4)O)OC3=O)

OC(=O)c2c(c(c(c(c2)O)O)O)c2c(c(c(cc2

C(=O)OC1)O)O)O 

676822 c12c3c(c(c(c1O)O)O)c1c(cc(c(c1O)O)O)

C(=O)O[C@H]1[C@H]([C@@H]([C@

@H]4[C@H]5c6c7c(c(cc6O[C@]65[C@

H](C2=C(C6=O)O)C(=O)O4)O)C[C@@

H]([C@H](O7)c2cc(c(cc2)O)O)O)OC3=

O)OC(=O)c2c(c(c(c(c2)O)O)O)c2c(c(c(c

c2C(=O)OC1)O)O)O 

0.000485 0.0199 0.00028 

676825 [C@H]1([C@H](OC(=O)c2c(c3c(c(c(cc

3C(=O)O1)O)O)O)c(c(c(c2)O)O)O)[C@

H]1OC(=O)c2c(c(c(c(c2)O)O)O)c2c3c4c

5c(c(=O)oc4c(c2O)O)c(c(c(c5oc3=O)O)

O)c2c(c(c(cc2C(=O)OC[C@@H]1O)O)

O)O)C=O 

0.00378 0.01570 4.694E-06 

24312-00-3 c1(c(c2c3c(c1O)[C@@H]([C@H]([C@

H]1OC(=O)c4c2c(c(c(c4c2c(c(c(cc2C(=

O)O[C@H]2[C@H]1OC(=O)c1cc(c(c(c

1c1c(c(c(cc1C(=O)OC2)O)O)O)O)O)O)

O)O)O)O)O)O)OC3=O)O)O)O 

0.000905 0.0338 0.000144 

36001-47-5 c1c2c(c3c(cc(c(c3O)O)O)C(=O)O[C@H

]3[C@H](COC2=O)OC(=O)c2cc(c(c(c2

c2c4c(c5c6c(c(c(c5O)O)O)[C@@H]([C

@H]([C@@H]3OC4=O)OC6=O)O)c(c(

c2O)O)O)O)O)O)c(c(c1O)O)O 

0.000905 0.0338 0.000144 

173121 

 

[CH-

]12[CH]3=[CH]4[CH]5=[CH]1[Co+]162

345[CH]2=[CH]1[S]6C2 

AChE BACE1 β-amyloid 

0.00106 3.5773E-12 0.143 

633340 [C]123=C[Rh+]456783([C]1(=C8)CC(=

C)CC[C]5(=C7)[C]4(=C6)CC2)[Cl-] 

7.4994E-06 7.015E-16 0.528 

81741-72-2 [Ge]([Ge](N(CC)CC)(CC)CC)(CC)(CC)

CC 

7.948E-06 1.1578E-07 0.353 

81741-73-3 N(CC)(CC)[Ge](CC)(CC)[Ge](CC)(CC)

N(CC)CC 

1.0373E-05 3.3865E-11 0.457 

993-62-4 [Ge](CC)(CC)(CC)[Ge](CC)(CC)CC 2.839E-06 0.00352 0.218 

993-63-5 [Sn]([Sn](CC)(CC)CC)(CC)(CC)CC 5.587E-11 5.527E-12 0.236 

847446-05-3 N(c1c(C)cc(C=CC#N)cc1C)c1nc(Nc2cc

c(C#N)cc2)ncc1.C([C@H](OCP(=O)(O)

O)C)n1c2c(nc1)c(N)ncn2.N(c1c2c(n(cn2

)[C@@H]2C[C@H](CO)C=C2)nc(N)n1

)C1CC1 

CDK-5 5-HT6 BACE1 

0.1225 0.00424 0.177 
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4.6.2. Chemical Read-Across analysis 

In the present investigation, the similarity-based quantitative read-across prediction was performed using 

the same training and test set combinations as used in 2D-QSAR modeling. The current approach employs 

three distinct similarity-based measures: Laplacian kernel similarity-based (LK) predictions, Gaussian 

kernel similarity-based (GK), and Euclidean distance-based (ED) estimations, and after hyperparameter 

optimization, we found that the external validation results obtained from a quantitative read-across 

algorithm using Gaussian Kernel Similarity-based functions (in case of 5-HT-6, CDK-5, PDE 10A models) 

and  Laplacian kernel similarity-based function (in case of AChE and BACE1 enzyme models) were better 

compared to the results obtained from the individual regression-based 2D-QSAR models. The details about 

the external validation results are given in Table 4.25. 

Table 4.25. External validation results of the Read-Across analysis. 

Target Yeuc(Test) Ygk(Test) Ylk(Test) σ-value γ-value No. of Similar 

train comp. 

Q2F1 Q2F2 Q2F1 Q2F2 Q2F1 Q2F2 

5-HT6 0.745 0.743 0.776 0.775 0.738 0.737 1 1.75 8 

AChE 0.729 0.728 0.755 0.753 0.783 0.782 1.25 1.25 6 

BACE1 0.624 0.623 0.666 0.666 0.675 0.675 0.75 0.75 10 

CDK-5 0.903 0.903 0.917 0.917 0.881 0.880 0.5 0.5 6 

PDE 10A 0.678 0.667 0.784 0.777 0.737 0.729 0.25 0.25 6 

4.6.3. Molecular docking analysis 

In this exploration, molecular docking was performed using the most and least active compounds from the 

initial datasets to explore the molecular interactions at the active pocket of the respective targets. The 

evidence of docking interactions, CDocker interaction energy, and their correlation with the features 

obtained from the developed 2D-QSAR models are demonstrated in Tables 4.26 and 4.27. Moreover, we 

have also performed the molecular docking analysis using the top predicted compounds from the databases 

at the active pocket of the respective targets. The details of the docking analysis are demonstrated in Table 

4.28.  
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 Tables 4.26. Molecular docking results (5-HT6 antagonist, AChE, BACE1 enzyme, β-amyloid, BuChE enzyme, CDK-5 inhibitors) and correlation with 2D-

QSAR models in this study. 

Compound -CDocker 

interaction 

energy 

(kcal/mol) 

Interacting residues Interactions Correlation with QSAR model 

5-hydroxytryptamine 6 (5-HT6) antagonist 

1 (most active) 35.318 ALA A:266, LYS A:262, HIS A:259, SER 

A:61, TYR A:134, ASP A:123, LUE A:127 

Hydrogen Bond (conventional), Attractive 

charge, π-sulfur, Alkyl, π-Alkyl 

F04[C-O], minssNH, nCp, 

nArNH2, nBnz 

5 (most active) 32.544 SER A:61, ASP A:123, TYR A:134, HIS 

A:259, LYS A:262, LUE A:127 

Hydrogen Bond (conventional and Carbon), 

Attractive charge, π-sulfur, π-Alkyl, π-π T-

shaped 

F04[C-O], minssNH, nCp, 

nArNH2, nBnz 

70 (least active) 19.878 ASN A:62, ASN A:59, LYS A:262, HIS 

A:259 

Hydrogen Bond (conventional and Carbon) F04[C-O] 

71 (least active) 17.953 LYS A:262, LEU A:127 Hydrogen Bond (Carbon), π-Alkyl nBnz 

Acetylcholinesterase (AChE) enzyme inhibitor 

841 (most active) 67.407 TYR A:72, TRP A:286, SER A:293, TYR 

A:341, TRP A:86, TYR A:337, GLU 

A:202, HIS A:447 

Hydrogen Bond (conventional, Carbon and π-

donor), π-π T-shaped, π-π stacked, π-Lone pair, 

Halogen (Cl, Br, I), π-Alkyl, π-Cation 

D/Dtr05, DBI, X2v, F04[N-Cl], 

B05[C-N] 

842 (most active) 51.491 THR A:75, TRP A:286, SER A:293, TRP 

A:86, TYR A:337, TYR A:124, TYR 

A:341,  

Hydrogen Bond (conventional and Carbon), π-π 

T-shaped, π-π stacked 

X2v, DBI, B07[N-N], B05[C-N], 

minssO, nArCO 

714 (least active) 38.559 PHE A:297, TRP A:286, TYR A:72 Hydrogen Bond (conventional), π-Alkyl minssO 
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721 (least active) 39.518 TYR A:341, TYR A:72 Hydrogen Bond (conventional), π-Alkyl minssO 

β-secretase 1 (BACE1) enzyme inhibitors 

458 (most active) 56.095 ALA A:335, TYR A:14, THR A:232, GLY 

A:230, ASP A:228, GLN A:73, TYR 

A:198, GLY A:34, SER A:35, TYR A:71 

Hydrogen Bond (conventional, Carbon and π-

donor), π-π T-shaped, π-Anion, π-Lone pair, 

Halogen (Fluorine), Alkyl, π-Alkyl 

F08[N-N], Ui, 

463 (most active) 51.796 LEU A:30, SER A:229, THR A:231, TYR 

A:14, LYS A:9, VAL A:170, GLU A:339, 

GLY A:13, GLY A:11, ALA A:335, THR 

A:232, GLY A:230, TYR A:71, THR A:72, 

ASP A:228, ASP A:32 

Hydrogen Bond (conventional, Carbon), Salt 

bridge, Attractive charge, Sulfur-X, Halogen 

(Fluorine), Alkyl, π-Alkyl 

F08[N-N], Ui, X5v, mindO, 

nR#CH/X 

816 (least active) 31.749 ARG A:128, TYR A:198, ASP A:228 Hydrogen Bond (conventional), Attractive 

charge, π-Anion 

B06[O-O] 

831 (least active) 27.353 LYS A:107, GLY A:230, LEU A:30 Hydrogen Bond (conventional and carbon), π-

Alkyl 

mindO 

β-amyloid inhibitors 

208 (most active) 30.398 LEU A:17, LYS A:16, HIS A:13, ALA 

A:21, VAL A:18  

Hydrogen Bond (conventional and carbon), π-

Alkyl, Alkyl, π-π T-shaped 

SssCH2, PW3, F04[N-O] 

124 (least active) 19.144 ALA A:21, LYS A:16 π-Alkyl, π-Cation PW3 

Butyrylcholinesterase (BuChE) enzyme inhibitors 

415 (most active) 62.027 TRP A:82, ALA A:328, PRO A:285, HIS 

A:438, TRP A:231, PHE A:329, LEU 

A:286, SER A:287 

Hydrogen Bond (conventional, Carbon and π-

donor), π-π T-shaped, π-π stacked, π-Cation, π-

Alkyl 

C-002, N-070, MaxaaaC, MDEC-

22, F04[C-N], B07[N-N], nN-N, 

BLI,  
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420 (most active) 64.064 ASP A:70, TYR A:332, GLU A:197, HIS 

A:438, TRP A:231, LEU A:286, ALA 

A:328, TRP A:430, TRP A:82 

Hydrogen Bond (conventional, Carbon), π-π T-

shaped, Attractive charge, Alkyl, π-Alkyl 

C-002, N-070, MaxaaaC, MDEC-

22, F04[C-N], B07[N-N], nN-N, 

BLI 

417 (least active) 31.984 HIS A:438, ASP A:70 Hydrogen Bond (conventional, Carbon) C-002 

2353 (least 

active) 

38.996 GLU A:197, GLY A:115, ILE A:69 Hydrogen Bond (Carbon) MDEC-22 

Cyclin-dependent kinase 5 (CDK-5) inhibitors 

1 (most active) 54.534 LYS A:89, ASP A:86, LEU A:133, ALA 

A:31, VAL A:18, GLY A:11, GLU A:12, 

ILE A:10 

Hydrogen Bond (conventional, Carbon), Salt 

bridge, π-Sigma, Alkyl, π-Cation, π-Alkyl 

NaaaC, SaasC 

2 (most active) 58.694 LYS A:89, ASP A:86, ALA A:31, LEU 

A:133, PHE A:80, VAL A:18, VAL A:64, 

CYS A:83, ILE A:10, LYS A:9 

Hydrogen Bond (conventional, Carbon), π-π T-

shaped, Attractive charge, Alkyl, π-Alkyl 

NaaaC, SaasC 

146 (least active) 47.848 LYS A:33, LEU A:133, VAL A:18 Hydrogen Bond (Carbon), π-Alkyl SaasC 

194 (least active) 30.142 LEU A:133, PHE A:82, ILE A:10, LYS 

A:89 

Hydrogen Bond (Conventional), π-Alkyl, π-

Sulfur 

SaasC 
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Table 4.27. Molecular docking results (γ-secretase, GSK-3β, MAO-B inhibitors, NMDA receptor antagonist, PDE 10A enzyme, Glutaminyl Cyclase (QC) 

inhibitors) and correlation with 2D-QSAR models in this study. 

Compound -CDocker 

interaction 

energy 

(kcal/mol) 

Interacting residues Interactions Correlation with QSAR model 

γ-secretase inhibitors 

180 (most active) 126.087 PRO A:424, PRO A:141, TYR A:453, 

ARG A:281, GLU A:333, ASN A:142, 

TYR A:337 

Hydrogen Bond (Conventional and Carbon), 

Alkyl, π-Cation 

P_VSA_MR_7, ATS6s, 

VE3sign_D, VE3sign_D/Dt 

208 (least active) 52.566 HIS A:444, PRO A:424, ARG A:281, PRO 

A:141, TYR A:453, SER A:425 

Hydrogen Bond (Carbon), π-Alkyl, π-Cation, 

Alkyl 

P_VSA_MR_7, ATS6s 

GSK-3β inhibitors 

41 (most active) 38.688 VAL A:70, ILE A:62, VAL A:135, ALA 

A:83, TYR A:134, LEU A:188, ASP A:133 

Hydrogen Bond (Conventional, Carbon), π-π 

stacked, π-Alkyl 

SaasC, PDI, SaaaC, F06[N-O], 

nPyrroles, B05[N-O] 

112 (least active) 18.996 LEU A:188, ALA A:83 π-Alkyl SaaaC 

MAO-B inhibitors 

72 (most active) 47.999 LYS A:296, TRP A:388, VAL A:294, GLY 

A:57, CYS A:397, TYR A:435, ILE A:14, 

SER A:15, GLY A:13, THR A:426, ARG 

A:42, ALA A:439 

Hydrogen Bond (Conventional, Carbon), 

Amide-π stacked, π-Alkyl, Alkyl 

F02[O-O], C% 

87 (most active) 44.213 ILE A:14, SER A:15, GLY A:13, THR 

A:426, ALA A:439, TYR A:435, ARG 

A:42, CYS A:397, GLY A:57, GLY A:434 

Hydrogen Bond (Conventional, Carbon), 

Amide-π stacked, π-Alkyl, Alkyl, Halogen 

(Fluorine) 

F02[O-O], C% 
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14 (least active) 37.933 TYR A:398, CYS A:397, ARG A:42, ILE 

A:14, ALA A:439, THR A:426 

Hydrogen Bond (Carbon), π-Alkyl, Alkyl C% 

25 (least active) 32.254 GLY A:58, GLY A:40, ARG A:42, MET 

A:436, TYR A:435, TYR A:398, GLN 

A:206 

Hydrogen Bond (Carbon), π-π T-shaped, π-

Sigma, π-Alkyl, Alkyl, Halogen (Cl, Br, I) 

C% 

NMDA receptor antagonist 

485 (most active) 32.035 TYR A:184, GLN A:144, LEU A:146, SER 

A:180, THR A:126, HOH A:1036, HOH 

A:1111, GLN A:13, TRP A:223, PRO 

A:15, VAL A:227, ALA A:226, PHE A:16, 

ASP A:224 

Hydrogen Bond (Conventional, Carbon and 

Water), π-π T-shaped, π-Lone pair, π-Sigma, π-

Alkyl, Alkyl, Halogen (Fluorine) 

ATSC1p, C-028, TPSA(Tot), 

B10[C-O] 

486 (most active) 32.578 PHE A:92, LEU A:125, THR A:126, PRO 

A:124, HOH A:1078, HOH A:1036, ASP 

A:224 

Hydrogen Bond (Conventional, Carbon and 

Water), π-Anion, π-Alkyl, Alkyl, 

ATSC1p, C-028, TPSA(Tot) 

398 (least active) 27.011 GLN A:144, ASP A:224, PRO A:124, PHE 

A:92, THR A:126 

Hydrogen Bond (Carbon), π-Lone pair, π-Alkyl, 

Halogen (Fluorine) 

C-028 

455 (least active) 21.838 PHE A:92, PHE A:246, LEU A:146, TYR 

A:184 

Hydrogen Bond (Carbon), π-π T-shaped, π-π 

stacked, π-Alkyl 

TPSA(Tot) 

Phosphodiester 10A (PDE 10A) enzyme inhibitors 

226 (most active) 51.832 TYR A:524, ASP A:674, SER A:677, ILE 

A:692, LEU A:675, GLN A:726, PHE 

A:729, PHE A:696, LEU A:635, ALA 

A:636, SER A:571, ASN A:572, GLU 

A:592 

Hydrogen Bond (Conventional and Carbon), π-π 

T-shaped, π-π stacked, π-Alkyl 

N-070, AMR, minsCH3, 

Eta_epsi_2 
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228 (most active) 57.044 LEU A:675, SER A:677, PHE A:729, GLN 

A:726, ILE A:692, MET A:713, PHE 

A:696, PHE A:570, HIS A:525, GLU 

A:592, THR A:633, LEU A:635, ASP 

A:674 

Hydrogen Bond (Conventional and Carbon), Salt 

bridge, π-π T-shaped, π-π stacked, π-Sigma, 

Alkyl, π-Alkyl, π-Cation, Attractive charge 

N-070, AMR, minsCH3, 

Eta_epsi_2 

217 (least active) 36.980 LEU A:635, HIS A:567, PHE A:696, PHE 

A:729, ILE A:692, GLN A:726 

Hydrogen Bond (Conventional and π-Donor), π-

π T-shaped, π-π stacked, π-Alkyl 

Eta_epsi_2, AMR 

221 (least active) 35.608 LEU A:675, ILE A:692, PHE A:729, TYR 

A:524, HIS A:525, ASP A:634, LEU A:635 

Hydrogen Bond (Carbon), π-π T-shaped, π-π 

stacked, π-Alkyl, π-Cation 

Eta_epsi_2, AMR 

Glutaminyl Cyclase (QC) inhibitors 

87 (most active) 131.348 TRP A:329, LYS A:144, HIS A:330, ASP 

A:159, GLU A:202, GLU A:201, SER 

A:160, MET A:167, PRO A:163, CYS 

A:139, LEU A:137, LEU A:246, ALA 

A:138, LEU A:247, ASP A:248, ASP 

A:305 

Hydrogen Bond (Conventional, Carbon and π-

Donor), Attractive charge, Alkyl, π-π T-shaped, 

π-Anion, π-Cation, π-Alkyl 

C-034, B09[C-O], T(N..S) 

88 (most active) 128.118 TRP A:329, TRP A:207, HIS A:330, ASP 

A:159, GLU A:201, SER A:160, MET 

A:167, PRO A:163, CYS A:139, LEU 

A:137, VAL A:245, LEU A:247, ASP 

A:248, ASP A:305 

Hydrogen Bond (Conventional and Carbon), 

Attractive charge, Alkyl, π-Sigma, π-Anion, π-

Alkyl 

C-034, B09[C-O], T(N..S) 

31 (least active) 15.879 TRP A:329, TRP A:207, ILE A:303 Alkyl, π-Alkyl T(N..S) 

33 (least active) 17.698 GLN A:304, TRP A:207 Hydrogen Bond (Conventional), π-Cation T(N..S) 
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Table 4.28. Molecular docking analysis of top predicted compounds from the databases. 

Compound 

 

Smiles notation -CDocker 

interaction energy 

(kcal/mol) 

Interacting residues Interactions IC50nM 

(Predicted) 

5-hydroxytryptamine 6 (5-HT6) antagonist 

434-91-3 Fc1c(c2c(N)c(c(N)c(c2F)C)C)c(N)c

(c(N)c1C)C 

24.504 
LEU A: 57, ASN A: 62, LEU A: 

65, SER A: 61, ARG A: 124, HIS 

A: 259, LEU A: 127, TYR A: 134 

Conventional Hydrogen Bond, Carbon 

hydrogen bond, Halogen (Fluorine), 

Alkyl, Pi-Alkyl 

5.62341E-06 

2475-45-8 O=C1c2c(C(=O)c3c1c(N)ccc3N)c(

N)ccc2N 

20.305 
MET A: 324, ARG A: 325, ASP 

A: 326, LYS A: 262, HIS A: 259 

Conventional Hydrogen Bond, Carbon 

hydrogen bond, Pi-Alkyl, Pi-sulfur, Pi-

Cation 

5.04661E-06 

Acetylcholinesterase (AChE) enzyme inhibitor 

ZINC00628557 O=C1Nc2ccc(S(=O)(=O)N3CCCC3

)c3ccc(S(=O)(=O)N4CCCC4)c1c23 

47.905 
LEU A: 76, TYR A: 72, TYR A: 

337, TRP A: 286, TYR A: 124, 

PHE A: 338, VAL A: 294, TYR A: 

341, PHE A: 295 

Conventional hydrogen bond, Carbon 

hydrogen bond, Pi-Pi stacked, Pi-

Sulfur, Pi-Alkyl, Alkyl 

0.00818 

ZINC67805358 CCOCCN1CCN(S(=O)(=O)c2sc3c(

c2C(=O)O)CCNC3)CC1 

47.629 TYR A: 341, SER A: 293, TYR A: 

124, TYR A: 72, TRP A: 86, GLY 

A: 121, PHE A: 338 

Conventional hydrogen bond, Carbon 

hydrogen bond, Pi-Pi T-Shaped, Pi-

Sulfur, Pi-lone pair 

0.00853 

β-secretase 1 (BACE1) enzyme inhibitors 

ZINC00952595 C[C@H]1CCc2c(sc3ncn(CCn4cnc5

sc6c(c5c4=O)CC[C@H](C)C6)c(=

O)c23)C1 

46.620 GLN A: 73, TYR A: 71, ILE A: 

110, ASP A: 32, GLY A: 230, 

THR A: 231, ASP A: 228, TYR A: 

198 

Conventional hydrogen bond, Carbon 

hydrogen bond, Pi-donor hydrogen 

bond, Pi-Pi T-shaped, Pi-Anion Pi-

Alkyl, Alkyl 

0.147 
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ZINC72147875 CCn1cc(-

c2c(C#N)c(N)nc3c2CN(c2ncccn2)

CC3)cc1C#N 

39.711 THR A: 232, GLY A: 11, GLY A: 

230, ASP A: 228, ASP A: 32, TYR 

A: 71, GLN A: 73, LYS A: 107 

Conventional hydrogen bond, Carbon 

hydrogen bond, Pi-donor hydrogen 

bond, Pi-Pi T-shaped, Pi-Anion Pi-

Alkyl 

0.163 

β-amyloid inhibitors 

STOCK1S-

18299 

c12c(C(=NO)c3c(C1=NO)[n+](on3

)[O-])[n+](on2)[O-] 

21 LYS A: 16, GLN A: 15, VAL A: 

12 

Conventional Hydrogen Bond, Carbon 

hydrogen bond, Pi-Alkyl, Pi-sigma 

0.1213 

ZINC43762221 C1C[C@@]23CO[C@@]45CC[C

@@]61CC[C@@] 

(CO2)(OC4)[C@@] 

32 PHE A: 20, LEU A: 17, HIS A: 13, 

LYS A: 16 

Conventional Hydrogen Bond, Carbon 

hydrogen bond, Pi-Alkyl, Pi-sigma, 

Alkyl 

0.0952 

Butyrylcholinesterase (BuChE) enzyme inhibitors 

6304-69-4 O(C(=O)N(NC(=O)OCC)c1c(cc(N(

NC(=O)OCC)C 

(=O)OCC)c(c1)C)C)CC 

55.125 PRO A: 84, PHE A: 329, GLY A: 

117, LEU A: 286, TRP A: 231, 

PHE A: 398, HIS A: 438, TRP A: 

82, GLU A: 197, GLY A: 116 

Conventional Hydrogen Bond, Carbon 

hydrogen bond, Pi-Alkyl, Alkyl 

0.0460 

231883 C(=O)(OC[C@H](OC(=O)Nc1cccc

c1)[C@H](OC(=O)Nc1ccccc1) 

COC(=O)Nc1ccccc1)Nc1ccccc1 

70.527 GLY A: 115, GLY A: 117, ALA 

A: 199, HIS A: 438, GLY A: 116, 

LEU A: 286, TRP A: 82, ALA A: 

328, ASP A: 70, ILE A: 69 

Conventional Hydrogen Bond, Carbon 

hydrogen bond, Alkyl, Pi-Alkyl, Pi-Pi 

T-shaped, Pi-donor hydrogen bond, Pi-

Cation, Amide-Pi stacked, Pi-anion 

0.01425 

Cyclin-dependent kinase 5 (CDK-5) inhibitors 

ZINC00352612 c1ccc2c(c1)nc1n2c2nc3ccccc3n2c2

nc3ccccc3n12 

44.799 ALA A: 31, VAL A: 18, LEU A: 

133, CYS A: 83, ILE A: 10, LYS 

A: 89, ASP A: 86, GLU A: 12, 

ASN A: 144 

Conventional Hydrogen Bond, Pi-

Alkyl, Pi-sigma, Salt Bridge 

0.0073 
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ZINC22712768 Cc1c(c2cc(c3nc4c5sc6nc(C)cc(C)c

6c5ncn4n3)c3ccccc3n2)cnn1C 

45.249 ASN A: 144, ALA : 31, LEU A: 

133, ILE A: 10, GLU A: 12, ASP 

A: 86, VAL A: 18 

Conventional Hydrogen Bond, Carbon 

Hydrogen bond, Pi-Anion, Alkyl, 

Attractive charge, Pi-Alkyl, Pi-sigma, 

Pi-donor hydrogen bond 

0.00427 

γ-secretase inhibitors 

ZINC25228619 CC(C)c1ccc(N2C(=O)Cc3c2nc(N)c

2c(N)nc(N4CCOCC4)c(C#N)c32)c

c1 

81.769 
SER A: 426, PRO A: 424, GLU A: 

364, SER A: 137, THR A: 334, 

PRO A: 141, TYR A: 453, ARG 

A: 281, ALA A: 298 

Conventional hydrogen bond, Carbon 

hydrogen bond, Pi-donor hydrogen 

bond, Pi-Cation, Alkyl, Attractive 

charge, Pi-Alkyl 

0.00279 

ZINC25748138 CCN(CC)c1nc(N)c2c(N)nc3c(cc(O)

n3c3cc(Cl)cc(Cl)c3)c2c1C 

45.159 PRO A: 141, TYR A: 453, ARG 

A: 281, PRO A: 423, VAL A: 440, 

SER A: 425, PRO A: 424, GLU A: 

364, GLU A: 333, ASN A: 142, 

ARG A: 285, SER A: 137, TYR A: 

173, THR A: 334 

Conventional Hydrogen Bond, Carbon 

hydrogen bond, Alkyl, Pi-Alkyl, Pi-

Cation, Pi-lone pair 

2.46037E-05 

GSK-3β inhibitors 

1349658-81-6 [C@H](Cc1ccccc1)([C@@H]([C@

@H]([C@H](Cc1cncs1)NC(=O) 

OCc1cncs1)O)O)NC(=O)[C@@H](

NC(=O)N(Cc1nc(C(C)C)sc1)C)C 

 

 

 

 

 

 

42.81 
LEU A: 81, ARG A: 141, ILE A: 

62, VAL A: 70, CYS A: 199, VAL 

A: 110, LEU A: 188, LEU A: 132, 

VAL A: 135, ALA A: 83, ASP A: 

133, GLN A: 185, PRO A: 136, 

GLN A: 185, TYR A: 134 

Conventional hydrogen bond, Carbon 

hydrogen bond, Pi-lone pair, Pi-sigma, 

Alkyl, Pi-Alkyl 

0.132 



Chapter 4 Results and discussions 

 

  
257 

 

  

 

1236407-24-1 [C@H](Cc1ccccc1)([C@@H]([C@

@H]([C@H](Cc1cncs1)NC(=O) 

OCc1cncs1)O)O)NC(=O)[C@@H](

NC(=O)N(Cc1nc(C(C)C)sc1)C)C 

43.537 
CYS A: 199, PHE A: 67, ASN A: 

186, VAL A: 70, TYR A: 134, 

GLN A: 72, ILE A: 62, ARG A: 

141, ASN A: 64, LYS A: 183 

Conventional hydrogen bond, Carbon 

hydrogen bond, Pi-Sulfur, Pi-sigma, 

Alkyl, Pi-Alkyl 

0.297 

MAO-B inhibitors 

STOCK1S-

91910 

OS(=O)(=O)c1cccc(c1)c1csc2n1c1c

c(ccc1n2)S(=O)(=O)O 

34.116 TRP A: 388, GLY A: 57, CYS A: 

397, MET A: 436, CYS A: 172, 

TYR A: 435, TYR A: 398 

Conventional hydrogen bond, Carbon 

hydrogen bond, Pi-Sulfur, Sulfur-X, 

Alkyl, Pi-Alkyl, Pi-Pi stacked, Pi-

Anion 

1.7338E-06 

ZINC40061664 COC(=O)c1ccc(C)c(S(=O)(=O)Oc2

ccc3ccc(=O)oc3c2)c1 

50.764 TYR A: 60, GLY A: 57, TYR A: 

398, GLY A: 58, MET A: 436, 

CYS A: 397, GLY A: 425, THR 

A: 426, ALA A: 439, ARG A: 42, 

TYR A: 435, GLN A: 206 

Conventional hydrogen bond, Carbon 

hydrogen bond, Alkyl, Pi-Alkyl, 

Amide-Pi stacked 

0.000176 

NMDA receptor antagonist 

STOCK1S-

09681 

n1(c(cc(=N)c2c1cccc2)C)C 25.842 ALA A: 226, ASP A: 224, VAL A: 

227, PRO A: 124, THR A: 126, 

PHE A: 92 

Conventional Hydrogen Bond, Alkyl, 

Pi-Pi stacked, Pi-Anion, Pi-Cation 

0.1815 

STOCK2S-

07694 

C(=O)(N[O-])COc1c(cc(cc1)Cl)Cl 31.112 TRP A: 223, GLN A: 144, HOH 

A: 1036, HOH A: 1078, PHE A: 

250, PHE A: 92, PRO A: 124, 

ALA A: 226, ASP : 224 

Conventional Hydrogen Bond, Water 

hydrogen bond, Alkyl, Pi-Alkyl,  Pi-Pi 

stacked, Pi-Anion 

0.1945 

Phosphodiester 10A (PDE 10A) enzyme inhibitors 
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1091628-86-2 N(C12CC3CC(C2)CC(C1)C3)c1nc(

NCC(=O)O)nc(NCCCCC)n1 

46.270 ALA : 689, VAL A: 678, ILE A: 

692, PHE A: 729, LEU A: 635, 

ASP A: 674, TYR A: 524, HIS A: 

529, HIS A: 563, HIS A: 525, HIS 

A: 567 

Conventional hydrogen bond, Carbon 

hydrogen bond, Alkyl, Pi-Alkyl, Pi-Pi 

stacked, Attractive charge 

0.000192 

1422258-88-5 C(Nc1nc(NCCNC(=O)CCl)nc(NCC

#C)n1)(C)C12CC3CC(C2)CC(C1)

C3 

42.86 SER A: 571, HIS A: 567, THR A: 

633, ASP A: 674, VAL A: 678, 

HIS A: 525, LEU A: 675, ILE A: 

692, SER A: 677, PHE A: 696, 

PHE A: 729, MET A: 713, LEU A: 

635 

Conventional hydrogen bond, Carbon 

hydrogen bond, Alkyl, Pi-Alkyl, Pi-

Cation 

0.000609 

Glutaminyl Cyclase (QC) inhibitors 

691803 s1c(ccc1c1sc(cc1)c1sc(cc1)c1sc(cc

1)CN)CN 

44.8781 GLU A: 201, ASP A: 248, TRP A: 

329, TRP A: 207, HIS A: 330 

Conventional Hydrogen Bond, Carbon 

hydrogen bond, Pi-Pi stacked, 

Attractive charge, Pi-Sulfur, Salt 

Bridge 

6.45654E-12 

ZINC23130127 Cc1cc(c2n[nH]c3c2CN(C(=O)c2cc

4sccc4[nH]2)CC3)c(C)o1 

27.4382 LYS A: 144, HIS A: 330, TRP A: 

207, GLN A: 304, ILE A: 303, 

GLU A: 201, TRP A: 329, HIS A: 

140 

Conventional Hydrogen Bond, Carbon 

hydrogen bond, Pi-Pi stacked, Pi-donor 

hydrogen bond, Pi-Sulfur, Pi-Sigma, 

Pi-Cation, Pi-Pi T-shaped, Pi-anion 

1.65959E-08 
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4.6.4. Comparisons of proposed QSAR models with our previous published studies 

In the present exploration, a comparison of the best models of this study with our previously published 

models60, 61, 49 was performed. The details of different internal and external validation parameters obtained 

from this study and those obtained from previous models are given in Table 4.29.  

Table 4.29. Comparisons of proposed QSAR models with our previous published studies. 

Sources E. 

L.  

LV Mode

l 

Training set Test set 

n R2 Q2 n Q2F1 Q2F2 

M
o

d
el

s 
in

 t
h

is
 

st
u

d
y

 

AChE model  28 7 PLS 1325 0.635 0.621 408 0.678 0.678 

BuChE model 28 8 PLS 1882 0.689 0.668 625 0.702 0.702 

BACE1 model 18 9 PLS 680 0.669 0.650 225 0.675 0.674 

β-Amyloid model 6 4 PLS 197 0.729 0.705 65 0.844 0.844 

P
u

b
li

sh
ed

 m
o

d
el

s AChE model60  15 6 PLS 798 0.662 0.645 199 0.661 0.660 

BuChE model60 13 5 PLS 603 0.674 0.656 158 0.663 0.660 

BACE1 model111 5 3 PLS 76 0.826 0.795 22 0.846 0.846 

β-Amyloid model112 12 6 PLS 252 0.664 0.621 62 0.765 0.763 
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Chapter 5: Conclusion 

In the current thesis work, multiple in silico approaches were used to investigate prospective treatments for 

Alzheimer's disease, which is currently incurable. The main objective was to employ appropriate 

computational tools for finding and developing possible anti-Alzheimer agents against a number of key 

targets involved in AD. In this work, we have focused on twelve main biological targets, namely, AChE, 

BuChE, BACE1, 5-HT6, CDK-5, Gamma (γ)-secretase, Glutaminyl Cyclase (QCs), GSK-3β, NMDA 

receptor, amyloid-beta plaques (Aβ), PDE 10A and MAO-B enzyme are targeted to find appropriate 

treatment in AD. We have emphasized both on single-target drug designing and multi-target drug designing 

strategies using various in silico methodologies, particularly QSAR. Designing multi-target directed ligands 

(MTDLs) is essential since AD is multifactorial and linked to the concurrent dysfunction of numerous 

enzymes in the affected brain. In study 1, using 2D QSAR and molecular docking techniques we have 

managed to understand the structural features that are involved in improving the inhibitory activity against 

the BuChE enzyme. In study 2, we performed 2D QSAR analyses, pharmacophore mapping, and molecular 

docking study by employing 98 heterocyclic compounds as human BACE1 inhibitors to identify the vital 

structural features that are responsible for their activity.  In study 3, we have implemented 2D QSAR 

analyses, pharmacophore mapping, and molecular docking study by using 314 heterocyclic compounds as 

β-amyloid aggregation inhibitors to identify the vital structural features that are responsible for their 

inhibition. In study 4, a congeneric series of 78 carbamate derivatives with inhibitory activity information 

against the AChE enzyme was analyzed using several in silico techniques (2D QSAR, GQSAR, 

pharmacophore mapping, and molecular docking study) to recognize the vital structural features and also 

understand the chemical features required for interaction with the AChE enzyme and the key active site 

residues involved in the intermolecular interactions. In study 5, we implemented 2D-QSAR modeling using 

two different datasets, namely, AChE and BuChE enzyme inhibitors. A third dataset has been derived based 

on their selectivity against both these enzymes to identify which structural fragments/properties are 

essential specifically to inhibit a specific type of enzyme. Additionally, molecular docking analysis was 

performed using the most and least active compounds from the datasets and tried to rationalize the 

influences of different descriptors/features as apparent from the 2D-QSAR models. The final in silico study 

(study 6) was specifically designed to identify potential compounds that are capable of simultaneously 

hitting multiple targets (all twelve above-mentioned targets were studied) against AD. These in silico 

studies provide us with the necessary knowledge for future research on changing the scaffolds for improved 

therapeutic efficacy against the devastating Alzheimer's disease, in addition to the crucial information 

gathered about achieving the activity against various biological targets explored. 

Additionally, all the computational models (including the 2D QSAR and pharmacophore) developed in this 

investigation were properly validated using strict internal and external validation methodologies. To avoid 

chance correlation, these models were also subjected to randomization testing. As a result, these models 

can be extensively employed to screen query molecules or databases, predict the biological activity of 

recently designed compounds, classify compounds into active or inactive categories against studied targets, 

and last but not least, for designing novel analogs with enhanced activity. Finally, the precise information 

revealed from all of the studies that were implemented in this thesis work is described individually as 

follows: 
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5.1. Study 1- A Multi-layered Variable Selection Strategy for QSAR Modeling of 

Butyrylcholinesterase Inhibitors 

Alzheimer’s disease (AD) is an age-related neurodegenerative disorder, which is the most common cause 

of dementia in elderly individuals. The current treatment strategy for AD patients is the use of AChE 

enzyme inhibitors, which give only symptomatic relief. However, recent studies indicated a long-lasting 

effect in a certain percentage of patients2, 5. There is accumulating evidence that AChE and BuChE have 

secondary non-cholinergic functions including the processing and deposition of β-amyloid (Aβ)2, 5. BuChE 

and AChE could play a role in the Aβ metabolism and during an early step in the development of the senile 

plaque, as revealed by the finding that AChE and BuChE accelerate Aβ deposition2, 5. In the present study, 

a PLS-regression-based 2D-QSAR model was developed using a multi-layered feature selection strategy 

for the prediction of inhibitory activity against the BuChE enzyme using a large dataset containing 1130 

diverse molecules. The PLS model was developed by following strict OECD guidelines (a defined endpoint, 

unambiguous algorithm, acceptable quantitative metrics, applicability domain analysis, and mechanistic 

interpretation). The QSAR model was analyzed, and the structural features (hydrophobic, ring aromatic, 

and hydrogen bond acceptor/donor) responsible for the enhancement of the activity were identified. The 

developed model further suggests that the presence of hydrophobic features like a long carbon chain would 

increase the BuChE inhibitory activity and the presence of amino group and hydrazine fragment promoting 

the hydrogen bond interactions would be important for increasing the inhibitory activity against the BuChE 

enzyme. Furthermore, molecular docking studies have been carried out to understand the molecular 

interactions between the ligand and receptor, and the results are then correlated with the structural features 

obtained from the QSAR models. The information obtained from the QSAR models is well corroborated 

with the results of the docking study. 

5.2. Study 2- Exploring 2D-QSAR for prediction of Beta-secretase 1 (BACE1) inhibitory activity 

against Alzheimer’s disease 

The pathogenesis of Alzheimer's disease (AD) is highly complex. The beta-secretase 1 (BACE1) enzyme 

plays an important role in the abnormal production of β-amyloid plaques (Aβ), which is a major hallmark 

of the pathophysiology of the disease. In the present work, a PLS-regression-based 2D-QSAR model was 

developed from 98 diverse classes of compounds having defined BACE1 enzyme inhibitory activity to 

investigate the structural requirements or molecular properties essential for the enzyme inhibitory activity. 

The 2D QSAR model was developed with simple, meaningful, and easily interpretable descriptors. Before 

the development of the final model, a multilayered variable selection strategy using stepwise regression 

followed by best subset selection was applied for the selection of significant descriptors. The statistical 

results of the developed model show good predictivity based on both internal and external validation 

parameters.  The PLS model was developed by following strict OECD guidelines. The information obtained 

from the PLS model, the authors have concluded that:  

i. The presence of hydrogen bond donor groups like –OH, –NH2, –SH, etc. may enhance the 

inhibitory activity against the BACE1 enzyme;  

ii. The higher number of heteroatoms with a lone pair of electrons capable of resonance with an 

aromatic nucleus is essential to increase the inhibitory activity against the BACE1 enzyme;  

iii. The R--CH..X fragment is favorable to enhance the inhibitory activity of β-secretase enzyme 

inhibitors;  

iv. A higher number of H atoms attached to C1(sp3)/C0(sp2) and the presence of N–S fragments at 

topological distance 3 in the molecules are detrimental to the enzyme inhibitory activity.  
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Additionally, pharmacophore mapping revealed that the ring aromatic (RA), hydrophobic, and hydrogen 

bond acceptor (HBA) features are an initial necessity for the inhibitory activity against the BACE1 enzyme, 

and these features are well corroborated with the descriptors obtained from the 2D-QSAR model. 

Furthermore, the results obtained from the molecular docking study are well supported by the QSAR and 

pharmacophore analysis. The developed 2D-QSAR model thus may be helpful for the prediction of the 

activity of new analogs even before their synthesis and evaluation. 

5.3. Study 3- Cheminformatic modeling of β-amyloid aggregation inhibitory activity against 

Alzheimer's disease 

In this research, chemoinformatic tools were applied to examine a set of 314 heterocyclic compounds with 

defined β-amyloid aggregation inhibitory activity to identify the structural requirements essential for the 

inhibitory activity. The QSAR models were developed with simple, meaningful, and easily interpretable 

descriptors. Before the development of the final models, a multilayered variable selection strategy using 

stepwise regression followed by best subset selection was applied to investigate the meaningful descriptors, 

and the final models were built by using the PLS regression-based methodology following strict OECD 

guidelines. The obtained results suggest that the developed model showed good predictivity based on both 

internal and external validation parameters. The information obtained from the PLS models suggested the 

following: (i) The presence of a secondary aromatic amine in compounds, (ii) The presence of C-N 

fragments at the topological distance 5, and (iii) Aromatic carbons with an attached substituent atom are 

favorable for enhancing β-amyloid aggregation inhibitory activity; whereas, (iv) A higher number of the 

normalized number of ring systems and a furane ring in the molecules is detrimental to the inhibitory 

activity. Furthermore, pharmacophore mapping revealed that the RA, hydrophobic, hydrophobic aromatic 

and HBA features are an initial necessity for the inhibitory activity and these features are well corroborated 

with the nArNHR, SaasC, F09[C-C], SaasC, B05[C-N] and F05[O-O] descriptors of the 2D-QSAR model. 

Moreover, the results obtained from molecular docking analysis are well supported by the QSAR and 

pharmacophore analysis. The developed 2D-QSAR models may be useful for predicting the activity of new 

analogs even before their synthesis and evaluation. Features obtained from the developed models (2D-

QSAR and 3D-pharmacophore) and molecular docking can be helpful for the design of novel inhibitors 

against β-amyloid aggregation, and the overall approach established can be adopted for ligand-based drug-

design campaigns. 

5.4. Study 4- Chemometric modeling of structurally diverse carbamates for the inhibition of 

acetylcholinesterase enzyme (AChE) in Alzheimer’s disease 

In the current study, 2D-QSAR and GQSAR models were developed for the prediction of inhibitory activity 

against the AChE enzyme using a dataset containing 78 carbamate derivatives. The statistical results of the 

developed models show good predictivity based on both internal and external validation parameters. From 

the evidence obtained from developed models (2D QSAR and GQSAR) authors have concluded that:  

i. The higher number of steric features in the molecule may enhance the inhibitory activity against 

the AChE enzyme,  

ii. The higher number of ring systems present in the molecules is essential to increase the inhibitory 

activity against the AChE enzyme as also corroborated with the developed pharmacophore model,  

iii. The CH2RX fragment and H attached to C0(sp3) with 1X attached to the next “C” are detrimental 

to the AChE enzyme inhibitory activity,  

iv. Relatively less distance between the most hydrophobic and hydrophilic group at the R2 position 

may favor the inhibitory activity against the AChE enzyme,  
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v. An increase in the positive electrostatic potential of fragment R2 may lead to an increase in the 

inhibitory activity against the AChE enzyme,  

vi. Reduction in the number of –CH2 groups which are connected with the help of two single bonds 

at the R1 position would be better for the inhibitory activity of the compounds and,  

vii. The absence of the N-CH3 group at the R3 position may favor the inhibitory activity against the 

AChE enzyme.  

Also, pharmacophore mapping revealed that the RA, HBA, Hydrogen bond donor (HBD) and hydrophobic 

features are preliminary requirements for the inhibitory activity and these features are well corroborated 

with the NRS, +vePotentialSurfaceArea, MomInertiaX (moment of inertia at X-axis), F06 [C-N], and X2A 

descriptors of the 2D-QSAR and GQSAR models. Moreover, molecular docking analysis revealed that 

hydrogen and hydrophobic bonding can be correlated with X2A, R2-+vePotentialSurfaceArea, R3-

MomInertiaX, and NRS descriptors in the QSAR models. X2A, R2-+vePotentialSurfaceArea, and R3-

MomInertiaX are related to hydrogen bonding and electrostatic interactions between protein and ligand. 

The descriptor, NRS, gives evidence of hydrophobic interaction. Thus, from the above-stated information, 

authors concluded that hydrogen bonding, hydrophobicity, electrostatic interactions, and unsaturation (π-π 

interaction) feature as obtained from both QSAR and docking study are essential for the inhibitory activity 

against the AChE enzyme. The developed QSAR models thus may be helpful for the prediction of the 

activity of new analogs even before their synthesis and evaluation. 

5.5. Study 5- In silico modeling for dual inhibition of acetylcholinesterase (AChE) and 

butyrylcholinesterase (BuChE) enzymes in Alzheimer’s disease 

In the present investigation, authors have employed chemoinformatic tools to investigate the datasets of 

997 and 761 heterocyclic compounds with defined AChE and BuChE enzyme inhibitory activities, 

respectively, to investigate the important structural features for enzyme inhibition. Additionally, 198 

heterocyclic compounds from the same datasets having dual inhibitory activity against AChE and BuChE 

enzymes have been considered for exploring selectivity patterns. Significant and easily interpretable 2D 

descriptors are calculated for model development. Before the development of the final models, a 

multilayered variable selection strategy was employed for the selection of significant descriptors. The PLS 

regression-based methodology was used for the developed final models following the OECD guidelines. 

The statistical results obtained from the developed models exhibited acceptable quality in terms of both 

internal and external validation matrices. From the insights obtained from generated PLS models, authors 

have concluded that: a higher number of -CH2- groups (corresponding SssCH2 descriptor values not more 

than 40), number of secondary aromatic amines (corresponding descriptor values not more than 4), smaller 

ring size (size of the ring corresponding to ring index not more than order 8), branching in the cationic 

structure (one central atom is attached to three other non-hydrogen atoms) and number of aromatic ketone 

groups (not less than 2 fragments) may be more favorable for the inhibitory activity against AChE enzyme. 

In the case of the BuChE inhibitor model, a central carbon atom (C) on an aromatic ring that has one carbon 

neighbor (R) and one heteroatom neighbor (X) on the same aromatic ring and the third neighbor outside 

this ring is a carbon (R), a sum of topological distances between two nitrogen atoms, number of fragments 

containing C(sp2) atoms that are attached with two electronegative atoms (O, N, S, Se, and halogens), i.e., 

one by a single bond and another by a double bond and the number of secondary aromatic amides may 

influence the inhibitory activity of BuChE enzyme inhibitors, whereas a higher number of thiazole rings, 

CRX fragments and H atoms connected to C0(sp3) with 2X attached to next ‘C’ are detrimental to the 

BuChE enzyme inhibitory activity. The features obtained from the selectivity-based model suggest that the 

number of aromatic ethers and unsaturation content related to their molecular size and molecular shape may 
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be more specific for the inhibition AChE enzyme in comparison to the BuChE enzyme, whereas the number 

of total quaternary carbons (sp3) may be more specific for BuChE inhibitory activity. The identified 

features are responsible for increasing brain permeability and an entropically more favorable binding to the 

receptor and intermolecular interactions by strong H-bonds for the improvement of the inhibitory activity 

of both enzymes (AChE and BuChE). Finally, molecular docking analysis has performed to identify the 

interactions between target proteins (AChE and BuChE enzyme) and inhibitors in this dataset., and the 

results showed the active compounds (compounds 15 and 19 in the case of AChE inhibitors and 13 and 547 

in case of BuChE inhibitors), formed hydrogen bond and hydrophobic π interactions with amino acid 

residues that lead to the identification of the active binding site of the target protein. Moreover, the 

information obtained from molecular docking analysis well supported the features obtained from the 2D-

QSAR analysis results. The validated models might be supportive for the estimation of the inhibitory 

activity of novel compounds against the AChE and BuChE enzymes, and the information obtained from 

the 2D-QSAR analysis and molecular docking studies can be useful for the development of new analogs. 

5.6. Study 6- Multi-target QSAR modeling for the identification of novel inhibitors against 

Alzheimer's disease 

The present investigation includes the development of in silico-based predictive 2D-QSAR models against 

the twelve major targets of AD using a PLS regression approach for the exploration of the structural features 

responsible for the inhibitory activity toward respective targets using simple and easily interpretable 2D 

descriptors. The authors have also developed the 17 QSAAR and 10 selectivity-based models by screening 

the common inhibitors from the primary datasets. All developed models are extensively validated and found 

to be robust enough to satisfy the acceptance criteria. From the insights obtained from the developed 

models, it can be inferred that features contributing to hydrophobicity as the significant parameter for the 

AD drugs, molecular bulk, and electronegativity of the compounds may enhance the inhibitory activity of 

the compounds. The identified features/properties are responsible for enhancing brain permeability and an 

entropically more favorable binding to the receptor and intermolecular interactions by strong H bonds for 

the improvement of the inhibitory activity against the targets. The developed individual models were used 

to check the applicability domain of the four chemical druglike databases (18,963,690 compounds) for the 

search for novel inhibitors with multitarget inhibitory activity. In a detailed analysis of the predicted 

chemical databases, authors have identified the top 56 lead compounds with multitarget inhibitory activity 

that could act as inhibitors for the treatment of AD. Furthermore, authors have also implemented chemical 

Read-Across predictions using the Read-Across-v3.1 tool (https://dtclab.webs.com/software-tools); the 

results for the external validation parameters were found to be better than the 2D-QSAR-derived 

predictions. Finally, molecular docking analysis has been implemented to identify the interactions between 

target proteins and inhibitors, and the results showed the active compounds formed hydrogen bonding and 

hydrophobic π interactions with active amino acid residues that lead to explaining the influences of different 

features which appeared in the 2D-QSAR models. Moreover, the evidence obtained from molecular 

docking analysis well corroborated with the features obtained from the 2D-QSAR analysis. Lastly, the 

proposed models and read-across hypotheses might be enormously valuable as guides for investigators to 

predict the inhibitory activity of novel compounds against respective targets and the evidence obtained from 

the 2D-QSAR analysis and molecular docking studies can be useful for the design of next-generation multi-

target inhibitors for Alzheimer therapy. 
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5.7. Overall conclusion 

In this thesis work, various in silico techniques were employed to study the potential leads against AD. The 

main rationale was to use different in silico approaches to find and improve potential anti-Alzheimer's leads 

against several crucial targets involved in AD. Along with the single-target drug designing approach (study 

1-4), authors have also focused on identifying or designing dual-binding site AChE inhibitors (study 5), as 

well as multi-target inhibitors (study 6). Further, authors have explored the selectivity issue of inhibitors 

against AChE over BuChE (study 5), which is a commonly observed issue while designing molecules 

against enzymes. Even though we used a variety of in silico methods, such as QSAR, molecular docking, 

pharmacophore modeling, virtual screening, and so on, the majority of our work is focused on developing 

predictive and statistically robust QSAR models. The QSAR approach is used extensively in the lead 

optimization step of any drug development effort to reduce time, money, and, most importantly, animal 

sacrifice. A QSAR model is used to identify the structural features responsible for the activity as well as to 

achieve selectivity. Additionally, authors have also developed the quantitative structure activity-activity 

relationship (QSAAR) and selectivity-based models to explore the most important features contributing to 

the dual inhibition against the respective targets. Furthermore, the model provides significant information 

for designing new compounds with improved activity, and it is used to predict the activity of a query or 

newly designed compound. 
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Abstract: Background: Alzheimer’s disease (AD), a neurological disorder, is the most common cause 
of senile dementia. Butyrylcholinesterase (BuChE) enzyme plays a vital role in regulating the brain ace-
tylcholine (ACh) neurotransmitter, but in the case of Alzheimer’s disease (AD), BuChE activity gradu-
ally increases in patients with a decrease in the acetylcholine (ACh) concentration via hydrolysis. ACh 
plays an essential role in regulating learning and memory as the cortex originates from the basal fore-
brain, and thus, is involved in memory consolidation in these sites.  
Methods: In this work, we have developed a partial least squares (PLS)-regression based two dimen-
sional quantitative structure-activity relationship (2D-QSAR) model using 1130 diverse chemical classes 
of compounds with defined activity against the BuChE enzyme. Keeping in mind the strict Organization 
for Economic Co-operation and Development (OECD) guidelines, we have tried to select significant 
descriptors from the large initial pool of descriptors using multi-layered variable selection strategy using 
stepwise regression followed by genetic algorithm (GA) followed by again stepwise regression tech-
nique and at the end best subset selection prior to development of final model thus reducing noise in the 
input. Partial least squares (PLS) regression technique was employed for the development of the final 
model while model validation was performed using various stringent validation criteria. 
Results: The results obtained from the QSAR model suggested that the quality of the model is accept-
able in terms of both internal (R2= 0.664, Q2= 0.650) and external (R2

Pred= 0.657) validation parameters. 
The QSAR studies were analyzed, and the structural features (hydrophobic, ring aromatic and hydrogen 
bond acceptor/donor) responsible for enhancement of the activity were identified. The developed model 
further suggests that the presence of hydrophobic features like long carbon chain would increase the 
BuChE inhibitory activity and presence of amino group and hydrazine fragment promoting the hydrogen 
bond interactions would be important for increasing the inhibitory activity against BuChE enzyme. 
Conclusion: Furthermore, molecular docking studies have been carried out to understand the molecular 
interactions between the ligand and receptor, and the results are then correlated with the structural fea-
tures obtained from the QSAR models. The information obtained from the QSAR models are well cor-
roborated with the results of the docking study. 

Keywords: QSAR, Butyrylcholinesterase inhibitors, Multi-layered variable selection, Validation, Alzheimer’s disease. 

1. INTRODUCTION 

Alzheimer’s disease (AD) is an age-related neurodegen-
erative disorder, which is the most common cause of demen-
tia in elderly individuals. It is characterized by selective neu-
ronal cell death that affects the brain area related to memory 
and learning [1, 2]. This disease was first described by the 
German psychiatrist and neuropathologist Dr. Alois Alz- 
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heimer, in 1906. According to the World Alzheimer’s report 
2010, there were 35.6 million people living with dementia 
worldwide, and it may increase to 65.7 million by 2050 [3]. 
According to the World Alzheimer’s report 2015, 9.9 million 
new cases were reported and 46.8 million people were living 
with dementia worldwide, and this number is expected to 
almost double every 20 years [3]. The primary signs of the 
disease include that a patient may be unable to remember 
recent events or conversations, and as the disease grows, a 
person affected with AD will develop severe memory dete-
rioration and lose the skill to carry out everyday activity. 
Pathologically, AD is often cerebral proteopathy [4, 5]. Pa-
tients become symptomatic before 50 years of age, but the 
prevalence of the disease rises with age, and this roughly 

macpro
Final
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doubles every 5 years. The disease grows from a level of 1% 
for the 60-64 years old population and attains 40% or more 
for the 85-89 years old cohort. The increase in the prevalence 
of the disease with age has given upsurge to major medical, 
social and economic problems in countries with a growing 
number of elderly individuals [6]. AD was first reported a 
century ago, but the research on its pathogenesis and treat-
ment has started only in the last few decades. In recent years, 
a significant research has been devoted to develop drugs that 
slow down neurodegeneration, and this revealed a number of 
biological targets such as N-methyl-d-aspartate (NMDA) 
receptor, glycogen synthase kinase 3β (GSK3β), AChE en-
zyme, BuChE enzyme, cyclin-dependent kinase 5 (CDK5), 
β-secretase and γ-secretase etc. However, we are still far 
from finding a precise treatment strategy for AD [3]. The 
well-known “cholinergic hypothesis” relates the neuronal 
degeneration with the loss of cholinergic neurotransmission. 
This is the oldest hypothesis of AD progression, according to 
which, a reduced synthesis of neurotransmitters acetylcho-
line (terminated by acetylcholinesterase (AChE) and bu-
tyrylcholinesterase (BuChE)) [7] results in neuroinflamma-
tion and large scale aggregation of β-amyloid. Even though 
the distinctive features of neurodegeneration in Alzheimer's 
brains are well known, one of the current difficulties is re-
lated to the lack of solid evidence regarding the crucial fac-
tors that give rise to the pathogenesis of this disease, creating 
a great challenge for the efficient treatments of AD. 

The current treatment strategy for AD patients is the use 
of AChE enzyme inhibitors, which gives only a symptomatic 
relief. However, recent studies indicated a long-lasting effect 
in a certain percentage of patients. In fact, there are accumu-
lating evidences that AChE and BuChE have secondary non-
cholinergic functions including the processing and deposi-
tion of β-amyloid (Aβ). Aβ is a physiological peptide se-
creted from neurons under normal conditions both in vitro 
and in vivo [8]. Aβ is generated from amyloid precursor pro-
tein (APP) by sequential limited proteolysis conducted by β 
and γ-secretases [8, 9]. BuChE and AChE could play a role 
in the Aβ metabolism and during an early step in the devel-
opment of the senile plaque, as revealed by the finding that 
AChE and BuChE accelerate Aβ deposition. Considering the 
non-classical BuChE and AChE functions, their relationships 
with AD hallmarks and the assumed role of peripheral ani-
onic site in all these functions, the dual binding site ChE 
inhibitors may acquire importance for the AD treatment. On 
the other hand, the interference of AChE inhibitors with Aβ 
processing is not a general rule for this class of compounds 
with the involvement of other features such as chemical 
structure and/or genetic regulation [10]. The recent devel-
opment of highly selective BuChE inhibitors (2-
Phenylbenzofuran derivatives) [11] will allow to test these 
new agents in patients with AD in order to find out whether 
they represent an advantage or not for the treatment of pa-
tients with AD as compared with selective (Donepezil) or 
relatively non-selective (rivastigmine, galantamine) ChE 
inhibitors presently in use [12]. There are now 5 approved 
drugs for the treatment of cognitive symptoms of AD, four 
are acetylcholinesterase enzyme (AChE) inhibitors (Tacrine, 
Rivastigmine, Galantamine and Donepezil) and one is a non-
competitive glutamate (NMDA) receptor antagonist (Me-
mantine). The benefit from their use is symptomatic, and no 

medicine has been clearly shown to delay or halt the pro-
gress of the disease [10]. There is a rising evidence that both 
AChE and BuChE may be important in the development and 
progression of AD [13]. Structural features of the both en-
zymes suggest the differences in their substrate specificity; 
AChE is highly selective for ACh neurotransmitter hydroly-
sis, while BuChE is capable of metabolizing several different 
neuro active peptides. The substrate diversity is identified by 
the amino acid sequences of the ChE (AChE and BuChE) 
enzymes that determine the 3D size and shape of their re-
spective receptors. In case of AChE, the available space for 
ligand binding is limited by the presence of two large amino 
acids, phenylalanines (Phe295 and Phe297), but in BuChE, 
these two amino acids are replaced by two smaller amino 
acids, valine and leucine, creating greater space that permits 
binding of various larger molecules. The substituted amino 
acids must affect the size and hydrophobic nature of the ac-
tive site [13-14]. 

There are a number of computational studies reported so 
far targeting AD, but still we are far from finding a precise 
treatment strategy for AD [10]. Fang et al. [15] developed a 
QSAR model and reported molecular docking, and molecu-
lar dynamics using 67 berberine derivatives for the inhibition 
of butyrylcholinesterase (BuChE) enzyme. Zheng et al. [16] 
reported a non-linear (neural network (NN)) QSAR model, a 
multi-linear regression (MLR) model and a molecular dock-
ing study using a set of 93 small BuChE inhibitors with de-
fined inhibitory activities (pIC50 values). The authors also 
compared the results obtained from the non-linear model 
with the MLR model and docking studies. The authors con-
cluded that the results obtained from the non-linear model 
were better than the MLR model. Solomon et al. [17] at-
tempted to develop a QSAR model using a series of 88 N-
aryl derivatives with defined inhibitory activity towards both 
acetylcholinesterase (AChE) and butyrylcholinesterase (Bu-
ChE) enzyme in Alzheimer’s drug discovery. Bitam et al. 
[18] performed QSAR studies and developed MLR and MLP 
models using 151 tacrine derivatives with defined BuChE 
enzyme inhibitory activity. It appeared of interest to us to 
carry out a 2D-QSAR study on the BuChEI using a large 
dataset (1130 compounds) for their selective inhibitory activ-
ity. In the current study, we have employed a multi-layered 
variable selection strategy prior to the development of the 
final model to reduce the noise in input. Feature selection 
was achieved using a multi-layered variable selection strat-
egy, and the final model was developed using Partial Least 
Squares (PLS) regression in order to obviate the effect of 
inter-correlation among the descriptors. The variable selec-
tion approach helps in reducing the noise in the input [19]. 
The QSAR model was built to obey the guidelines of the 
OECD principles [20]. The developed model has been vali-
dated by taking into consideration various strict internal and 
external validation metrics [21]. Furthermore, we have per-
formed molecular docking study [22] with the most active, 
moderately active and least active compounds from the 
whole dataset. The development of sophisticated molecular 
docking methodologies allows an accurate interpretation of 
the interactions responsible for the biological activity of 
molecules while the quantification of their structural infor-
mation through QSAR models can be useful for virtual 
screening to design new drugs. 
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2. MATERIALS AND METHODS 

2.1. QSAR Methodology 

2.1.1. Dataset 

We have developed a PLS-regression based QSAR 
model for BuChEI using diverse classes of compounds (n 
=1130) collected from the previously published papers [23-
76] (see in supplementary material sheet 1) to identify the 
structural requirements which are essential for BuChE en-
zyme inhibitory activity. The experimental activity values of 
the dataset compounds were expressed as IC50 values (nM) 
and converted to pIC50 values for model development pur-
poses. The data taken from above-mentioned sources were 
checked and filtered by the criteria of a defined endpoint, 
and same experimental procedures, following the OECD 
guidelines [20]. We have also checked that the data we had 
taken were experimented at the same time of exposure. All 
the structures were drawn using the ChemDraw ultra 12.0 
software [77]. Then, each molecular structure was cleaned 
and hydrogens were added using Marvin view ChemAxon 
tool [78] and the structures were saved as MDL.mol format. 
2.1.2. Descriptor Calculation and Data Pretreatment 

Molecular descriptors are mathematical representations 
of molecular structure information obtained by a well-
specified algorithm. The descriptors were calculated using 
two software tools, namely, Dragon software version 7 [79] 
and PaDEL-descriptor 2.20 software [80]. In this work, we 
have calculated only 2D descriptors covering constitutional, 
ring descriptors, connectivity index, functional group counts, 
atom centered fragments, 2D atom pairs, atom type E-states, 
molecular properties (using Dragon software version 7) and 
extended topochemical atom (ETA) indices (using PaDEL-
Descriptor software). We have performed data pretreatment 
to remove inter-correlated descriptors from dataset using the 
tools Pretreatment V-WSP version 1.2 (available at 
http://dtclab.webs.com/software-tools).  
2.1.3. Dataset Division 

In the present study, our aim was to develop a QSAR 
model, which is statistically robust and capable of making 
accurate and reliable predictions. Therefore, the developed 
QSAR model was validated using new chemical entities, i.e., 
a test set to check the predictive capacity of the developed 
models. The whole data set was divided into an internal set 
(training set) and an external set (test set) using the “Modi-
fied k-medoid” clustering technique (available at 
http://dtclab.webs.com/software-tools). The clustering tech-
nique categorizes a set of compounds into clusters so that the 
compounds present in the same cluster are similar to each 
other. On the other hand, when two compounds belong to 
two different clusters, they are expected to be dissimilar in 
nature. The representative compounds within a cluster are 
called medoids. This technique tends to select k from most 
middle compounds as the initial medoid. Eight clusters were 
generated for the BuChEI dataset containing 1130 com-
pounds [23-76]. We have selected approximately 25% of 
compounds from each cluster for the test set and the remain-
ing 75% of compounds were selected for the training set. 
The training set was used for model development and the test 
set was used for model validation purposes. 

2.1.4. Multi-layered Variable Selection and QSAR Model 
Development 

The selection of important and meaningful descriptors 
from a large pool is a crucial step in the QSAR model devel-
opment. As we know the selection of significant descriptors 
from a large initial pool is important to reduce the noise in 
the input, thus, we have employed a multi-layered variable 
selection strategy prior to the development of the final model 
using stepwise regression (using a suitable stepping criterion, 
e.g., ‘F-for-inclusion ‘and ‘F-for-exclusion’ based on partial 
F-statistic) followed by genetic algorithm (GA) followed by 
again stepwise regression and finally, best subset selection. 
For this purpose, first, we have run stepwise regression using 
the whole pool of descriptors and kept the model descriptors 
aside. Next, we have run again stepwise regression using the 
remaining pool (after removing the descriptors obtained 
from first run stepwise regression) of descriptors and se-
lected the model descriptors. In this way, we have selected 
80 descriptors from the initial pool of 600 descriptors 
(Layer-I). After the first layer of descriptor selection, we 
have developed some models using a genetic algorithm (GA) 
(available at http://dtclab.webs.com/software-tools) and se-
lected 57 descriptors (Layer-II) from 80 descriptors. After 
that, we have selected 20 descriptors using stepwise regres-
sion technique (Layer-III) again. Using these 20 descriptors, 
we have run the best subset selection using a tool developed 
in our laboratory (available at http://dtclab.webs.com/ soft-
ware-tools) to develop a 15 descriptor model which was se-
lected based on Mean Absolute Error (MAE) based criteria 
[81, 82]. Although many groups of authors reported different 
variable selection strategies, we have followed here stepwise 
regression followed by GA followed by stepwise regression 
and finally the best subset selection method as reported pre-
viously also [83-86]. The final model was developed by em-
ploying PLS-regression methodology to avoid intercorrela-
tion among the modeled descriptors using Minitab software 
[87]. Multi-layered variable selection strategy is schemati-
cally represented in Fig. (1). 
2.1.5. Statistical Validation Metrics 

We have developed a PLS-regression based QSAR 
model for the inhibitory activity of BuChE enzyme. The de-
veloped model was validated using both internal and external 
validation parameters. The internal statistical parameters 
used in this study are the determination coefficient (R2) and 
leave-one-out cross-validated correlation coefficient 
(Q2

(LOO)). The determination coefficient (R2) represents how 
much variability of a factor can be explained by its relation-
ship to another factor, it is computed as a value between 0 (0 
percent) and 1 (100 percent). The higher value of this pa-
rameter indicates a better fit of the model. However, these 
parameters are not good enough to evaluate the robustness 
and predictivity of a significant model. Thus, we have em-
ployed additional statistical validation parameters such as 
R2

Pred (external prediction variance) or Q2F1 and Q2F2 to as-
sure the significance of the developed model. Additionally, 
we have performed Y-randomization test, checking of appli-
cability domain criteria, etc. to investigate the robustness of 
the developed model. The main objective of Y-
randomization test is to ascertain whether the developed 
model is obtained by chance or not. The Y-randomization 
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test was performed using the Simca-P software [88] through 
randomly reordering (100 permutations) the dependent vari-
able. The validation parameter of the model obtained under 
such conditions should be of poor quality. The value of the 
R2

yrand intercept should not exceed 0.3 and the value of the 
Q2

yrand intercept should not exceed 0.05 [89]. 

 
Fig. (1). Schematic representation of multi-layered variable selec-
tion strategy. (A higher resolution / colour version of this figure is 
available in the electronic copy of the article). 

2.1.6. Applicability Domain (AD) 

The Applicability domain of a QSAR model has been de-
scribed as the response and chemical structure space that is 
defined by the nature of the chemicals in the training set. If a 
new compound falls within the Applicability domain of the 
developed model, only then the developed model can predict 
the compound precisely. It is extremely useful for QSAR 
developers to have information about the applicability do-
main of the developed model to identify interpolation (true 
predictions) or extrapolation (less reliable predictions) [90-
91]. Here, we have checked the applicability domain of the 
developed model employing the DModX (distance to model 
X) approach at 99% confidence level using SIMCA-P soft-
ware [88]. 
2.1.7. Randomization of the PLS Model 

The purpose of the Y-randomization test is to identify 
and quantify chance correlations between the dependent 
variable and the descriptors [89]. Here, the term chance cor-
relation means that the real model may contain descriptors 
which are statistically well correlated to Y, but in reality 
there is no cause-effect relationship encoded in the respec-
tive correlations with Y because they are not related to the 
mechanism of action [89]. The Y-randomization test consists 
of several runs for which the original descriptor matrix X is 
kept fixed, and only the vector Y is randomized [89]. The 
validation parameter of the model obtained under such con-
ditions should be of poor quality and without real meaning 
[89, 90]. The value of the R2

yrand intercept should not exceed 
0.3 and the value of the Q2

yrand intercept should not exceed 
0.05 [89]. In the present study, for the training set, the X data 

remained constant and the data Y were shuffled randomly. 
Here, we have generated the randomized model using 100 
permutations. The schematic work flow for the development 
of QSAR model against BuChE inhibitors is shown in Fig. 
(2). 

 
Fig. (2). Schematic work flow of QSAR model development 
against BuChE inhibitors (BuChEI).[PLS = Partial least squares, 
SR = Stepwise regression, BSS = Best subset selection]. (A higher 
resolution / colour version of this figure is available in the elec-
tronic copy of the article). 

2.2. Docking Studies 

Molecular docking is a technique to understand drug-
biomolecular interactions for the rational drug design and 
discovery as well as for the mechanistic study by placing a 
molecule (ligand) into the desired binding site of the target 
definite region of the protein/enzyme (receptor) mainly in a 
non-covalent manner to form a stable complex of potential 
efficacy and specificity [92]. The docking process includes 
two basic stages: prediction of the ligand conformation as 
well as its position and orientation within these sites (usually 
referred to as pose) and assessment of the binding affinity. 
The evidence obtained from the docking study can be used to 
suggest the binding orientation, binding energy, free energy, 
interaction energy and stability of complexes. In the current 
study, we have employed molecular docking studies to com-
prehend the interactions between the BuChE enzyme (the 
structure of the protein was retrieved from Protein Data 
Bank with PDB ID: 6EZ2 [93]) and the selected BuChE en-
zyme inhibitors. In this context, we have applied the 
CDOCKER module of receptor-ligand interaction available 
in BIOVIA Discovery Studio client 4.1 [94]. Before the 
docking experiment, we have defined the active site of the 
enzyme using the protocol Receptor-Ligand Interaction sec-
tion using the option “define site from receptor cavities” in 
the BIOVIA Discovery Studio client 4.1 platform [94]. The 
selected inhibitors were subjected to ligand preparation to 
find a series of ligand conformers. Each orientation was used 
in the CDOCKER module for molecular docking using 
CHARMm based interaction energy using a rigid receptor 
[22]. The poses are sorted according to CHARMm interac-
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tion energy, and the top scoring (most negative, thus favor-
able to binding) poses are kept. 

3. RESULTS AND DISCUSSION 

3.1. Mechanistic Interpretation of Modeled Descriptors 

We have developed a PLS model for BuChE inhibitors 
using only 2D descriptors calculated from different software 
tools like Dragon and PaDEL-Descriptor software. Prior to 
the development of the final model, we have used a multi-
layered variable selection strategy to reduce the initial num-
ber of descriptors in the pool thus reducing the noise in the 
input. The statistical quality of the model was determined by 
utilizing different internal and external validation metrics. 
The statistical quality of the model generated in this study 
with 2D descriptors for the large modeling set of BuChEI 
(1130 compounds) [23-76] appears better than those reported 
in the previous studies (Table 4) [15-18]. Usually, a direct 
comparison with the previously reported study is difficult 
since different models were developed using different com-
binations of molecules, but it may be noted that our data set 
was much larger than the datasets dealt with previously [15-
18]. The reported PLS model was developed by using 15 
descriptors with corresponding latent variables of 6. Here, 
ntraining and ntest are the number of compounds present in the 
training and test sets. The R2 (0.664), Q2 (0.650) and R2

pred 
values (0.657) of the PLS model were higher than 0.6 (Equa-
tion 1), which indicated the acceptability and predictive abil-
ity of models. Thus, the results obtained from the PLS model 
(See in Table 1) suggested that the model is acceptable in 
terms of fitness, stability and classical predictivity measures. 
The descriptors appearing in the model define the structural 
and functional requirements, which can improve the inhibi-
tory activity of molecules against BuChE enzyme. The prox-
imity of the observed and predicted values for the BuChE 
enzyme inhibitors in the data set can be further established 
from the scatter plot as shown in Fig. (3). The quantitative 
contributions of similar/dissimilar descriptors are given in 
loading plot (similar descriptors are placed in close proxim-
ity), the interrelationships between the X-variables and the 
Y-response are depicted in the loading plot (Fig. 4). Addi-
tionally, we have also performed Y-Randomization test to 
check whether the model was obtained by any chance or not. 
The results (R2

rand = -0.000805 and Q2
rand = -0.147) obtained 

from the randomized model suggested that the developed 

model was not obtained by any chance correlation (Fig. 5).  
The descriptors in the PLS model are arranged according 

to their importance, and then described separately. The sig-
nificance level of the modeled descriptors towards the Bu-
ChE inhibitory activity is computed based on the variable 
importance plot (VIP) (Fig. 6) [95]. The VIP defines the im-
portance of each variable obtained from the final PLS model 
that are responsible for regulating the BuChE inhibitory ac-
tivity. As per the VIP plot, the significance level of the mod-
eled descriptors are established to be in the following man-
ner: RDCHI, F04[C-O], nPyridines (N..O), F06[C-O], C-
041, B02[N-O], F03[C-C], nCrs, nN-N, B01[N-N], H-048, 
NRS, C-031 and nArCONHR. Among these descriptors, 
RDCHI, C-041, nN-N, T(N..O), nPyridines, nArCONHR, 
nCrs, H-048 and B02[N-O] contributed positively but C-031, 
F03[C-C], F06[C-O], B01[N-N], F04[C-O] and NRS de-
scriptors contributed negatively towards the BuChE inhibi-
tory activity as shown in (Fig. 6) in the regression coefficient 
plot. 

 
Fig. (3). The scatter plot of observed and predicted values of final 
PLS model against BuChE enzyme. (A higher resolution / colour 
version of this figure is available in the electronic copy of the arti-
cle). 

 
Fig. (4). Loading plot for final PLS model against BuChE enzyme. (A higher resolution / colour version of this figure is available in the 
electronic copy of the article). 
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Fig. (5). Model Randomization plot for final PLS model against BuChE enzyme. (A higher resolution / colour version of this figure is avail-
able in the electronic copy of the article). 

The developed PLS regression model is shown below: 

                                         (1) 
ntraining R2 , R2

adj , Q2
LOO , LV=6, ntest , Q2

F1 , Q2
F2  

 

 
Fig. (6). Regression coefficient plot and variable importance plot (VIP) of the final PLS model against BuChE enzyme. (A higher resolution / 
colour version of this figure is available in the electronic copy of the article). 
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Table 1. Statistical validation parameters obtained from the developed PLS model. 

Dataset Training set statistics Test set statistics 

Training set Test set 

Equation Length LV 

R2 Q2
(LOO) R2

Pred Q2F2 

848 282 15 6 0.664 0.650 0.657 0.657 

Table 2. Contribution, definition and mechanism of all the descriptors obtained from the PLS model. 

S. No. Name of Descriptors Contribution Family/Short description Mechanism 

1 RDCHI +ve Connectivity indices: Reciprocal distance sum 
Randic-like index 

Hydrophobic interactions 

2 nArCONHR +ve Functional group counts: Number of secondary 
amides (aromatic) 

Hydrogen bonding and electrostatic interac-
tions 

3 nN-N +ve Functional group counts: Number of N hydrazines Hydrogen bonding interaction 

4 B01[N-N] -ve 2D Atom Pairs: Presence/absence of N - N at topo-
logical distance 1 

Hydrogen bonding interaction 

5 F06[C-O] -ve 2D Atom Pairs:- Frequency of C - O at topological 
distance 6 

Hydrogen bonding interaction 

6 nCrs +ve Functional group counts:- Number of ring secon-
dary C(sp3) 

π-π interactions 

7 C-031 -ve Atom-centred fragments:- X--CR--X Electrostatic interactions 

8 F04[C-O] -ve 2D Atom Pairs:- Frequency of C - O at topological 
distance 4 

Hydrogen bonding interaction 

9 C-041 +ve Atom-centred fragments:- X-C(=X)-X Electrostatic interactions 

10 NRS -ve Ring descriptors:-Number of ring systems Hydrophobic interactions 

11 B02[N-O] +ve 2D Atom Pairs:- Presence/absence of N - O at topo-
logical distance 2 

Hydrogen bonding and electrostatic interac-
tions 

12 nPyridines +ve Functional group counts:- Number of Pyridines Hydrogen bonding and electrostatic interac-
tions 

13 H-048 +ve Atom-centred fragments:- H attached to 
C2(sp3)/C1(sp2)/C0(sp) 

Electrostatic interactions 

14 F03[C-C] -ve 2D Atom Pairs:- Frequency of C - C at topological 
distance 3 

Hydrophobic interactions 

15 T(N..O) +ve 2D Atom Pairs:- Sum of topological distances be-
tween N..O 

Electrostatics and π -π Interaction 

 
The descriptor, RDCHI, simply characterizes the size and 

branching of molecules. Its value increases with molecular 
size but decreases with molecular branching. It can be calcu-
lated through Randic-like formula as shown below. 

     (2) 
Here, A is the number of vertices and aij is equal to 1 

only for pairs of adjacent vertices and zero otherwise, RDS 
is a sum of reciprocal distance [96]. The descriptor contrib-
utes positively towards the BuChE inhibitory activity as sug-
gested by the positive regression coefficient, as shown in 
(Fig. 7) in compounds 264 (pIC50: 1), 266 (pIC50: 0.823) and 
690 (pIC50: 0.629) (containing descriptor values 5.482, 5.277 

and 5.246 respectively). These compounds have a large mo-
lecular size and less molecular branching. Conversely, com-
pounds 292 (pIC50: -5.63), 293 (pIC50: -4.62) and 835 (pIC50: 
-5.13) (containing descriptor values 2.351, 2.608 and 2.727 
respectively) are low active and have higher branching (Fig. 
7). 

The 2D atom pair descriptor, F04[C-O], denotes the fre-
quency of C-O at the topological distance 4. The BuChE 
enzyme inhibitory activity is inversely correlated to the nu-
merical value of this descriptor as indicated by its negative 
regression coefficient. The frequency of the C-O fragment at 
the topological distance 4 may reduce the inhibitory activity 
of BuChE enzyme. The higher number of C-O fragments 
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correlate to lower inhibitory activity as observed in (Fig. 7) 
compounds 883 (pIC50: -4.41) and 642 (pIC50: -5.53) (con-
taining descriptor values 8 and 15 respectively), while a 
lower numerical value of this descriptor correlates to higher 
inhibitory activity as observed in (Fig. 7) compounds 757 
(pIC50: -0.819) and 752 (pIC50: -0.991). 

The functional group count descriptor, nPyridines, de-
scribes the number of Pyridine rings present in the com-
pounds. The positive regression coefficient of this descriptor 
indicates that the presence of Pyridine rings in the com-
pounds may enhance the inhibitory activity against BuChE 
enzyme as found in (Fig. 8) compounds 690 (pIC50: 0.621), 
688 (pIC50: 0.017), 697 (pIC50: 0.85) and 695 (pIC50: 0.645) 
(containing 1 pyridine ring in each cases) and vice versa in 
case of compounds 190 (pIC50: -5.74), 204 (pIC50: -5.02) and 

849 (pIC50: -4.91) (containing no such fragments) as given in 
Fig. (8). The pyridine ring with free electron-pairs and hav-
ing no active atoms are "passive hydrophilic" moiety and are 
capable of forming "hydrogen-bridges" with other polar 
molecules. The structural polarity of pyridine makes it hy-
drophilic in nature [97]. 

Another 2D atom pair descriptor, T(N..O), stands for the 
sum of topological distances between N..O. This descriptor 
contributes positively towards the BuChE inhibitory activity 
as indicated by the positive regression coefficient. Thus, the 
molecules bearing higher topological distance between N..O 
fragment may have higher BuChE inhibitory activity as 
shown in (Fig. 8) compounds 264 (pIC50: 1) and 690 (pIC50: 
0.621) (containing descriptor values 202 and 237 respec-
tively) whereas in contrary, compounds 190 (pIC50: -5.74) 

 
Fig. (7). Contribution of RDCHI and F04[C-O] descriptors on BuChE enzyme inhibition. (A higher resolution / colour version of this figure 
is available in the electronic copy of the article). 

 
Fig. (8). Contribution of nPyridines, T(N..O), nN-N and B02[N-O] descriptors on BuChE enzyme inhibition. (A higher resolution / colour 
version of this figure is available in the electronic copy of the article). 
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and 841 (pIC50: -2.23) which do not contain any such frag-
ment shows less BuChE inhibitory activity (Fig. 8). From 
this observation, it can be concluded that the topological 
distances between nitrogen and oxygen atoms should be 
higher for better inhibitory activity against BuChE. 

Another 2D atom pair descriptor, F06[C-O], indicates the 
frequency of C-O fragment at the topological distance 6. The 
negative regression coefficient of this descriptor suggests 
that the descriptor is inversely proportional to the BuChE 
inhibitory activity as observed in the case of compounds 757 
(pIC50: -0.819) and 758 (pIC50: -0.44) (having higher enzyme 
inhibitory activity as the corresponding numerical descriptor 
value is in the lower range) whereas the reverse is observed 
in case of compounds 880 and 642 having lower enzyme 
inhibitory activity (pIC50= -4.22 and -5.53 respectively) (Fig. 
9).  

The atom centered fragments descriptor, C-041, repre-
sents the number of fragments containing C(sp2) atoms that 
are attached with two electronegative atoms (O, N, S, Se and 
halogens), i.e., one by a single bond and another by a double 
bond. The positive regression coefficient suggests the influ-
ential effect of the feature containing C(sp2) atoms directly 
attached with two electronegative atoms towards BuChE 
inhibitory activity. This is observed in case of compound 269 
(pIC50: 0.823) (descriptor value 1), and the opposite is seen 
in compound 84 (pIC50: -4.39) as depicted in Fig. (9). Thus, 
this descriptor provides us with an assumption that these 
fragments might involve in polar interaction with the binding 
pocket amino acid residues. This electrostatic bond may also 
help in stabilizing the π-π stacking binding and increase the 
affinity between BuChE enzyme and its inhibitors [98]. 

Another functional group count descriptor, B02[N-O], 
stands for the presence/absence of the N-O fragment at the 
topological distance 2. The positive regression coefficient of 
this descriptor indicates that the presence of the N-O frag-

ment at topological distance 2 may favor the inhibitory activ-
ity of inhibitors against the BuChE enzyme as found in (Fig. 
8) compounds 690 (pIC50: 0.621), 688 (pIC50: 0.017), 697 
(pIC50: 0.850) and 695 (pIC50: 0.645) (containing descriptor 
value of 1 for all the cases). On the other hand, compounds 
with a lower numerical value of this descriptor show lower 
inhibitory activity as observed in Fig. (8) compounds 190 
(pIC50: -5.74), 204 (pIC50: -5.02) and 849 (pIC50: -4.91). In 
the latter case, the compounds do not have such N-O frag-
ments at the topological distance 2. Thus, N-O fragments at 
topological distance 2 are influential for the BuChE inhibi-
tory activity. 

Another 2D atom pair descriptor, F03[C-C], indicates the 
frequency of C-C fragment at the topological distance 3. The 
negative regression coefficient of this descriptor suggests 
that the presence of C-C fragment at the topological distance 
3 inversely affects the BuChE inhibitory activity. This is 
observed in compounds 996 (pIC50: -4.25) and 987 (pIC50: -
5.37) (containing higher descriptor values 90 and 81 respec-
tively) (Fig. 10). The opposite is observed in compounds 675 
(pIC50: -1.83) and 430 (pIC50: -1.91) (containing descriptor 
values 9) show higher enzyme inhibitory activity due to 
lower numerical values of this descriptor. 

The functional group count descriptor, nCrs, represents a 
number of ring secondary C (sp3) atoms present in the com-
pounds. This descriptor positivity influences the activity of 
BuChE inhibitors as indicated by its positive regression coef-
ficient. Thus, the compounds containing a higher number of 
ring secondary C (sp3) atoms may have high inhibitory ac-
tivity against BuChE, as shown in (Fig. 10) compounds 385 
(pIC50: -0.477), 386 (pIC50: 0.9085) and 269 (pIC50: 0.823) 
(containing 10, 10 and 9 ring secondary C (sp3) atoms re-
spectively), whereas the compounds containing no such ring 
secondary C (sp3) atom have low inhibitory activity against 
BuChE as shown in (Fig. 10) compounds 1041 (pIC50: -5.33) 
and 1098 (pIC50: -4.60). From this descriptor, it can be in-

 
Fig. (9). Contribution of F06[C-O] and C-041 descriptors on BuChE enzyme inhibition. (A higher resolution / colour version of this figure is 
available in the electronic copy of the article). 
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ferred that the cyclic ring containing carbon atom without 
any unsaturation may favor the BuChE inhibitory activity. 

Another functional group count descriptor, nN-N, de-
notes the presence of a number of hydrazines moiety in the 
compounds. The positive regression coefficient of this de-
scriptor indicates that the activity of inhibitors is directly 
proportional with the numerical value of the nN-N descrip-
tor. Thus, the compounds having higher number of hydrazine 
moiety may have higher BuChE enzyme inhibitory activity 
as shown in (Fig. 8b compounds 690 (pIC50: 0.621), 688 
(pIC50: 0.017), 697 (pIC50: 0.85) and 695 (pIC50: 
0.645)(containing descriptor values 1), whereas the com-
pounds such as 190 (pIC50: -5.74), 204 (pIC50: -5.02) and 
849 (pIC50: -4.91) have less BuChE enzyme inhibitory activ-
ity due to the absence of such fragment as shown in Fig. (8). 
The hydrazine fragment may be involved in hydrogen bond-
ing interactions with the surrounding amino acid residues in 
the binding pocket of BuChE enzyme. We have observed 
from docking studies (discussed later) that N-N fragments in 
the molecules form hydrogen bonds along with electrostatic 
interaction with their surrounding amino acid residues (Figs. 
17 and 18). 

The 2D atom pair descriptors, B01[N-N], describes the 
presence/absence of N-N at topological distance 1. The nega-
tive regression coefficient of this descriptor indicates that 
compounds containing lower number of such fragments have 
good inhibitory activity against the BuChE enzyme as shown 
in (Fig. 11) compounds 264 (pIC50: 1) and 266 (pIC50: 
0.823)(containing descriptor value of 1), while a higher 
number of this fragment shows lower inhibitory activity as 
observed in (Fig. 11) compounds 187 (pIC50: -5.52) and 175 
(pIC50: -5.39). 

We have found that descriptors nN-N and B01[N-N] are 
showing opposite effects on the inhibitory activity against 
BuChE. The descriptor nN-N representing the presence of a 
number of hydrazine moiety in the compounds has a positive 

regression coefficient. In a hydrazine group, two adjacent 
nitrogen atoms are attached with a single bond; there is no 
presence of unsaturation. On the other hand, the descriptor 
B01[N-N] denotes the presence/absence of N-N at topologi-
cal distance 1 and has a negative regression coefficient. 
Here, the descriptor signifies the presence or absence of N-N 
at topological distance 1 without taking unsaturation effect 
into consideration (i.e., unsaturation might be present or ab-
sent). In compounds 187 and 175, there is an absence of hy-
drazine group (nN-N descriptor) but the presence of unsatu-
ration between two adjacent nitrogen atoms, which can be 
explained by B01[N-N] but not by the N-N descriptor. 

The atom centered fragment, H-048, denotes the number 
of H attached to C2(sp3)/C1(sp2)/C0(sp). This descriptor is 
defined as the number of specific atom type in a molecule 
and can be calculated by knowing the only molecular com-
position and atom connectivity. The count of hydrogen at-
oms of type H-048 discloses the importance of hydrogen 
bond interaction. The positive regression coefficient of this 
descriptor indicates that compounds containing a higher 
number of such hydrogen atoms have good inhibitory activ-
ity against BuChE enzyme as shown in (Fig. 11) compounds 
795 (pIC50: -0.77) and 461 (pIC50:-0.699) (containing de-
scriptor values 1) while the compounds 927 (pIC50: -5.29) 
and 243 (pIC50:-5.70) show lower inhibitory activity due to 
the absence of such H atom (Fig. 11). 

Another functional group count descriptor, NRS, indi-
cates the number of ring systems present in the compounds, 
which contributes negatively towards the BuChE enzyme 
inhibitory activity. As observed in the docking study (dis-
cussed later), the results properly corroborate with this ob-
servation. Hydrophobicity plays an important role in better 
BuChE inhibitory activity as we have observed in com-
pounds such as 264 (pIC50: 1) and 697 (pIC50: 0.850) con-
taining descriptor value 2 showing higher inhibitory activity, 
but according to regression coefficient plot, this descriptor 
contributes negatively. Thus, we have concluded that BuChE 

 
Fig. (10). Contribution of F03[C-C] and nCrs descriptors on BuChE enzyme inhibition. (A higher resolution / colour version of this figure is 
available in the electronic copy of the article). 
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inhibitory activity decreases with increasing the descriptor 
value which could be due to some other features present in 
the molecules as shown in (Fig. 12) Compounds 996 (pIC50: 
-4.25) and 987 (pIC50: -5.37) (containing descriptor values 2 
and 1 respectively) and vice versa in case of compounds 675 
(pIC50: -1.83) and 430 (pIC50: -1.91) (Fig. 12). 

The atom-centred fragment descriptor, C-031, simply re-
fers to X-CR-X, where, R represents any group linked 
through carbon atom; X represents any heteroatom (O, N, S, 
P, Se, and halogens). This descriptor contributes negatively 
towards the BuChE enzyme as indicated by the negative 
regression coefficient. For example, compounds 306 (pIC50: 
-4) and 303 (pIC50:-4.22)(containing descriptor values 1) 
have lower BuChE inhibitory activity. On the contrary, the 
molecules which do not contain such feature have higher 
inhibitory activity as shown in compounds 264 (pIC50: 1) and 
697 (pIC50: 0.850) as mentioned in Fig. (12). 

The functional group count descriptor, nArCONHR, rep-
resents the presence of a number of secondary amides (aro-
matic) in the compounds. There are only 32 compounds 
(261, 270, 272, 1061, 1068, 227, 229 and 231, etc) out of 
1130 molecules in the whole data set, which contain such 
fragments, and the frequency of this fragment in compounds 
is 1 (Fig. 12). It may be assumed that this fragment contrib-
utes significantly to increase the intermolecular interactions 
by forming strong H-bonds. This descriptor contributed posi-
tively towards the BuChE inhibitory activity as indicated by 
the positive regression coefficient. Thus, the molecules bear-
ing this fragment may enhance the BuChE inhibitory activity 
as shown in (Fig. 12) compounds 261 (pIC50: -1.04) and 272 
(pIC50: -1.25) (containing descriptor values 1). On the other 
hand, the compounds containing no such fragments have 
lower inhibitory activity as shown in compounds 179 (pIC50: 

-5.61) and 175 (pIC50: -5.39). It may be mentioned here that 
the entire dataset may not follow the exact pattern of correla-
tion for all data points with respect to a single descriptor, 
since it is obvious that the property of any molecules is a 
function of multiple features. Here, we have given appropri-
ate representative examples to understand the role of differ-
ent features and descriptors in controlling the response val-
ues.  

3.2. Applicability Domain of PLS Model 

The applicability domain of a QSAR model is the struc-
tural, biological, physico-chemical information on which the 
training set of the model has been developed, and for which 
it is applicable to make predictions for new compounds [90]. 
The applicability domain of a QSAR model should be de-
scribed in terms of the most significant parameters that ap-
peared in the developed model. Ideally, the QSAR should 
only be used to make predictions within that domain by in-
terpolation, not extrapolation. The proposed PLS model was 
checked using the applicability domain at confidence level 
99% according to the DModX (distance to model in the X-
space) approach using SIMCA-P 10.0 software [88]. In case 
of the proposed model, (Fig. 13) we found that 59 com-
pounds (i.e. compounds number 99, 189, 221, 222, 225-231, 
233, 261, 270, 272, 300-306, 512, 683, 684, 686, 688, 690, 
691, 692, 693, 695, 696, 697, 778, 960, 975-981, 984, 988, 
990, 995, 996, 999, 1003, 1006, 1011, 1057, 1059, 1060, 
1061, 1062, 1065, 1066, 1068 and 1069) in the training set 
are located outside the critical DModX value (D-Crit=1.62) 
and in case of the test set, 16 compounds (i.e., compounds 
number 223, 228, 301, 685, 687, 689, 694, 959, 989, 993, 
997, 1002, 1058, 1063, 1064 and 1067) are located outside 
the critical DModX value (D-Crit=1.62). 

 
Fig. (11). Contribution of B01[N-N] and H-048 descriptors on BuChE enzyme inhibition. (A higher resolution / colour version of this figure 
is available in the electronic copy of the article). 
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Fig. (12). Contribution of NRS, C-031 and nArCONHR descriptors on BuChE enzyme inhibition. (A higher resolution / colour version of this 
figure is available in the electronic copy of the article). 

 

 
Fig. (13). Applicability domain DModX values of the training and test set compounds at 99% confidence level of the developed PLS model 
against BuChE enzyme. (A higher resolution / colour version of this figure is available in the electronic copy of the article). 
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3.3. Molecular Docking 

3.3.1. Molecular Docking for the Most Active Compounds 
from the Dataset 

In case of compounds 264, 688, 697, 695 and 690 having 
higher activity values (pIC50 = 1, 0.01, 0.850, 0.645 and 
0.621 respectively), the interaction forces include hydrogen 
bond interactions (carbon hydrogen bonds and conventional 
hydrogen bonds), π-interactions (π-sigma, π-anion, π-cation, 
π-alkyl bonds and alkyl hydrophobic) and others attractive 
forces. The amino acid residues involved in the interaction 
are ALA A:101, ASP A: 3, ASN A:17, ARG A:14, ILE 
A:99, ILE A:5, ILE A:4, ASP A:3, THR A:26, MET A:16 
and LYS A:103 (Figs. 14, 15, 16, 17 and 18). 

From compound 264 (Fig. 14), we can see the interacting 
residues include ALA A: 101, ASP A: 3, MET A: 16, ASN 
A: 17, ILE A: 4, LYS A: 103 and THR A: 26 of which ALA 
A: 101 is bound with the ligand via alkyl bonding, ASP A: 3, 
ASN A: 17, MET A: 16 and THR A: 26 interact with the 
ligand with hydrogen bonding, while ILE A:4 and LYS 
A:103 show π-alkyl interactions. 

In compound 688, the interacting amino acids include 
ILE A: 5, ASP A: 3 and ILE A: 4. The different interactions 
are shown in Fig. (15). Hydrogen bonding interactions are 
exhibited by ILE A: 5, ASP A: 3 while ILE A: 4 show π-
sigma interaction. It is observed from compound 697 (Fig. 
16) that amino acids ILE A: 4 and ASP A: 3 interact with the 
ligand via hydrogen bonding interaction, ASP A: 3 and ARG 
A: 14 interact with ligand via π-anion, π-cation and some 
other attractive charges whereas LYS A: 103, Met A: 16 
show π-alkyl and alkyl interaction with the ligand. 

In compound 695, the interacting amino acids include 
LYS A:103, ILE A:99, ASP A:3, ILE A:4 and ASN A:17. 
The different interactions are shown in Fig. (17). Conven-

tional hydrogen bond interactions are formed with ASN 
A:17 and ASP A:3 while LYS A:103, ILE A:99 and ILE A:4 
form π-alkyl and alkyl bonding.  

It is observed from compound 690 (Fig. 18) that amino 
acids ILE A:5, ILE A:4, ASP A:3 and THR A:26 interact 
with the ligand via hydrogen bonding interaction, whereas 
MET A:16 and LYS A:103 show π-alkyl interaction with the 
ligand. 
3.3.2. Moderately Active Molecules from the Dataset 

In case of compounds 35, 118, 867,45 and 300 (pIC50 = -
2.99, -2.96, -2.91, -3.770 and -3.959 respectively) which are 
moderately active against the BuChE enzyme, the interaction 
forces include hydrogen bond (carbon hydrogen bonds and 
conventional hydrogen bonds), pi-interaction (π-cation, π-
alkyl, π-lone pair, π-cation, π-anion and π-π stacking) and 
interacting amino acids residues include such as . LYS A: 
103, ASN A: 17, ILE A: 4, ASP A: 3, HIS A:438, TRP A: 
82, TRP A: 430, TYR A: 332, THR A: 120, MET A: 16, 
THR A: 59, ILE A:99, LEU A:125, ALA A:328 and GLY 
A:115. 

It is observed from compound 35 (Fig. 19) that amino ac-
ids ASN A: 17 and ASP A: 3 interact with the ligand via 
hydrogen bonding interaction, LYS A: 103 and ILE A: 4 
interact with ligand via π-alkyl and alkyl bonding. 

In compound 118, the interacting amino acids include 
HIS A:438, TRP A: 82, TRP A: 430, TYR A: 332, THR A: 
120. The different interactions are shown in Fig. (20). The 
amino acid residues HIS A;438 interact with ligand through 
hydrogen bonding, whereas HIS A;438, TRP A: 82, TRP A: 
430, TYR A: 332 and THR A: 120 share their hydrophobic 
feature through π-interactions (π-alkyl, pi-lone pair and π-
cation). 

 
Fig. (14). Docking interactions of most active compound (compound 264). (A higher resolution / colour version of this figure is available in 
the electronic copy of the article). 
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Fig. (15). Docking interactions of most active compound (compound 688). (A higher resolution / colour version of this figure is available in 
the electronic copy of the article). 

 
Fig. (16). Docking interactions of most active compound (compound 697). (A higher resolution / colour version of this figure is available in 
the electronic copy of the article). 
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Fig. (17). Docking interactions of most active compound (compound 695). (A higher resolution / colour version of this figure is available in 
the electronic copy of the article). 

 
Fig. (18). Docking interactions of the most active compound (compound 690). (A higher resolution / colour version of this figure is available 
in the electronic copy of the article). 
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Fig. (19). Docking interactions of moderately active compound (compound 35). (A higher resolution / colour version of this figure is avail-
able in the electronic copy of the article). 

 
Fig. (20). Docking interactions of moderately active compound (compound 118). (A higher resolution / colour version of this figure is avail-
able in the electronic copy of the article). 
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In case of compound 867 (Fig. 21), the interacting amino 
acid residues are ASP A: 3 and THR A: 59 which interact 
with the ligand making hydrogen bonding interaction while 
ILE A: 4, MET A: 16 bind with ligand via π-alkyl and alkyl 
bonds. 

From compound 45 (Fig. 22), we can see the interacting 
residues include ILE A:99, LYS A:103, ILE A:4 and ASP 
A:3, of which ASP A:3 is bound with the ligand via hydro-
gen bonding while ILE A:4, ILE A:99 and LYS A:103 share 
their hydrophobic feature via π-alkyl interactions. 

In compound 300 (Fig. 23), the interacting amino acids 
include LEU A:125, TYR A:332, THR A:120, TRP A:82, 
ALA A:328, TRY A:332, GLY A:115, TRP A:430 and HIS 
A:438. The different interactions are shown in Fig. (15). The 
amino acid residues HIS A;438, GLY A:115 and THR A:120 
share their hydrophilic feature through hydrogen bonding 
interaction, whereas TRY A:332, ALA A:328, TRP A:82, 
TRY A:128, LEU A:125 and TRP A:430 are bound to the 
ligand via π-π interaction. 
3.3.3. Least Active Molecules from the Dataset 

The BuChE enzyme inhibitors 185, 243, 277, 204 and 
835 having a lower inhibitory activity (pIC50 = -5.65, -5.69, -
5.60, -5.021 and -5.136 respectively) show similar kind of 
interactions (alkyl interaction, hydrogen and π interactions) 
as in case of higher inhibitory activity compounds, but the 
number of interacting amino acid residues are much less as 
shown in Figs. (24, 25, 26, 27 and 28).  

 

From compound 185 (Fig. 24), we can see the interacting 
residues include TYR A: 332, TRP A: 82, TYR A: 128 and 
GLU A: 197, of which GLU A: 197 and TYR A: 128 are 
bound with the ligand via hydrogen bonding while TYR A: 
332 and TRP A: 82 show π-sigma and π-π stacked interac-
tions. 

In case of compound 243 (Fig. 25), the amino acids in-
volved in the interaction are GLU A: 197, TRP A: 82, GLY 
A: 439, HIS A: 438, ALA A: 32. The amino acid residues 
HIS A:438 and GLU A:197 interact with the ligand via hy-
drogen bonding whereas TRP A:82, GLY A:439, ALA A:32 
interact with the ligand through π interaction (π-alkyl, π-
cation and π-π stacked). 

From compound 277 (Fig. 26), we can see the interacting 
residues include HIS A: 438, TYR A: 332, ALA A: 199 and 
GLY A: 117, in which GLY A: 117 and ALA A: 199 are 
bound with the ligand via hydrogen bonding while HIS A: 
438 and TYR A: 332 show π-π T shaped interactions. 

In case of compound 204 (Fig. 27), the interacting amino 
acid residues are TRP A:231, GLU A:197, TRP A:128 and 
GLY A:115. GLU A:197 and TRP A:128, which interact 
with the ligand by hydrogen bonding while TRP A:231 bind 
with ligand via T-shaped π-π interaction, and GLY A:115 
binds with the ligand through amide-π stacking interaction.  

In case of compound 835 (Fig. 28), the amino acids in-
volved in the interaction are TRP A:82 and ALA A:328. The 
amino acid TRP A:82 interacts with the ligand through π-π 
stacking and π-sulphur interaction, whereas ALA A:328 
binds with ligand via π-alkyl bonding interaction. 

 
Fig. (21). Docking interactions of moderately active compound (compound 867). (A higher resolution / colour version of this figure is avail-
able in the electronic copy of the article). 
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Fig. (22). Docking interactions of moderately active compound (compound 45). (A higher resolution / colour version of this figure is avail-
able in the electronic copy of the article). 

 
Fig. (23). Docking interactions of moderately active compound (compound 300). (A higher resolution / colour version of this figure is avail-
able in the electronic copy of the article). 
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Fig. (24). Docking interactions of least active compound (compound 185). (A higher resolution / colour version of this figure is available in 
the electronic copy of the article). 

 
Fig. (25). Docking interactions of least active compound (compound 243). (A higher resolution / colour version of this figure is available in 
the electronic copy of the article). 
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Fig. (26). Docking interactions of least active compound (compound 277). (A higher resolution / colour version of this figure is available in 
the electronic copy of the article). 

 
Fig. (27). Docking interactions of least active compound (compound 204). (A higher resolution / colour version of this figure is available in 
the electronic copy of the article). 
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Fig. (28). Docking interactions of least active compounds (compound 835). (A higher resolution / colour version of this figure is available in 
the electronic copy of the article). 

Table 3. Docking results and correlation with the final QSAR model. 

S. No. Compound  
Number 

- CDocker interac-
tion energy 

Interacting residues Interactions Correlation with QSAR model 

1 264 (high pIC50) 45.1 ALA A: 101, ASP A: 3, MET A: 
16, ASN A: 17, ILE A: 4, LYS A: 

103, THR A: 26 

vdW, Hydrogen bonding, alkyl 
and pi-alkyl 

nPyridines, nCrs and T(N..O) 

2 688 (high pIC50) 47.20 ILE A: 5, ASP A: 3, ILE A: 4 vdW, Hydrogen bonding, attrac-
tive charges and pi-sigma 

nPyridines, nN-N, and T(N..O) 

3 697 (high pIC50) 42.67 Met A: 16, ILE A: 4, LYS A: 103, 
ASP A: 3, ARG A: 14 

vdW, Hydrogen bonding, attrac-
tive charges, pi-cation, pi-anion, 

alkyl and pi-alkyl 

nPyridines, RDCHI and nN-N, nCrs 

4 695 (high pIC50) 40.56 LYS A:103, ILE A:99, ASP A:3, 
ILE A:4 and ASN A:17 

vdW, Attractive charges, Hydro-
gen bonding, Pi-alkyl and alkyl 

nPyridines, nN-N, nCrs and T(N..O) 

5 690 (high pIC50) 48.38 Met A:16, ILE A: 4, ILE A: 5, LYS 
A:103, THR A: 26, ASP A:3 

vdW,Hydrogen bonding, Attrac-
tive charge, pi-alkyl 

nPyridines, RDCHI and nN-N 

6 35 (moderate pIC50) 42.46 LYS A: 103, ASN A: 17, ILE A: 4, 
ASP A: 3 

vdW, Hydrogen bonding, alkyl 
and pi-alkyl 

RDCHI 

7 118 (moderate pIC50) 42.09 HIS A:438, TRP A: 82, TRP A: 
430, TYR A: 332, THR A: 120 

vdW, Hydrogen bonding, Pi-
cation, pi-alkyl, pi-lone pair 

NRS and nCrs 

8 867 (moderate pIC50) 28 ILE A: 4, ASP A: 3, MET A: 16, 
THR A: 59 

vdW, Hydrogen bonding, alkyl, 
pi-alkyl 

T(N..O) 

9 45 (moderate pIC50) 40.59 ILE A:99, LYS A:103, ILE A:4 and 
ASP A:3 

vdW, Hydrogen bonding, Pi-
alkyl and alkyl 

RDCHI, nCrs and C-041 

(Table 3) contd…. 
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S. No. Compound  
Number 

- CDocker interac-
tion energy 

Interacting residues Interactions Correlation with QSAR model 

10 300 (moderate pIC50) 44.43 LEU A:125, TYR A:332, THR 
A:120, TRP A:82, ALA A:328, 
TRY A:332, GLY A:115, TRP 

A:430 and HIS A:438 

vdW, Hydrogen bonding, Pi-
alkyl, alkyl, pi-cation and pi-pi 

staking 

nPyridines and nCrs 

11 185 (low pIC50) 29.55 TYR A: 332, TRP A: 82, TYR A: 
128, GLU A: 197 

vdW, Hydrogen bonding, pi-pi 
stacked, pi-sigma, 

B01[N-N] and NRS 

12 243 (low pIC50) 37.65 GLU A: 197, TRP A: 82, GLY A: 
439, HIS A: 438, ALA A: 328 

vdW, Hydrogen bonding, pi-
cation, pi-pi- stacked, pi alkyl 

NRS 

13 277 (low pIC50) 40 HIS A: 438, TYR A: 332, ALA A: 
199, GLY A: 117 

vdW, Hydrogen bonding, attrac-
tive charges, pi-cation, pi-pi-T- 

shaped 

NRS 

14 204 (low pIC50) 35.193 TRP A:231, GLU A:197, TRP 
A:128 and GLY A:115 

vdW, Hydrogen bonding, pi-pi 
T-shaped and amide pi-stacked 

NRS 

15 835 (low pIC50) 25.128 TRP A:82 and ALA A:328 vdW, Pi-alkyl, pi-sulphur, pi-pi-
stacked 

NRS 

 

3.3.4. Relation of the Docking Results with the QSAR 
Model 

In the docking study, we have observed that the forma-
tion of hydrogen bonds and π-π stacking between the ligand 
and the target play a vital role in binding. Hydrogen bonding 
and π-π-interactions can be correlated with T(N..O) (sum of 
topological distances between N...O) and nCrs (number of 
ring secondary C(sp3)) descriptors in the QSAR model. 
T(N..O) is related to hydrogen bonding, electrostatic and π-
donor hydrogen bonding interactions between protein and 
ligand. The descriptor, nCrs, gives evidence of π-π interac-
tion. Furthermore, nPyridines (number of Pyridines) descrip-
tor supports the evidence of π-π interaction (π-cation, π-
anion, π-π stacking and π-alkyl) along with hydrogen bond-
ing interaction as we have observed in compounds 264, 688, 
697,695, 690 and 300 (Figs. 14, 15, 16, 17, 18 and 23). The 
RDCHI (simply characterizes the size and branching of 
molecules) descriptor also supports the π-π interaction (π-
alkyl and alkyl) while C-041 (X-C(=X)-X) descriptor signi-
fies for hydrogen bonding interaction. The H-O48 
(C2(sp3)/C1(sp2)/C0(sp)) descriptor characterizes both the 
hydrogen bonding and π-π (π-alkyl and alkyl) interactions in 
the QSAR model. Thus, from the above mentioned informa-
tion, we can conclude that hydrogen bonding, hydrophobic-
ity, electrostatic interactions and unsaturation (π-π interac-
tion) features obtained from both QSAR and docking study 
are essential for the inhibitory activity against the BuChE 
enzyme. 

3.4. Comparisons of the Performance of the Proposed 
Study with the Previously Published Studies 

There are a number of previous QSAR models reported 
for the prediction of bioactivity of BuChE enzyme inhibitors. 
Here, we have performed a comparison of the best model 
currently derived from some previous models (Table 4). The 
previously reported models were developed by the Multilin-
ear Regression (MLR) analysis, partial least squares (PLS), 
Genetic function approximation (GFA), Multilayer percep-

tron (MLP) and Artificial neural network (ANN) method, 
which gave reliable predictions of bioactivity of BuChE en-
zyme inhibitors. However, the models reported previously 
were developed using a very low number of compounds 
covering a very narrow range of chemical diversity. How-
ever, in the current study, we have employed an extended list 
of compounds covering a wide range of chemicals and offer-
ing a larger chemical domain. We can see from Table 4 that 
Fang et al. [15] developed a PLS model against BuChE en-
zyme by using only 66 compounds; the model quality was 
good, but the equation length (12) was quite high compared 
to the number of data points. In this study, we have utilized a 
wide range of compounds and developed the model with 15 
selected descriptors and 6 latent variables. We can also see 
from Table 4 that Zheng et al. [16] and Bitam et al. [18] de-
veloped QSAR models using very narrow groups of samples 
(151 and 93 compounds respectively) and developed MLR, 
ANN, and MLP based models. Solomon et al. [17] reported 
GFA models utilizing only 59 compounds. The details of 
different internal and external validation parameters obtained 
from our model and obtained from the previously reported 
models are given in Table 4. The best model presented in 
this work is based on a larger group of samples and the vali-
dation parameters (both internal and external) of the training 
and test sets qualified the requisite thresholds. Prior to the 
development of the final model, we have performed multi-
layered variable selection strategy from a large pool of de-
scriptors. The best model was selected based on different 
validation parameters and low equation length. The final 
model was built by using the PLS algorithm with latent vari-
ables of 6. The 15 selected descriptors reflect the fundamen-
tal structural characteristics of molecules, which are impor-
tant in modeling the bioactivity of BuChE enzyme inhibitors. 
The docking results in this study also well collaborate with 
the descriptors obtained from the developed QSAR model 
and justify the significance of the developed model. In com-
parison with the previously reported models with respect to 
acceptability and reliability, the present work deals with di-
verse classes of compounds. Due to the wide applicability 
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Table 4.  Comparison of the developed model with the previously published models. 

Training set Test set Sources Equation 
Length 

Model 

n R2 Q2 n R2pred 

Model in this study 15 PLS 848 0.664 0.650 282 0.657 

Fang et al. 2016 [15] 12 MLR 48 0.883 0.726 18 0.731 

Fang et al. 2016 [15] 12 PLS 48 0.883 0.777 18 0.775 

Zheng et al. 2014 [16] 10 MLR 62 0.89 0.85 31 - 

Zheng et al. 2014 [16] 10 ANN 62 0.950 0.900 31 - 

Solomon et al. 2009 [17] 5 GFA 39 0.884 0.857 20 0.820 

Bitam et al. 2018 [18] 8 MLR 121 0.879 0.857 30 0.847 

Bitam et al. 2018 [18] 8 MLP 121 0.888 0.895 30 - 

 
domain, the model reported in the present study may be used 
as a screening tool for the discovery and development of 
leads against BuChE enzyme. 

4. OVERVIEW AND CONCLUSIONS 

In the present study, we have developed a PLS-regression 
based 2D-QSAR model using multi-layered feature selection 
strategy for the prediction of inhibitory activity against Bu-
ChE enzyme using a large dataset containing 1130 diverse 
molecules [23-76]. The PLS model was developed by fol-
lowing strict OECD guidelines (a defined endpoint, unambi-
guous algorithm, acceptable quantitative metrics, applicabil-
ity domain analysis and mechanistic interpretation). The 2D 
QSAR model gives us knowledge about the several struc-
tural and physicochemical features of inhibitors significantly 
contributing to the prediction of inhibitory activity against 
BuChE enzyme. From the developed model, it can be in-
ferred that hydrogen bonding effect, hydrophobicity, electro-
static interactions and unsaturation (π-π interaction) play an 
essential role in regulating enzyme inhibitory activity. Fur-
thermore, the results obtained from molecular docking stud-
ies are well corroborated with the results of the QSAR analy-
sis. The developed 2D-QSAR model may thus be helpful for 
the chemists to easily identify the required features in the 
rational design of inhibitors for the treatment of AD. 
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ABSTRACT
We have developed a robust quantitative structure–activity relation-
ship (QSAR) model employing a dataset of 98 heterocycle compounds
to identify structural features responsible for BACE1 (beta-secretase 1)
enzyme inhibition. We have used only 2D descriptors for model devel-
opment purpose thus avoiding the conformational complications aris-
ing due to 3D geometry considerations. Following the strict
Organization for Economic Co-operation and Development (OECD)
guidelines, we have developed models using stepwise regression
analysis followed by the best subset selection, while the final model
was developed by partial least squares regression technique. The
model was validated using various internationally accepted stringent
validation parameters. From the insights obtained from the developed
model, we have concluded that heteroatoms (nitrogen, oxygen, etc.)
present within to an aromatic nucleus and the structural features such
as hydrophobic, ring aromatic and hydrogen bond acceptor/donor are
responsible for the enhancement of the BACE1 enzyme inhibitory
activity. Moreover, we have performed the pharmacophore modelling
to unveil the structural requirements for the inhibitory activity against
the BACE1 enzyme. Furthermore, molecular docking studies were
carried out to understand the molecular interactions involved in bind-
ing, and the results are then correlated with the requisite structural
features obtained from the QSAR and pharmacophore models.
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Introduction

Alzheimer's disease (AD) is an irreversible and progressive neurodegenerative disorder
characterized by the presence of two abnormal peptides, amyloid-β (Aβ) and τ-proteins
[1,2]. The early signs of the disease may be a continuous decline in loss of short-term
memory and intellectual functions, frequently accompanied by strange behaviour such as
aggression and depression [3]. Several hypotheses have been proposed to explain AD
pathogenesis such as cholinergic hypothesis, tau hypothesis and amyloid hypothesis that
only describe the basic cause of disease progression [4]. However, these hypotheses are
still not sufficient to explain the root of cause of AD; they seem to be helpful to develop
possible treatment strategies that slowdown the progression of AD [5]. Among these
hypotheses, the most prominent is the amyloid hypothesis, which states that AD is caused

CONTACT K. Roy kunalroy_in@yahoo.com
Supplemental data for this article can be accessed at: https://doi.org/10.1080/1062936X.2019.1695226.

SAR AND QSAR IN ENVIRONMENTAL RESEARCH
2020, VOL. 31, NO. 2, 87–133
https://doi.org/10.1080/1062936X.2019.1695226

© 2019 Informa UK Limited, trading as Taylor & Francis Group

http://orcid.org/0000-0002-0205-7719
http://orcid.org/0000-0003-4486-8074
https://doi.org/10.1080/1062936X.2019.1695226
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/1062936X.2019.1695226&domain=pdf&date_stamp=2019-12-21


by the accumulation of Aβ in the brain [4]. It is reported previously in various literatures
that several forms of Aβ are formed from the amyloid precursor protein (APP) [4].
However, it seems that Aβ42 (10% of all Aβs produced) is the major form of pathogenic
and the most important component of amyloid plaques [4]. According to the amyloid
hypothesis, Aβ accumulation is a basic cause of the AD [6]. In normal brain physiology,
APP is cleaved by β, γ and α secretase enzyme yielding 40 soluble amino acid peptides [7].
But, in case of AD, a two-step proteolytic process is initiated by the Swedish double
mutation at the BACE1 (β-secretase) followed by γ-secretase (catalytic subunits presenilin
1 and 2) yielding a 42 insoluble amino acid peptide called amyloid-β (Aβ), and conse-
quently forming β-amyloid plaque [7]. β-secretase (BACE1) is the first protein that acts on
amyloid precursor protein (APP) in the production of amyloid-β (Aβ) [8]. Due to its evident
rate limiting function, BACE1 seems to be a prime target to prevent Aβ generation in AD
[9]. The BACE1 enzyme has long been observed as an important therapeutic target for AD
in the development of inhibitor drugs for reduction of Aβ [10]. The cloning and identifica-
tion of β-secretase were first reported in 1999 which energized research on both the
protease and its inhibitor drugs. Presently, β-secretase is a major drug target for AD, and
the development of its inhibitor drugs is being pursued in many research laboratories
around the world [11]. Heparan sulphite and its derivatives were reported as BACE1
enzyme inhibitors [12]. Furthermore, other oligosaccharides and their analogues have
also been reported to inhibit BACE1 enzyme and reduce the Aβ deposition [13].
Enoxaparin has been reported to lower Aβ plaque deposition and recover cognitive
function in AD transgenic mice [13].

Computational methods like quantitative structure–activity relationships (QSARs) have
been successfully used to identify the essential structural features for their selective inhibi-
tory activity. The QSAR is a methodology to find a consistent relationship between the
biological activity of a compound and its structural arrangements and chemical property
[14]. There are different regression and pattern recognition techniques which can be used
for the variable selection and QSAR model development [14]. The developed methods for
the QSAR are used particularly in chemoinformatics, drug discovery and to evaluate the
biological activity of new chemical compounds, apart from toxicological and ecotoxicolo-
gical evaluations of specific chemicals within the meaning of risk management [14,15].
There are number of computational studies reported for the identification of novel com-
pounds for the treatment of AD, some of themwe have discussed below but still, we do not
have accurate treatment therapy for AD [16]. Ambure et al. [17] developed QSAR models
using 74 compounds for the inhibition of beta-secretase 1 enzyme. Jain et al. [18] reported
a QSAR model (multi-linear regression (MLR)) using a set of 27 aminoimidazoles derivatives
as BACE1 inhibitors with defined inhibitory activity. Hossain et al. [19] attempted to develop
2D-QSAR and 3D-QSAR models along with molecular docking and pharmacophore model-
ling using 106 compounds with defined inhibitory activity against beta-secretase 1 enzyme.
Chakraborty et al. [20] performed QSAR studies using linear heuristic method and devel-
oped a model using 30 compounds with defined BACE1 enzyme inhibitory activity. In the
current study, we have utilized a dataset of 98 compounds (downloaded from BindingDB
data base) [21] with BACE1 enzyme inhibitory activity for QSAR model development, using
simplemeaningful and easily interpretable 2D descriptors. The developedmodel is aimed at
providing statistically robust predictions for the BACE1 enzyme inhibitory activity of the
compounds, expressed as the negative log of half maximal inhibitory concentration (pIC50).
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The feature selection was done using a stepwise regression strategy followed by best subset
(BSS) selection, and the final model was developed using Partial Least Squares (PLS)
regression in order to obviate the effect of intercorrelation among the descriptors. The
variable selection approach helps in reducing the noise in the input [22]. The QSAR model
was built obeying the guidelines of the OECD principles [23]. The developed model has
been validated by taking into consideration of various strict internal and external validation
metrics [23]. Additionally, we have performed pharmacophore modelling to reveal the
structural requirements for the inhibitory activity and to categorize the compounds into
more active and less active classes against the BACE1 enzyme. Furthermore, we have
performed molecular docking study with the most active and least active compounds
from thewhole dataset and tried to justify the contributions of different descriptors/features
as evident in the QSAR/pharmacophore model.

Materials and methods

QSAR methodology

The dataset
In this study, we have collected 98 heterocyclic compounds (BACE1 enzyme inhibitors)
(Table 1) from the BindingDB database [21] (see sheet 2 in Supplementary materials S1) for
development of the QSAR model. The experimental IC50 values (nM) of the dataset com-
pounds were converted in to pIC50 values for model development purpose. The reported
assay (FRET bioassay) procedure of all the compounds used in this study followed the same
protocol [24–30]. All the structures were drawn using Marvin ChemAxon tool [31] followed
by cleaning of molecules, and finally, saved as MDL .mol format. All the compound
structures were properly checked prior to the calculation of descriptors. The main purpose
of this study was to identify the structural requirements which are essential for BACE1
enzyme inhibitory activity and to predict the activity of unknown compounds against the
BACE1 enzyme.

Preliminary dataset preparation and data curation

Prior to the development of QSAR models, we have performed dataset preparation and
data curation (chemical and biological) steps. The dataset which we have downloaded in
a structural data format (SDF) had both structural and biological activity information. The
identifiers were given to all compounds present in the dataset that carry the following
information, i.e., name of respective enzyme and a serial number. We have extracted the
activity values from the dataset file to classify the compounds in four orders of magnitude.
At last, we have submitted the dataset to chemical and biological curation. In this study,
we have employed the most common steps (as detailed below) to perform the chemical
curation that have been implemented in the in-house designed Konstanz Information
Miner (KNIME) workflow (available at https://dtclab.webs.com/software-tools).
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Table 1. The list of molecules present in the dataset with their names, structures and activity against
BACE1 enzyme.

Nb. Molecular structure

Activity (pIC50)

Experimental Predicted (2D QSAR analysis)

1 −1.301 −1.729

2 −1.602 −2.877

3 −2.079 −3.193

4 −2.255 −2.169

5 −2.431 −3.682

6 −2.491 −3.041

(Continued)

90 V. KUMAR ET AL.



Table 1. (Continued).

Nb. Molecular structure

Activity (pIC50)

Experimental Predicted (2D QSAR analysis)

7 −2.579 −3.034

8 −2.612 −2.853

9 −2.690 −2.455

10 −2.707 −3.428

11 −2.778 −2.566

(Continued)
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Table 1. (Continued).

Nb. Molecular structure

Activity (pIC50)

Experimental Predicted (2D QSAR analysis)

12 −2.934 −2.169

13 −2.995 −3.428

14 −3.033 −2.894

15 −3.060 −3.034

16 −3.133 −2.923

17 −3.267 −2.967

(Continued)
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Table 1. (Continued).

Nb. Molecular structure

Activity (pIC50)

Experimental Predicted (2D QSAR analysis)

18 −3.531 −3.962

19 −3.895 −2.967

20 −4.380 −3.428

21 −4.579 −4.286

22 −2.491 −2.149

(Continued)
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Table 1. (Continued).

Nb. Molecular structure

Activity (pIC50)

Experimental Predicted (2D QSAR analysis)

23 −3.677 −4.303

24 −2.041 −2.915

25 −2.380 −2.841

26 −3.505 −3.595

27 −3.770 −2.975

(Continued)
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Table 1. (Continued).

Nb. Molecular structure

Activity (pIC50)

Experimental Predicted (2D QSAR analysis)

28 −4.287 −3.118

29 −3.173 −3.303

30 −4.778 −5.935

31 −5.021 −4.964

32 −5.161 −5.332

33 −5.287 −5.935

(Continued)
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Table 1. (Continued).

Nb. Molecular structure

Activity (pIC50)

Experimental Predicted (2D QSAR analysis)

34 −5.301 −5.480

35 −5.301 −4.609

36 −5.326 −7.769

37 −8.143 −7.662

38 −8.264 −7.769

39 −8.326 −7.769

(Continued)
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Table 1. (Continued).

Nb. Molecular structure

Activity (pIC50)

Experimental Predicted (2D QSAR analysis)

40 −8.382 −7.429

41 −8.411 −7.662

42 −8.423 −7.555

43 −8.627 −7.876

44 −8.661 −7.876

45 −1.477 −2.803

(Continued)
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Table 1. (Continued).

Nb. Molecular structure

Activity (pIC50)

Experimental Predicted (2D QSAR analysis)

46 −1.778 −2.736

47 −1.903 −3.712

48 −1.903 −2.803

49 −2 −3.246

50 −2.113 −2.869

51 −2.278 −2.850

(Continued)
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Table 1. (Continued).

Nb. Molecular structure

Activity (pIC50)

Experimental Predicted (2D QSAR analysis)

52 −2.897 −2.733

53 −3.309 −4.125

54 −3.380 −3.712

55 −3.577 −2.915

56 −3.819 −2.930

57 −3.845 −3.357

(Continued)
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Table 1. (Continued).

Nb. Molecular structure

Activity (pIC50)

Experimental Predicted (2D QSAR analysis)

58 −3.982 −3.845

59 −4.029 −2.655

60 −4.037 −3.716

61 −4.086 −3.280

62 −4.215 −3.712

63 −4.238 −3.611

(Continued)
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Table 1. (Continued).

Nb. Molecular structure

Activity (pIC50)

Experimental Predicted (2D QSAR analysis)

64 −4.318 −2.929

65 −4.387 −5.081

66 −4.480 −4.374

67 −4.579 −4.760

68 −4.583 −4.078

69 −4.755 −3.985

(Continued)
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Table 1. (Continued).

Nb. Molecular structure

Activity (pIC50)

Experimental Predicted (2D QSAR analysis)

70 −4.895 −4.415

71 −5.176 −4.286

72 −1.602 −2.033

73 −1.845 −2.068

74 −2 −2.636

(Continued)
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Table 1. (Continued).

Nb. Molecular structure

Activity (pIC50)

Experimental Predicted (2D QSAR analysis)

75 −2.041 −2.266

76 −2.230 −1.896

77 −2.342 −1.962

78 −2.462 −1.847

79 −2.612 −2.850

80 −2.612 −2.440

(Continued)
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Table 1. (Continued).

Nb. Molecular structure

Activity (pIC50)

Experimental Predicted (2D QSAR analysis)

81 −2.623 −2.835

82 −2.672 −1.743

83 −2.740 −2.874

84 −2.770 −2.440

85 −2.770 −2.546

(Continued)
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Table 1. (Continued).

Nb. Molecular structure

Activity (pIC50)

Experimental Predicted (2D QSAR analysis)

86 −2.908 −3.244

87 −2.991 −2.222

88 −3 −3.272

89 −3.060 −3.501

(Continued)

SAR AND QSAR IN ENVIRONMENTAL RESEARCH 105



Table 1. (Continued).

Nb. Molecular structure

Activity (pIC50)

Experimental Predicted (2D QSAR analysis)

90 −3.079 −2.821

91 −3.217 −3.501

92 −3.250 −4.008

93 −3.352 −2.743

(Continued)
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Table 1. (Continued).

Nb. Molecular structure

Activity (pIC50)

Experimental Predicted (2D QSAR analysis)

94 −3.389 −3.608

95 −3.477 −3.673

96 −3.477 −3.567

97 −3.531 −3.738

98 −3.851 −3.929
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Reading and storing the information present in the downloaded SDF file
from BindingDB database

The dataset file (SDF) contains all the structural and topological information like molecule
name, coordinates, bond counts, etc. Along with this necessary information, it also
contains the biological information. For chemical data curation, structural information is
enough to identify the correct chemical structure and remove the duplicates. Later, we
have also performed the biological data curation to store other information related to the
biological property, which is necessary for correct biological data curation. In the KNIME
workflow, we have used ‘SDF Reader’ node for reading the input SDF file and storing the
structural information. We have discarded the molecules with incorrect and incomplete
information, and the molecules which have correct structural and biological information
were stored as the revised SDF file for further use.

Removal of salts, mixtures, inorganics and organo-metallics

The molecular descriptors are generally computed for organic compounds and thus the
majority of software tools can only consider organic compounds. Thus, the presence of
salts, mixtures, inorganics and organo-metallics in the dataset may lead to incorrect
descriptor values or such compounds are simply rejected by the software. So, in the
present study, we have removed all the salts, mixtures, in-organics and organo-metallics
before calculating the descriptors using ‘RDKit Salt Stripper’, ‘Connectivity’ node and
‘Element Filter’ nodes [32], respectively.

Normalization of chemical structures

There is a possibility of demonstrating the same functional group using different struc-
tural forms in dataset. Therefore, the normalization of chemical structure is necessary to
remove different structural patterns. For example, nitro groups can be represented using
two double bonds between nitrogen and oxygens, or one single bond linking the
nitrogen and the protonated oxygen, or linking both nitrogen and oxygen atoms that
are oppositely charged [32]. Different representations of the same chemical structure may
create serious problems in a QSAR study because molecular descriptors calculated for
these different representations of the same functional group could be significantly
different. Thus, the transformation of all such functional groups to the standard forms is
highly essential. In this study, ‘RDKit Structure Normalizer’ node was used for standardiz-
ing the chemical structures.

Biological curation

After chemical curation, we have employed biological curation of the screened compounds,
and it includes two important steps, i.e., duplicate analysis and activity cliff analysis. In case
of biological data curation, we have again employed the KNIME workflow (available at
http://dtclab.webs.com/software-tools) to perform duplicate identification and activity cliff
determination. First, we have simply performed the duplicate analysis based on the
BindingDB Monomer ID and using a distance similarity index [32] (calculated using 3D

108 V. KUMAR ET AL.

http://dtclab.webs.com/software-tools


D-Similarity node available in KNIME), where the two compounds were considered identical
or duplicates, only if both the BindingDB Monomer ID and distance similarity values are
identical for both the compounds. Although the BindingDB Monomer ID might have been
sufficient to identify duplicates, but to confirm that there is no error in the BindingDB
Monomer ID itself, we have computed a distance similarity index using KNIME (available at
https://dtclab.webs.com/software-tools). The list of molecules present in the dataset with
their names, structures and activity against BACE1 enzyme is depicted in Table 1.

Descriptor calculation and data pretreatment

The molecular descriptors were calculated using two software tools, namely, Dragon
software version 7 [33] (covering constitutional, ring descriptors, connectivity index,
functional group counts, atom-centred fragments, 2D atom pairs, atom type E-states
and molecular properties) and PaDEL-descriptor 2.20 software [34] (for extended topo-
chemical atom or ETA indices). Molecular descriptors may be defined as the way of
mathematical representation of a molecule by values associated with the chemical con-
stitution for correlation of chemical structures with various chemical reactivity, biological
activity or physical property [35]. After calculation of descriptors, we have implemented
data pretreatment using the tool Pretreatment V-WSP version 1.2 (available at http://
dtclab.webs.com/software-tools) to remove descriptors with at least one missing value,
variables with constant or near constant values (standard deviation less than 0.0001),
descriptors with all missing values and descriptors with (absolute) pair correlation larger
than or equal to 0.95 from the initial pool of descriptors [35].

Dataset division

The whole dataset was divided into training and test sets based on k-Medoids clustering
technique. Our aim was to develop a QSAR model which is statistically robust and capable of
making accurate and reliable predictions. For this, we have employed a software tool ‘Modified
k-Medoids’ (version 1.2) developed in our laboratory (available at http://dtclab.webs.com/soft
ware-tools). The clusteringmethod classifies a set of compounds into clusters so that compounds
belonging to the samecluster are similar to eachother,whilewhen twocompoundsbelonging to
two different clusters are expected to be dissimilar in nature [36]. The representative compounds
within a cluster are calledmedoids. This technique tends to select k frommost middle objects or
compounds as the initialmedoid. After clustering,wehave sorted thewhole dataset according to
theclusternumber followedbyactivity values.Wehave selectedaround22%of compounds from
each cluster as test set compounds (ntest = 22) and the remaining 78%as a training set (ntrain = 76)
compounds. Consequently, the developed QSAR model was validated using new chemical
entities, i.e., the test set to check the predictive ability of the developed model.

Variable selection and QSAR model development

In this study, we have developed a QSAR model for inhibitory activity against BACE1 enzyme using
pIC50 values as the response variable. The selection of important and meaningful descriptors from a
large descriptors pool is a crucial step in QSAR model development. Thus, we have employed a
variable selection strategy prior to the development of the final model using stepwise regression
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(usingasuitable steppingcriterion, e.g., ‘F-for-inclusion ‘and ‘F-for-exclusion’basedonpartialF-statistic)
followed by the best subset selection. For this purpose, we have run stepwise regression using the
whole pool of descriptors (393) to develop a stepwise regression model. In this case, stepwise
regression has been applied using the initial pool of 393 descriptors, and the selected model
descriptors were removed from the initial pool of descriptors and kept aside. Further, stepwise
regression was run using the remaining pool of descriptors, and so on. Finally, we have clubbed the
selected model descriptors in different cycles. In this way, we have reduced the initial pool of
descriptors from 393 to 60 descriptors. Using these 60 descriptors, we ran the best subset selection
tool v2.1 developed in our laboratory (available at http://dtclab.webs.com/software-tools) to generate
a five descriptor model. Best subset regression is an investigative model building regression analysis
technique.This techniquecomparesallpossiblemodelsusingaspecifiedsetofpredictorsanddisplays
the best-fitting models that contain one predictor, two predictors, and so on. The end result is
a number of models and their summary statistics. It is up to us to compare them and choose one.
Sometimestheresultsdonotpoint toonebestmodelandsoour judgement is requiredtochoosethe
best significant model. When selecting the best subset model, we are looking for the highest r2, Q2,
r2pred and lowest Mean Absolute Error (MAE). Among the equations generated from the best subset
selection, we selected one best model, based on the highest r2, Q2, r2pred and lowest MAE criteria.
Among these models, we have selected one model based on MAE [37]. The final model was
developedbyemployingPLS-regressionmethodology to avoid intercorrelationamong themodelled
descriptors using theMinitab software [38]. Information about the original variables is stored in latent
variables (LV) generated by PLS. The final PLS model was developed with five selected descriptors
using three latent variables (LV).

Statistical validation metrics

We have validated the developed PLS model using both internal and external validation
parameters formeasurement of thefitness, stability, robustness andpredictivity. Various internal
statistical parameters like determination coefficient (r2), leave-one-out cross-validated correla-
tion coefficient (Q2

(LOO)) and some rm
2 metrics like average rm

2
(LOO) and Δrm

2
(LOO) were used to

measure the robustness of the model. The determination coefficient (r2) represents how much
variability of a factor can be caused or explained by its relationship to another factor [39]. The
higher value of this parameter indicated a better fit of the model. But these parameters are not
good enough to evaluate the robustness and predictivity of a significant model. Thus, we have
employed some other statistical validation parameters (external prediction) such as r2Pred or Q

2

F1,Q
2F2 toassure the significanceof thedevelopedmodel. Besides theseparameters, rm

2metrics
like average rm

2 andΔrm
2 and concordance correlation coefficient (CCC)were also calculated for

external validation. The basic application of a predictive QSARmodel is to judge the prediction
errors for an external set, which should be within the chemical and response-based domain of
the internal set (i.e., training set). TheQ2

ext-basedmetrics (i.e., r2pred andQ
2
F2) are not always able

to provide a correct indication of the prediction quality because of the influence of the response
range as well as the distribution of the values of response in both the training and test sets
compounds. Thus,wehavealso validated themodel using themeanabsolute error (MAE) based
criteria for both external and internal validation tests. The error-based metrics were used to
determine the true indication of the prediction quality in terms of prediction error since they do
not evaluate the performance of the model in comparison with the mean response [39].
Additionally, we have performed Y-randomization test and DModX approach (applicability
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domain criteria) using the Simca-P software [40]. The Y-randomization test was performed to
check whether the model was obtained by any chance or not, and the DModX approach was
performed to check the whether the test set compounds lie within the applicability domain or
outside the applicability domain of training set compounds. The Y-randomization test was
performed using the Simca-P software [40] through randomly reordering (100 permutations)
the dependent variable values. The validation parameter of the model obtained under such
conditions should be of poor quality as compared to the selectedmodel. The value of the r2yrand
intercept should not exceed 0.3 and the value of the Q2

yrand intercept should not exceed 0.05.
The detailed methodology of work for the development of the 2D-QSAR model for BACE1
enzyme inhibitors is shown in Figure 1.

3D-QSAR pharmacophore modelling

In current study,wehaveperformed3D-QSARpharmacophoremodelling for the identificationof
essential pharmacophoric features, which are necessary for the inhibitory activity against BACE1
enzyme. The inhibitory activity against BACE1 enzyme expressed in term of IC50 values was used
as the dependent variable for the pharmacophore model development. For the purpose of
development of pharmacophore model, we have utilized the compounds (training set) which
were selected as the test set compounds in case of 2D QSAR model whereas the training
compounds in the 2D QSAR model were used as test compounds here [41]. The development
of 3D QSAR pharmacophore model was carried out using the training set compounds and
validated using the test set compounds. Prior to the development of pharmacophore models,
we have performed conformation generation using training set compounds. After conformation
generation, we have performed features mapping protocol for identifying the meaningful
pharmacophoric features from the training set compounds using the BIOVIA Discovery Studio
client 4.1 [42] platform and it resulted in hydrogen bond donor (HBD), hydrogen bond acceptor
(HBA), hydrophobic (HYD), hydrophobic (aromatic and aliphatic) and ring aromatic (RA) features.
In the development of pharmacophore model, different parameters were adjusted such as
activity uncertainty value was kept 2, maximum five features containing hydrophobic (HYD),
hydrophobic aliphatic, aromatic and ringaromatic (RA) andhydrogenbondacceptors (HBA)were
selected and the final models were developed using FAST method of poling algorithm [41].

Validation of developed pharmacophore model

For the purpose of validation of the best pharmacophore model, we have used the different
validation parameters such as quantitative and qualitative methods. In terms of test analysis,
validation of the developedmodels was performed bymapping thewhole test set molecules on
the pharmacophore model. It was carried out in the BIOVIA Discovery Studio client 4.1 [42]
platform with the same setting as we have used in pharmacophore model development. The
predictive ability of a model to categorize both active and less active compounds has been
determined by organizing the molecules with an activity threshold of 1000 nM. In the whole
dataset, the training set (n = 22) consists of 12 most active and 10 least active compounds,
whereas the test set (n = 76) consists of 32most active and 44 least active compounds. To judge
the quality of the developed pharmacophore model, we have performed the qualitative valida-
tion test calculating confusion matrix (validation parameters, namely, true positives, true nega-
tives, false positives, and false negatives) based on the observed and predicted activity values
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obtained from test set analysis [41]. The validation parameters in term of qualitative analysis used
for pharmacophoremodel are sensitivity, specificity, accuracy, precision, F-measure andG-means.
According to the Aher et al. [41], the selectedmodel is measured to be robust if all the validation
parameter values are more than 60% for both the sets (training and test set). In term of internal
validation, we have performed cost analysis and selected the model based on the RMSD,
correlation, fit values and cost difference values. We have also performed the Fischer

Figure 1. Schematic workflow of 2D QSAR model development against BACE1 inhibitors, [PLS = Partial
least squares, SR = Stepwise regression, BSS = Best subset selection].
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randomization test (F-test) at a confidence level 95%, to check whether the obtainedmodel is by
chanceornot. Itwas carriedoutby randomly reordering theactivitydataof training setmolecules
and developed the model with the same settings as used for the actual pharmacophore model
development [41]. According to F-test, the actual model is considered to be better model, if the
results obtained from randomized models are bad quality than actual model [41]. The validated
pharmacophoremodel couldbe further utilized for thepredictionof inhibitory activity of thenew
compound against BACE1 enzyme (see Supplementary materials S2).

Molecular docking studies

Aβ is the main component of pathophysiology in Alzheimer’s disease, and BACE1 enzyme
is responsible for amyloidogenic cleavage of APP generating Aβ. Consequently, control-
ling the BACE1 enzyme activity to decrease Aβ is a rational therapeutic goal [43].
Molecular docking is a key tool in structural molecular biology and computer-assisted
drug design [44]. The goal of ligand-protein docking is to predict the predominant
binding mode of a ligand with a protein of known three-dimensional structure [44]. In
the present study, we have employed molecular docking studies to understand the
interaction pattern of BACE1 enzyme inhibitors within the active site of BACE1 enzyme
(the structure of the protein was retrieved from Protein Data Bank with PDB ID: 4ivt) [45].
Molecular docking was performed by using the CDOCKER module of receptor–ligand
interaction available in BIOVIA Discovery Studio client 4.1 [42]. Prior to the docking, we
have defined the active site of the enzyme using the protocol Receptor–ligand Interaction
section employing the option ‘define site from receptor cavities’ available in the BIOVIA
Discovery Studio client 4.1 platform [42]. The selected inhibitors were subjected to ligand
preparation to find a series of ligand conformers (maximum 255). Each orientation was
used in the CDOCKER module for molecular docking using CHARMm-based interaction
energy using a rigid receptor [46]. The poses are sorted according to CHARMm interaction
energy and the top-scoring (most negative, thus favourable to binding) poses are kept.

Software tools used

A KNIME workflow was used for chemical and biological data curation (available at
http://dtclab.webs.com/software-tools). Marvin ChemAxon software [31] was used for
the representation of chemical structures. Descriptors were calculated by using the
PaDEL-descriptor 2.20 [34] tool and Dragon software version 7 [33]. Data pretreat-
ment was performed by the tool Pretreatment V-WSP version 1.2 (available at http://
dtclab.webs.com/software-tools). Clustering of the dataset was performed by using
the ‘Modified K-Medoid’ tool version 1.3 (available at http://dtclab.webs.com/soft
ware-tools) for its splitting into a training set and a test set. Variable selection and
PLS model development were performed by using Minitab software version 14 [38].
Best subset selection (BSS) was performed by Best subset selection v2.1 software
(available at http://dtclab.webs.com/software-tools). The docking study was per-
formed by using CDOCKER module available in BIOVIA Discovery Studio client 4.1
[42]. The pharmacophore mapping was performed by using the HypoGen module of
3D pharmacophore modelling available in BIOVIA Discovery Studio client 4.1 [42].
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Finally, several plots depicting the quality of the PLS model were developed by using
Simca-P [40] software.

Results and discussion

Mechanistic interpretation of modelled descriptors

In this study, we have developed a PLS-regressionmodel for BACE1 enzyme inhibitors using
only 2D descriptors. Before the development of the final model, we have employed the
stepwise regressionmethod to reduce the initial number of descriptors tomanageable one,
followed by the best subset selection (BSS) (available at http://dtclab.webs.com/software-
tools) as mentioned in materials and methods section. The derived model was validated
carefully using different validationmetrics (both internal and external). The statistical quality
of the developedmodel is depicted below. The reported PLSmodel was developedwith five
descriptors using three LVs (latent variables). The statistical validation parameters like r2

(0.826) andQ2
(LOO) (0.795) signifying the reliability of themodel, and r2Pred orQ

2F1 (0.846),Q
2

F2 (0.846) judge the good predictivity of the model. The descriptors appearing in the model
describe the structural and functional requirements which can improve the inhibitory
activity of molecules against BACE1 enzyme. The closeness of the observed and predicted
values for the BACE1 enzyme inhibitors in the data set can be further recognized from the
scatter plot as shown in Figure 2. The final PLS model with their validation parameters is
depicted below:

Figure 2. The scatter plot of observed and predicted values of the final PLS model against BACE1
enzyme.
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BACE1 enzyme inhibitors: PLS model

pIC50ðnMÞ ¼ �4:235þ 36:67� }ETA dEpsilon D}� 1:82 � }B03½N� S�}þ 1:106

� }ETA Beta ns d}� 0:107� }H� 047}þ 1� }C � 033}

(1)

ntraining ¼ 76; r2 ¼ 0:826;Q2 ¼ 0:795; Average rm2 ¼ 0:711; Δrm2 ¼ 0:139;

MAE ¼ 0:625

Fitting quality ¼ Moderate

ntest ¼ 22;Q2F1 ¼ 0:846;Q2F2 ¼ 0:846; Average rm2 ¼ 0:731; Δrm2 ¼ 0:140;

MAE ¼ 0:544; CCC ¼ 0:911

Fitting quality ¼ Good; LV ¼ 3; No: of descriptors ¼ 5

We have developed a simple but statistically robust PLS regression-based QSAR model
against BACE1 enzyme. The regression coefficient plot (see Figure S1 in Supplementary
materials S3) provides the information about the contribution of descriptors in the model
towards the activity of the compounds. The positive regression coefficients of the descrip-
tors indicated that the BACE1 inhibitory activity will increase with increasing their descriptor
values as shown in the case of ETA_Beta_ns_d, ETA_dEpsilon_D and C-033 descriptors. In
contrast, the negative regression coefficients of the descriptors suggested that the BACE1
enzyme inhibitory activity of the compounds will decrease with increasing the descriptor
values as shown in case of H-047 and B03[N-S] descriptors. The significance level of the
modelled descriptors towards the inhibitory activity against BACE1 enzyme is computed
based on the variable importance plot (VIP) [47]. The variable importance plot (VIP) [47]
defines the order of significance level among the model variables which are responsible to
regulate the inhibitory activity towards the BACE1 enzyme. The descriptors contributing
most (ETA_dEpsilon_D, B03[N-S] and ETA_Beta_ns_d) and least (H-047 and C-033) to the
BACE1 inhibition can be identifiedwith the help of this plot (see Figure S1 in Supplementary
materials S3). The variables show higher statistical significance with VIP score >1 as com-
pared to one with a low VIP score of 0.45. As suggested by the VIP plot [47], the significance
level of themodelled descriptors is found to be in the following order: ETA_dEpsilon_D, B03
[N-S], ETA_Beta_ns_d, H-047 and C-033. The details of statistical validation parameters in
terms of both internal and external validation parameters are depicted in the model.

The most contributing descriptor as per the VIP plot [39] (see Figure S1 in Supplementary
materials S3) is ETA_dEpsilon_D, an extended topochemical atom descriptor, denoting the
measure of contribution of hydrogen bond donor atoms, i.e., the presence of groups such as
–OH, –NH2, –SH, etc., [48]. The positive regression coefficients of this descriptor indicated that
the activity of inhibitors is directly proportional to the numerical value of ETA_dEpsilon_D.
Thus, the compounds having higher number of hydrogen bond donor atoms may enhance
the BACE1 enzyme inhibitory activity as shown in (Figure 3) compounds like 28
(N-carbamimidoyl-2-(2,5-diphenyl-1H-pyrrol-1-yl)acetamide) (pIC50: −4.28), 82 (6-((2-(2-chloro-
phenyl)-5-(4-(pyrazin-2-yloxy)phenyl)-1H-pyrrol-1-yl)methyl)pyridin-2-amine) (pIC50: −2.67)
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and 11 (3-bromo-N-(4-(1-(2-guanidino-2-oxoethyl)-5-phenyl-1H-pyrrol-2-yl)phenyl)benza-
mide) (pIC50: −2.77) and their corresponding descriptor values are 0.071, 0.066 and 0.0648,
respectively. In contrast, compounds like 31 ((3S,5S)-5-phenyl-3-(phenylthio)furan-2,4(3H,5H)-
dione), (pIC50: −5.02) 36 ((S)-1-benzyl-3-((3-(trifluoromethyl)benzyl)thio)pyrrolidine-2,4-dione)
(pIC50: −5.32) and 38 ((S)-1-phenethyl-3-((3-(trifluoromethyl)benzyl)thio)pyrrolidine-2,4-dione)
(pIC50: −8.26) have no such atom to form a hydrogen bond, leading to lower inhibitory activity
(Figure 3). From these observations, we have concluded that a hydrogen bond donor group is
important for BACE1 inhibitory activity.

The next significant descriptor, B03[N-S] is an 2D atom pair descriptor that accounts
for the presence/absence of N-S fragment at the topological distance 3 [49]. It con-
tributes negatively towards the endpoint value which suggested that the numerical
values of the descriptor are inversely proportional to the inhibitory activity. Thus, the
compounds bearing such fragments show lower values of inhibitory activity as evi-
denced by (Figure 4) compounds 40 ((R)-1-(4-methoxybenzyl)-3-((3-(trifluoromethyl)
benzyl)thio)pyrrolidine-2,4-dione) (pIC50: −8.38), 38 ((S)-1-phenethyl-3-((3-(trifluoro-
methyl)benzyl)thio)pyrrolidine-2,4-dione) (pIC50: −8.26) and 39 ((S)-3-(phenethylthio)-
1-(3-(trifluoromethyl)benzyl)pyrrolidine-2,4-dione) (pIC50: −8.32)) whereas, compounds
having no such fragments show higher BACE1 inhibitory activity as shown in com-
pounds 1 ((S)-N-(3-(2-amino-4-cyclohexyl-1-methyl-5-oxo-4,5-dihydro-1H-imidazol-4-yl)
phenyl)furan-2-carboxamide) (pIC50: −1.301) 45 (R)-8-(3-(2-fluoropyridin-3-yl)phenyl)-
8-(4-(trifluoromethoxy)phenyl)-2,3,4,8-tetrahydroimidazo[1,5-a]pyrimidin-6-amine)
(pIC50: −1.477) and 72 (2-((2-amino-6-((2-(2-chlorophenyl)-5-(4-(pyrimidin-5-yloxy)phe-
nyl)-1H-pyrrol-1-yl)methyl)pyridin-3-yl)oxy)ethanol)) (pIC50: −1.602) (Figure 4).

Figure 3. Impact of ETA_dEpsilon_D descriptor on the pIC50 values of the compounds.
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Another extended topochemical atom (ETA) descriptor, ETA_Beta_ns_d, represents
the summed contribution of lone electron pairs capable of forming resonance interac-
tion with an aromatic system. It is defined as sum of all βns(δ) values of all vertices [48].
The positive regression coefficient of this descriptor indicates that heteroatoms with a
lone pair of electrons capable of resonance with an aromatic system are beneficial for
the enzyme inhibitory activity as shown in compounds (Figure 5) 72 (2-((2-amino-6-((2-
(2-chlorophenyl)-5-(4-(pyrimidin-5-yloxy)phenyl)-1H-pyrrol-1-yl)methyl)pyridin-3-yl)
oxy)ethanol) (pIC50: −1.60), 73 (2-((2-amino-6-((2-(2-chlorophenyl)-5-(4-(pyrimidin-5-
yloxy)phenyl)-1H-pyrrol-1-yl)methyl)pyridin-3-yl)amino)ethanol) (pIC50: −1.84) and 76
(2-((2-amino-6-((2-(2-chlorophenyl)-5-(4-(pentyloxy)phenyl)-1H-pyrrol-1-yl)methyl)pyri-
din-3-yl)amino)ethanol)) (pIC50: −2.23) (all these compounds have descriptor value 2). In
contrast, a low number of heteroatoms is detrimental to the enzyme inhibitory activity
as we have observed in (Figure 5) compounds 42 ((S)-1-(benzo[d][1,3]dioxol-
5-ylmethyl)-3-((3-(trifluoromethyl)benzyl)thio)pyrrolidine-2,4-dione) (pIC50: −8.42), 43
((S)-1-phenethyl-3-(phenethylthio)pyrrolidine-2,4-dione) (pIC50: −8.62) and 44 ((R)-
1-benzyl-3-(phenethylthio)pyrrolidine-2,4-dione)) (pIC50: −8.62).

An atom-centred fragment descriptor, H-047, stands for number of H atoms attached to C1

(sp3)/C°(sp2); where the superscript represents the formal oxidation number (the formal
oxidation number of a carbon atom which is equal to the sum of the conventional bond
orders with electronegative atoms) [50]. This descriptor is defined as the number of specific
atom types in amolecule which is calculated by knowing only themolecular composition and

Figure 4. Impact of B03[N-S] descriptor on the pIC50 values of the compounds.
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atom connectivity [51]. The negative regression coefficient of this descriptor suggests that
higher numerical value of this descriptor leads to lower inhibitory activity as evidenced by the
compounds 67 ((S)-8-(3-(4-methoxybenzyl)phenyl)-8-phenyl-2,3,4,8-tetrahydroimidazo[1,5-a]
pyrimidin-6-amine) (pIC50: −4.57), 40 ((R)-1-(4-methoxybenzyl)-3-((3-(trifluoromethyl)benzyl)
thio)pyrrolidine-2,4-dione) (pIC50: −8.38), and 43 ((S)-1-phenethyl-3-(phenethylthio)pyrroli-
dine-2,4-dione)) (pIC50:−8.62) (corresponding descriptor values are 20, 18 and 17, respectively)
(Figure 6). On the contrary, the compounds with lower descriptor values show higher BACE1
enzyme inhibitory activity as observed in case of compounds 1 ((S)-N-(3-(2-amino-4-cyclo-
hexyl-1-methyl-5-oxo-4,5-dihydro-1H-imidazol-4-yl)phenyl)furan-2-carboxamide)(pIC50:
−1.30), 5 ((S)-2-amino-4-cyclohexyl-1-hexyl-4-phenyl-1H-imidazol-5(4H)-one) (pIC50: −2.43)
and 6 ((S)-6-(2-amino-4-cyclohexyl-5-oxo-4-phenyl-4,5-dihydro-1H-imidazol-1-yl)hexanoic
acid) (pIC50: −2.49) (there corresponding descriptor values are 9, 7 and 7, respectively)
(Figure 6).

Another atom-centred fragment descriptor, C-033, stands for the fragment R–CH.X. It
represents the number of the R–CH . . . X fragments in a molecule which means a central
carbon atom (C) on an aromatic ring has a carbon neighbour (R), a heteroatom neighbour
(X-any heteroatom (O, N, S, P, Se, and halogens)) and the third hydrogen (H) neighbour outside
the ring. ‘–’ and ‘ . . . ’ stand for aromatic and aromatic single bonds, respectively [49,51]. For
these β-secretase enzyme inhibitors, this fragment indeed plays an important role in the
binding process and may influence the inhibitory activity prominently. The positive impact of
this descriptor towards the inhibitory activity against the β-secretase enzymewas indicated by
their positive regression coefficient. Thus, the information obtained from this descriptor
suggested that the molecules containing R–CH.X fragment show higher inhibitory activity to
β-secretase enzyme as shown in compounds 1 ((S)-N-(3-(2-amino-4-cyclohexyl-1-methyl-

Figure 5. Contribution of ETA_Beta_ns_d descriptor to the pIC50 values of the compounds.
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5-oxo-4,5-dihydro-1H-imidazol-4-yl)phenyl)furan-2-carboxamide) (pIC50: −1.30), 35 ((3S,5S)-
5-((R)-sec-butyl)-3-((furan-2-ylmethyl)thio)pyrrolidine-2,4-dione) (pIC50: −5.30) and 23
(2-((5-cyano-4-(4-methoxyphenyl)-6-oxo-1,6-dihydropyrimidin-2-yl)thio)-N-(4-phenylthiazol-
2-yl)acetamide)) (pIC50: −3.67) (Figure 7) while compounds 42 ((S)-1-(benzo[d][1,3]dioxol-
5-ylmethyl)-3-((3-(trifluoromethyl)benzyl)thio)pyrrolidine-2,4-dione) (pIC50: −8.42), 43 ((S)-
1-phenethyl-3-(phenethylthio)pyrrolidine-2,4-dione) (pIC50: −8.62) and 44 ((R)-1-benzyl-
3-(phenethylthio)pyrrolidine-2,4-dione) (pIC50: −8.66) show lower inhibitory activity due to
the absence of this fragment (Figure 7).

Randomization model of the PLS model

The predictive quality of the developed model will be poor until the observations are
not appropriately independent of each other. The randomization method is a way to
test the robustness of the developed model [52]. The purpose of the development of
a randomization plot is to identify that the selected descriptors are appropriate and
the reported model is not due to chance correlation. In randomization method, many
numbers of models are developed by several runs for which the original descriptor
matrix X is kept fixed, and only the vector Y is randomized. The validation metrics of
the developed model under such condition should be poor and the value of the
r2yrand intercept should not more than 0.3 and the value of the Q2

yrand intercept
should not exceed 0.05 [52]. In the present study, for the training set, the X data
were kept constant and the Y data were scrambled randomly using 100 permutations.
The model obtained from such condition shows the intercepts as follows: (see Figure
S2 in Supplementary materials S3) r2yrand = −0.0128 and Q2

yrand = −0.26, which
signify the validity of the model and confirm that the reported model was not
obtained by any chance. The above results suggest that the developed model is non-

Figure 6. Impact of H-047descriptor on the pIC50 values of the compounds.
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random and robust, and suitable for prediction of the inhibitory activity against
BACE1 enzyme.

Applicability domain of the PLS model

Prediction of the activity of entire space of chemicals is not possible by a robust and
validated QSAR model until the compounds are predicted within the applicability domain
of the model. The applicability domain (AD) gives a theoretical province in chemical space
well-defined by the respective model descriptors and responses in which the predictions of
activity are reliable [53]. In this study, we have checked the applicability domain of test set
compounds at 95% confidence level using the DModX (distance to model in X-space)
approach available within SIMCA-P 10.0 software [40]. In the plot (see Figure S3 in
Supplementary materials S3), we have observed that all the test set compounds are within
the critical DModX value (D-Crit = 2.584) except compound 29 ((3R,4aR,4bR,8aR,9aS)-
3-((4-(6-methoxynaphthalen-2-yl)-1H-1,2,3-triazol-1-yl)methyl)dodecahydro-1H-pyrido
[3,4-b]indole).

Loading plot of the PLS model

A loading plot of a PLS model (see Figure S4 in Supplementary materials S3) gives the
information about the relationship among the X-variables and Y-variables. In the loading

Figure 7. Impact of C-033 descriptor on the pIC50 values of the compounds.
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plot, a descriptor which is close to zero is not well associated with the trends contained in
the related scores [54]. In the loading plot (see Figure S4 in Supplementary materials S3),
we can observe that the X-variable ETA_dEpsilon_D is significant for the Y-variable (pIC50)
because it is very much close to the Y-variable. It has also been observed that this
descriptor is situated on the same side of Y-variable. From this observation, it can be
concluded that this descriptor is directly proportional to the activity. Thus, the BACE1
enzyme inhibitory activity may increase with increasing the numerical value of this
descriptor. On the other hand, the variable B03[N-S], which is situated on the opposite
side of the plot origin with respect to the activity (Y-variable) contributes negatively
towards the BACE1 enzyme inhibitory activity. The algebraic sign of the PLS loading is
also taken into account, which gives important information about the correlation
between the variables.

3D QSAR pharmacophore modelling

In the present work, we have developed 10 different pharmacophore hypotheses using
a training set (22) of compounds. The best pharmacophore model (Hypo-1) was selected
based on the different internal validation parameters such as high correlation coefficient (r =
0.912), lower root mean square deviation (rmsd: 1.320), Maximum Fit (8.393), total cost
(100.355), configuration cost (16.122), error (83.054) and weight (1.177) was found to be
acceptable. In term of the actual cost for Hypo-1, it is found much closer to the fixed cost
with only a difference of 19.240 bits (mentioned in Table 2) which specifies an accurate
correlation of the dataset. From Table 2, we can see that in Hypo 1 there is a large difference
78.229 bits between the actual cost and the null cost. Based on all validation matrices Hypo-1
was found tobe thebest 1 among the10hypotheseswith onehydrogenbondacceptor (HBA),
two hydrophobic (HYD), and one ring aromatic (RA) features (Figure 8). The results of 10
pharmacophore hypotheses against BACE1 enzyme are depicted in Table 2. The external
validation of themodel has been performed bymapping the test setmolecules on the Hypo-1
using same parameters as we have used in the development of the pharmacophore model.
After mapping, we have observed that 64molecules from the data set of 76 compounds were
mapped, only 10 compounds failed in absence of the features appeared in the developed

Table 2. Results of 3D-QSAR pharmacophore development against BACE1 enzyme.

Hypo. Total cost ΔCosta ΔCostb Correlation (r) RMS Features

1c 100.355 78.229 19.240 0.912563 1.320 HBA, HYD, HYD, RA
2 101.328 77.256 20.213 0.908511 1.349 HBA, HYD(ali), HYD, RA
3 114.143 64.441 33.028 0.851373 1.697 HBA, HBA, RA

4 119.013 59.571 37.898 0.818559 1.855 HBA, HYD(ali), HYD, RA
5 121.711 56.873 40.596 0.803815 1.921 HBA, HYD, RA

6 122.254 56.330 41.139 0.807127 1.907 HBA, HYD(ali), HYD, RA
7 123.086 55.498 41.971 0.811693 1.895 HBA, HBA, RA

8 123.516 55.068 42.401 0.79692 1.951 HBA, HYD, HYD, RA
9 124.065 54.519 42.950 0.8008 1.935 HBA, HBA, RA
10 124.133 54.451 43.018 0.795531 1.957 HBA, HYD(ali), HYD, RA

Cost differencea = Null cost – total cost, Cost differenceb = Total cost – fixed cost, Null cost = 178.584, Fixed Cost = 81.1148,
Best records in pass: 5, Config. Cost = 16.1229, c = Best Hypothesis, Note – RA: Ring aromatic, HYD: Hydrophobic, HYD (ali):
Hydrophobic Aliphatic, HBA: Hydrogen bond acceptor.
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pharmacophore model. To judge the predictive quality of the selected model and to categor-
ize the compounds into active and less active BACE1 enzyme inhibitors were analysed by
comparing the observed activity with predicted activity by the classification-based technique.
For this determination, the compounds with IC50 values ≤1000 nM were classified as active
compounds and compounds with IC50 values >1000 nM as less actives. The observed and
predicted activity of the training and test sets compounds based on Hypo-1 are given in S2
sheets 2 and 3 (Supplementary materials section), respectively. The values of different valida-
tion parameters for training and test sets are given in Table 3 (qualitative validation para-
meters). From the observation of activity predicted by the selectedmodel, we have found that
the model correctly classified 11 out of 12 compounds as more actives and 9 out of 10
compounds as less actives for the training set. For the test set, the model correctly classified
18 out of 25 compounds asmost active and 30 out of 39 compounds as less actives. Aher et al.
[41] suggested that if the values of different validation parameters for both the training and
test sets are greater than 60%, it means that the model is following acceptability criteria and
good enough to predict the activity of new compound of same chemical domain. From the
above observation, we have concluded that Hypo-1 is best appropriate for the classification of
more active BACE1 enzyme inhibitors.

Figure 8. The best pharmacophore model (Hypo1) of BACE1 enzyme inhibitors generated by the
HypoGen module: (a) the best pharmacophore model Hypo1 represented with distance constraints
(Å), (b) Hypo1 mapping with one of the most active compounds 72 of test set compounds and (c)
Hypo1 mapping with one of the least active compounds 32 of test set compounds. Pharmacophoric
features are coloured as follows: hydrogen bond acceptor (green), hydrophobic (cyan), and ring
aromatic (orange).
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Relation of the 3D-pharmacophore model with the 2D QSAR model

In the dataset, all compounds have at least one ring aromatic feature as we have observed
from the both QSARmodels (2D QSAR and 3DQSAR pharmacophoremodels). The RA feature
is an initial necessity for the inhibitory activity against BACE1 enzyme. The RA feature from
pharmacophoremodel is well corroborated with the ETA_Beta_ns_d and C-033 descriptors of
the 2D-QSARmodel (Equation 1). Aswe have observed from themost active compound of the
training set (45, IC50: 30nM) mapped correctly with all features appeared in Hypo 1 (Figure 9).
One benzene ring lies in the RA region, a nitro group in the hydrogen bond acceptor region
and a halogen atom of the aromatic ring lies in the hydrophobic region. Whereas, the least
active compound (70, IC50: 78,700 nM) of the training set does not map correctly with Hypo 1
because of the absence of RA and HBA features in the molecules (Figure 9). Hydrophobic
feature from the developed pharmacophore model is well corroborated with the C-033
descriptor of the 2D-QSAR model (Equation 1). We have observed from the most active
compound of the training set (45), the hydrophobic feature on Hyp1 mapped completely
with these molecules. The most active compound of the test set (72, IC50: 40nM) mapped
correctly on Hypo-1 with all the three features (Figure 8) appeared in the developed pharma-
cophore model. The least active compound (32, IC50: 145,000 nM) of the test set mapped
partially with Hyo-1 (Figure 8). From the above observation, we have concluded that the
absence of these three features appeared in developed pharmacophore model decreases the
inhibitory activity of compounds against BACE1 enzyme. The results obtained from the F-test
suggest that the selected pharmacophore model (Hypo-1) is not due to a chance. This
observation was confirmed by a lower cost value (100.355) of the selected pharmacophore

Table 3. Different qualitative validation parameters (%) of Hypo-1 model obtained by classification of
more active and less active compounds for the training and test sets of BACE1 enzyme inhibitors.

Dataset No. of compounds

Qualitative validation parameters (%)

Sensitivity Specificity Accuracy Precision F-measure G-means

Train 22 91.66 90 90.90 91.66 91.66 90.82
Test 76 68 76.92 73.43 65.38 66.66 72.32

*Compounds with IC50 < 1000 nM: more active (H) and IC50 > 1000 nM: less active (L).

Figure 9. Pharmacophore mapping with training set compounds: (a) Hypo1 mapping with one of the
most active compounds 45 of training set compounds and (b) Hypo1 mapping with one of the least
active compounds 70 of training set compounds.
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model than the average cost of randomized pharmacophore models (155.91) and higher
correlation coefficient (r = 0.912) of the selected pharmacophore model than the average
correlation coefficient of randommodels (rr = 0.568). The actual and randomized total cost and
correlation values of hypotheses for F-test are given in S2 sheet 4 and 5 of the Supplementary
materials section.

Molecular docking

We have performed molecular docking study of most active and least active compounds
of the dataset. The molecular docking study suggests that the molecules interacted with
a pocket containing (ILE A:110, PHE A:108, VAL A:332, GLY A:11, GLY A:13, GLY A:230, VAL
A:332, ILE A:226, LEU A:30 and GLY A:34 (hydrophobic nature), GLN A:73, SER A:229, THR
A:231, THR A:329, THR A:71, GLN A:73, GLN A:12 and THR A:232 (hydrophilic nature), ARG
A:235, ASP A:32, ASP A:228 and LYS A:107 (charged) and TYR A:71 (amphipathic nature))
amino acid residues. Docking results and correlation with the 2D-QSAR model are
depicted in Table 4.

Molecular docking for the most active compounds from the dataset

Three most active compounds from the dataset (pIC50 = −1.301, −1.47 and −1.77, respec-
tively) namely 1, 45 and 16 interacted with the active site amino acid residues through
different interaction forces like hydrogen bonding interactions (carbon hydrogen bonds
conventional hydrogen bonds and π-donor hydrogen bond), π-interactions (π-alkyl bonds,
alkyl hydrophobic, π-lone pair and π-π-T-shaped), salt bridge interaction and halogen
bonding (halogen bonding is an attractive, non-covalent interaction that can form between
an electrophilic region of a halogen atom (fluorine) in a molecule and a nucleophilic region
of a molecule). The amino acid residues involved in interaction with these compounds such
as THR A:231, GLY A:11, GLN A:73, THR A:71, ASP A:32, ASP A:228, VAL A:332, GLY A:13, THR
A:232, GLYA:230, SERA:229, GLYA:34, LYSA:107, ILEA:110, PHEA:108 andARGA:235 (shown
in Figure 10 and Figures S5 and S6 in Supplementary section S3).

Figure 10 shows that compound 1 (one of the most active compounds in dataset)
interacts with GLN A:73, ASP A:32 and ASP A:228 amino acid residues through hydrogen
bonding interaction, with VAL A:332, THR A:71 and THR A:231 amino acid residues
through alkyl, π-alkyl and π-lone pair interactions, respectively, with ASP A:228 amino
acid through salt bridge formation and with ASP A:32 amino acid through attractive
charges (interaction between two oppositely charged atoms).

Another most active compound, 45, interacts with the amino acid residues through
hydrogen bonding (GLNA:73, GLY A:13, PHE A:108, LYS A:107, THR A:232 and GLY A:34),
halogen bonding (THR A:231, SER A:229 and GLY A:230), π-anion (ASP A:228), π-donor
hydrogen bond (THR A:231) and alkyl bonding (and ILE A:110) interactions (see S3 Figure
S5 in Supplementary materials). Figure S6 (see S3 Figure S6 in Supplementary materials)
shows that compound 16 interacts with GLY A:11, ARG A:235, GLY A:34, THR A:231, ASP A:32,
ASP A:228 (through hydrogen bonding), THR A:71 (π-π-T-shaped), VAL A:332 (π-alkyl bonds)
ASP A:228 (salt bridge interaction) and ASP A:32 (attractive charges) amino acid residues.

124 V. KUMAR ET AL.



Molecular docking for the least active compounds from the dataset

Three least active compounds from the dataset (pIC50 = −2.70, −2.77 and −2.770, respec-
tively) namely 84, 10 and 85 interact with the active site amino acid residues through
different interaction forces like hydrogen bond (carbon hydrogen bonds and conventional
hydrogen bonds), pi-interaction (π-anion, π-π-T-stacking π-alkyl and alkyl), salt bridge an
attractive charge interaction. The amino acid residues involved in the interaction with these
compounds are VALA:332, GLN A:73, GLY A:230, ASP A:32, TYR A:71, ASP A:228, GLY A:34, ILE
A:226, THR A:329, GLN A:12 and LEU A:30 (shown in Figure 11 and Figures S7 and S8 in
Supplementary section S3).

Figure S7 (see Figure S7 in Supplementary materials S3) shows that compound 10 (one
of the least active compounds from the dataset) interacts with GLN A:73, GLY A:230, ASP
A:32, ASP A:228 and GLY A:34 amino acid residues through hydrogen bonding interaction,
TYRA:71 and VAL A:332 amino acid residues through π-alkyl, π-π -T-stacking and alkyl, ASP

Table 4. Docking results and correlation with the QSAR model.

No. Compound number

-CDocker
interaction
energy

(kcal/mol) Interacting residues Interactions Correlation with QSAR model

1 1 (high pIC50) 45.340 THR A:231, GLY
A:11, GLN A:73,
TYR A:71, ASP
A:32, ASP A:228
and VAL A:332

Vdw, Hydrogen
bonding, Pi-alkyl,
alkyl, salt bridge,
Attractive charge
and π-lone pair

ETA_dEpsilon_D,
ETA_Beta_ns_d, C-033 and
H-047

2 45 (high pIC50) 39.503 GLY A:13, THR
A:232, GLY
A:230, SER
A:229, GLY A:34,
ASP A:228, GLN
A:73, THR A:231,
LYS A:107, ILE
A:110 and PHE
A:108

Vdw, Hydrogen
bonding, halogen
(fluorine), π-anion,
π-donor hydrogen
bond and alkyl

ETA_dEpsilon_D, ETA_Beta_ns_d
and H-047

3 16 (high pIC50) 51.278 TYR A:71, ARG
A:235, VAL
A:332, ASP
A:228, ASP A:32,
GLY A:34, THR
A:231 and GLY
A:11

Vdw, salt bridge,
Attractive charge,
hydrogen
bonding,
π- π-T-shaped and
π-alkyl

ETA_dEpsilon_D, ETA_Beta_ns_d
and H-047

4 10 (low pIC50) 46.118 VAL A:332, GLN
A:73, GLY A:230,
ASP A:32, TYR
A:71, ASP A:228
and GLY A:34

Vdw, salt bridge,
Attractive charge,
hydrogen
bonding,
π- π-T-shaped,
alkyl and π-alkyl

H-047 and ETA_dEpsilon_D

5 84 (low pIC50) 43.144 GLN A:73, ASP
A:228, ILE A:226
and VAL A:332

Vdw, hydrogen
bonding, π-anion
and alkyl

H-047, ETA_dEpsilon_D and
ETA_Beta_ns_d

6 85 (low pIC50) 44.710 THR A:329, GLN
A:12, ASP A:228,
TYR A:71 and
LEU A:30

Vdw, hydrogen
bonding, π-anion,
π – π stacked and
π-alkyl

H-047, ETA_dEpsilon_D and
ETA_Beta_ns_d
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A:228 amino acid through salt bridge formation and ASP A:32 amino acid through
attractive charges interaction. Another least active compound from the dataset, 85,
interacts with the amino acid residues through hydrogen bonding (THR A:326 and GLN
A:12) and hydrophobic interaction such as π-π-T-stacking, π-alkyl and π anion bonding
(TYR A:71, LEU A:30 and ASP A:228) (see Figure S8 in Supplementary materials S3).

Figure 11 shows that compound 84 interacts with GLN A:73 (through hydrogen
bonding), ASP A:228 (π-anion) and ILE A:226 and VAL A:332 (π-alkyl bonds) amino acid
residues.

As we have observed from docking results that the most active compounds from the
dataset such as 1, 45 and 16 (shown in Figure 10 and Figures S5 and S6 in Supplementary
section S3) interacted with maximum number of active amino acid residues with higher
number of interacting forces (non-covalent forces) in comparison to the least active
compounds from the data set like 10, 85 and 84 (shown in Figure 11 and Figures S7

Figure 10. Docking interaction of the most active compound 1.
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and S8 in Supplementary section S3). In pharmacophore mapping, we have also observed
that the most active compounds from the data set correctly mapped with all features
appearing in the model, whereas the least active compounds partially mapped with the
model. It is possible that the least active compounds from the data set failed to map in the
absence of the features appearing in the developedmodels, which are most important for
inhibitory activity against BACE1 enzyme.

Relation with the 2D-QSAR model

We have observed from docking results that the most active compounds from the dataset
such as 1, 45 and 16 (see in Table 4) interacted with a maximum number of amino acid
residues with a higher number of interacting forces with the lower range of CDocker
interaction energy (−45.340, −39.503 and −51.278, respectively). On the other hand, we
have seen from docking results that the least active compounds from the dataset such 84
and 85 interacted with less number of active amino acid residues with a lower number of
interacting forces, in comparison to the most active compounds, with CDocker interaction
energy of −43.144 and −44.710, respectively. It was noted that the interaction energy (-
CDocker interaction energy) depends on the number of interactions and the forces
involved in the docking. Actually, it is not obvious that the most active compounds will
always show the highest interaction energy and vice versa. Many compounds show

Figure 11. Docking interaction of the least active compound 84.
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a higher range of interaction energy (as for example, compound 10) due to some
insignificant interactions with other elements or amino acids in the active site which
have no contribution to the biological activity. We have observed that the formation of
hydrogen bonding and π-π stacking between the ligands and receptor plays a crucial role
in enzyme inhibitory activity. These observations were also observed from the descriptors
ETA_dEpsilon_D (a measure of the contribution of hydrogen bond donor atoms) and
ETA_Beta_ns_d (a measure of lone electrons entering into resonance with an aromatic
system) in the 2D-QSAR model. The information obtained from the descriptor C-033 (R–
CH . . . X) is correlated with hydrogen bonding, attractive charges and π-donor hydrogen
bonding interactions as observed from the docking study (shown in Figure 10 and Figures
S5 and S6 in Supplementary section S3). Thus, from above said information, we can
conclude that hydrogen bonding effect, hydrophobicity, electrostatic interactions and
unsaturation (π-π interaction) features as obtained from both the 2D QSAR model and
docking study are essential for the inhibitory activity against the BACE1 enzyme.

Comparisons of the performance of the present model with previously
published models

A comparison of the statistical results obtained from the present QSAR model and pre-
viously published models is depicted in Table 5. Based on the statistical quality in terms of
both internal and external validation criteria, the model reported in this work is statistically
significant and robust enough as compared to the previously reported models (Table 5). We
have used 2D descriptors only for model development. A number of researchers reported
QSAR models for the prediction of bioactivity of BACE1 enzyme inhibitors previously using
various techniques such as Multiple Linear Regression (MLR) analysis, Partial least squares
(PLS), Comparative Molecular Field Analysis (CoMFA), Comparative molecular similarity
index analysis (CoMSIA) and linear heuristic method (LHM). In the present study, prior to
the development of the final model, we have performed a variable selection strategy using
stepwise regression technique followed by the best subset selection method. The final
model was developed by PLS regression technique with five selected descriptors using
three LVs. The five selected descriptors reflect the fundamental structural characteristics of
molecules which are important in modelling the bioactivity of BACE1 enzyme inhibitors. In
comparison with other models, it may be noted the model developed in this study are
superior in terms of statistical quality, equation length, LVs, etc. We can see from Table 5 that
Ambure et al. [17] developed PLS and MLR models against for BACE1 enzyme inhibitors
using only 74 compounds, and the model quality was good. In the present study, we have
utilized a wider range of compounds and developed the model with five selected descrip-
tors using three latent variables. We can also see from Table 5 that Jain et al. [18] and
Chakraborty et al. [20] developed QSARmodels using very narrow group of samples (27 and
30 compounds, respectively) and developed MLR and LHM-based models, respectively.
Hossain et al. [19] reported 2D-QSAR and 3D-QSAR models along with molecular docking
and pharmacophoremapping utilizing 106 compounds. The details of different internal and
external validation parameters obtained from our model and previously reported models
are given in Table 5. The docking and pharmacophoremapping results in this study are also
well collaboratedwith descriptors obtained from the developed QSARmodel and justify the
significance of the developed model. As the present work deals with diverse classes of
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compounds, the reportedmodel in the present studymay be used for screening purpose for
discovery and development of leads against BACE1 enzyme.

Overview and conclusions

In this study, we have developed a PLS-regression-based 2D-QSAR model from 98 diverse
compounds [21] having defined BACE1 enzyme inhibitory activity to investigate the
structural requirements or molecular properties essential for the enzyme inhibitory activ-
ity. The QSAR model was developed with simple, meaningful and easily interpretable
descriptors. Prior to the development of the final model, we have also performed variable
selection strategy using stepwise regression followed by best subset selection. The
statistical results of the developed model shows good predictivity based on both internal
and external validation parameters. The PLS model was developed by following strict
OECD guidelines (a defined endpoint, unambiguous algorithm, acceptable quantitative
metrics, applicability domain analysis and mechanistic interpretation). The information
obtained from PLS model (as also demonstrated in the regression coefficient plot),
variable importance plot and loading plot (see Figure S1 and S4 in Supplementary
materials S3), we have concluded that: (i) the presence of hydrogen bond donor groups
like –OH, –NH2, –SH, etc., may enhance the inhibitory activity against BACE1 enzyme; (ii)
higher number of heteroatoms with a lone pair of electrons capable of resonance with an
aromatic nucleus are essential to increase the inhibitory activity against BACE1 enzyme;
(iii) the R–CH.X fragment is favourable to enhance the inhibitory activity of β-secretase
enzyme inhibitors; (iv) a higher number of H atoms attached to C1(sp3)/C°(sp2) and
presence of N–S fragments at topological distance 3 in the molecules is detrimental to
the enzyme inhibitory activity. Alzheimer’s disease is one of those circumstances, where
genetics is known to play an insightful role but not the sole factor in the disease
development and progression. There are intensifying evidences that the environment
has a great deal to do with the development of this neurodegenerative disorder.
Environment contains a number of chemical elements such as lead, aluminium, arsenic,
nitrogen oxides, carbon monoxide, silicon, selenium, etc., which have effects on the
disease progression. Relatively few studies [55,56] have examined the influence of these
toxic chemical exposures on the risk of dementia/cognitive decline. Furthermore, the

Table 5. Comparison of proposed study with previous published studies against BACE1 enzyme.

Training set Test set

Sources E. L. Compts. Model n r2 Q2 n r2pred
Model in this study 5 3 PLS 76 0.826 0.795 22 0.846
Ambure et al. 2016 [17] 5 4 PLS 52 0.831 0.764 22 0.813
Ambure et al. 2016 [17] 5 - MLR 51 0.826 0.764 22 0.791

Jain et al. 2013 [18] 2 - MLR 20 0.895 0.893 7 0.903
Hossain et al. 2013 [19] - 10 CoMFA 71 0.998 0.765 35 0.772

Hossain et al. 2013 [19] - 10 CoMSIA 71 0.992 0.730 35 0.713
Hossain et al. 2013 [19] - 7 PLS 71 0.941 0.792 35 0.713

Chakraborty et al. 2017 [20] 4 - LHM 20 0.941 0.913 10 0.860

Abbreviations: EL = Equation length, Compts = Number of components, MLR = Multiple linear regression, CoMFA =
Comparative Molecular Field Analysis, CoMSIA = Comparative molecular similarity index analysis and LHM = Linear
heuristic method.
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results obtained from pharmacophore mapping and molecular docking studies are well
supported with the QSAR analysis. The developed 2D-QSARmodel thus may be helpful for
prediction of the activity of new analogues even before their synthesis and evaluation.
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A B S T R A C T   

In the current research, we have developed robust two-dimensional quantitative structure-activity relationship 
(2D-QSAR) and pharmacophore models using a dataset of 314 heterocyclic β-amyloid aggregation inhibitors. The 
main purpose of this study is to determine the essential structural features which are responsible for the inhi-
bition of β-amyloid aggregation. Prior to the development of the 2D-QSAR model, we applied a multilayered 
variable selection method to reduce the size of the pool of descriptors, and the final models were built by the 
partial least squares (PLS) regression technique. The models obtained were thoroughly analysed by applying both 
internal and external validation parameters. The validation metrics obtained from the analysis suggested that the 
developed models were significant and sufficient to predict the inhibitory activity of unknown compounds. The 
structural features obtained from the pharmacophore model, such as the presence of aromatic rings and 
hydrogen bond acceptor/donor or hydrophobic sites, are well corroborated with those of the 2D-QSAR models. 
Additionally, we also performed a molecular docking study to understand the molecular interactions involved in 
binding, and the results were then correlated with the requisite structural features obtained from the 2D-QSAR 
and 3D-pharmacophore models.   

1. Introduction 

Alzheimer’s disease (AD) is the most common form of dementia. It is 
characterized by neuronal death with deposition of an abnormal β-am-
yloid peptide within the brain tissue [1,2]. The amyloid-β peptide is a 39 
to 43 amino acid peptide derived from a transmembrane glycoprotein 
(amyloid precursor protein) [3]. The development of extracellular de-
posits of amyloid plaques is one of the major indications of AD [1]. 
According to the previous research, AD is a serious disorder with a long 
preclinical period and progressive course [4]. Physiologically, amyloid 
plaques develop in the hippocampus, which is a structure situated deep 
in the brain that helps to encode memories, and in other areas of the 
cerebral cortex that are involved in intellectual and occupational func-
tions [4]. It is still unknown whether amyloid plaques themselves cause 
AD or if they are by-products of the AD process [5]. Still no unifying 
hypothesis has been proposed to integrate the aggregation and neuro-
toxic properties of β-amyloid peptide (β-AP) into the framework of 
disparate biochemical abnormalities observed in AD [6]. There are 
many drug candidates identified that target Aβ for AD treatment, 
including beta-secretase 1 (BACE1) inhibitors, γ-secretase inhibitors, Aβ 

aggregation inhibitors, and Aβ antibodies [2]. But, initially, it was 
recognized that toxicity is associated with mature fibres. The majority of 
inhibitors have been directed toward identifying modulators of Aβ 
fibrillation [2]. In the current area of research, there is an urgent need to 
develop a novel treatment strategy to block the various key steps in the 
amyloidosis process as investigated by Kokkoni et al., in 2006 [6]. As per 
our knowledge, the most effective strategy for designing a molecule to 
inhibit the initial step of amyloid β-aggregation is one that blocks the 
production of the amyloidogenic protein. 

Development of a novel drug is a time-consuming process, and it 
requires a huge amount of material and financial resources [7]. In this 
respect, computational approaches like quantitative structure-activity 
relationship (QSAR), pharmacophore modelling, and molecular dock-
ing etc. are playing important roles for the discovery and development of 
new compounds with improved therapeutic activity [7]. The QSAR 
methods are important for the investigation of important structural 
features and prediction of the biological activity of novel compounds 
based on mathematical and statistical relations [8,9]. The idea of QSAR 
is based on the notion that end point values of compounds change sys-
tematically with modification of the structural attributes [8,9]. There 
have been a large number of computational studies performed (Leal 
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et al. [10], Zhao et al. [11], Aswathy et al. [12] and Hossein et al. [13]) 
so far which have designed new inhibitors against AD, but still we are far 
from finding a precise treatment strategy for AD [14]. In the current 
investigation, we have applied a dataset of 314 heterocyclic compounds 
(downloaded from BindingDB data base) [15] with β-amyloid aggrega-
tion inhibitory activity for the purpose of QSAR model development in 
order to explore the key structural features that are essential for β-am-
yloid aggregation inhibitory activity. Prior to the development of the 
final models, we have applied a multilayered variable selection 
approach to reduce noise in the input, and the final models were 
developed using the Partial Least Squares (PLS) regression technique. 
The two-dimensional QSAR (2D-QSAR) models were built with the 
guidelines of the Organization for Economic Cooperation and Develop-
ment (OECD) [16]. The developed models were validated by using 
various strict internal and external validation metrics [17]. Moreover, 
we also performed pharmacophore modelling to reveal the structural 
requirements for inhibitory activity against β-amyloid aggregation and 
also to categorize the compounds into active and less active classes. 
Furthermore, we performed a molecular docking study with the most 
active and least active compounds from the dataset and tried to justify 
the contributions of different descriptors/features obtained from 
QSAR/pharmacophore models. 

2. Materials and methods 

2.1. QSAR methodology 

2.1.1. The dataset 
In this study, we collected 314 heterocyclic compounds (β-amyloid 

aggregation inhibitors) from the BindingDB database [15] (see S1 sheet 
1 in supplementary materials) with β-amyloid aggregation inhibitory 
activity for the purpose of QSAR model development. The experimental 
IC50 values (nM) of the dataset compounds were converted to pIC50 
(¼-logIC50) values for model development purposes. The dataset com-
pounds utilized in this study followed the same experimental protocol 
(Thioflavin T (ThT) spectrofluorometric assay method) [18–37]. All the 
compounds were carefully checked and filtered using different software 
and tools like KNIME (https://dtclab.webs.com/software-tools), Mar-
vinView and MarvinSketch [38]. The compounds were drawn by using 
the MarvinView ChemAxon tool [38] and saved in the MDL.mol format. 

2.1.2. Preliminary dataset preparation and data curation 
Chemical curation is very important when researchers collect data 

from different sources [7]. In this work, before the development of the 
regression models, we implemented preliminary dataset preparation 
and a data curation (chemical and biological) strategy using KNIME 
work flow (https://dtclab.webs.com/software-tools). The accuracy of 
KNIME workflow was confirmed by Mariana et al., 2017 [39], Domenico 

et al., 2018 [40] and Fabian P et al., 2015 [41]. The dataset was 
downloaded from BindingDB [15] in a structural data format (SDF) 
containing important information related to the structure and endpoint 
values against the β-amyloid aggregation. An identifier was given to 
each and every compound present in the dataset, characterizing the 
name of a respective protein and a serial number. We extracted the 
endpoint values from the dataset file to classify the compounds in four 
orders of magnitude. At the end, we incorporated the dataset to chemical 
and biological curation. 

2.1.2.1. Reading and storing the information obtained from the binding 
database. In this methodology, we utilized the “SDF reader” using 
KNIME workflow (https://dtclab.webs.com/software-tools) for the 
purpose of reading the input file and storing the important structural 
features of the compounds. The downloaded dataset contained all of the 
essential information related to the compounds such as the molecule 
name, coordinates, bond counts, bond order, number of rings, end point, 
biological assay, etc. The compounds with incorrect information were 
deleted from the source file and the compounds with correct information 
were saved for further use. 

2.1.2.2. Elimination of salts, mixtures, inorganics and organo-metallics 
from the dataset. In this study, we removed all of the salts, mixtures, 
in-organics, and organo-metallic compounds before calculating the de-
scriptors using ‘RDKit Salt Stripper’, ‘Connectivity’ node and ‘Element 
Filter’ node [42], respectively. 

2.1.2.3. Standardization of chemical structures. Normalization is an 
important step in QSAR modelling to correct the structural pattern 
before the molecular descriptors calculation. In the current work, we 
applied the ‘RDKit Structure Normalizer’ node for correction of the ge-
ometry of the chemical structure using the KNIME workflow (https 
://dtclab.webs.com/software-tools). 

2.1.2.4. Biological curation. The molecules obtained from chemical 
curation were subjected to biological curation. Biological data curation 
is one of the important steps in the QSAR modelling. In the current work, 
we implemented biological data curation as described by Ambure et al. 
[14] using the KNIME workflow (http://dtclab.webs.com/softw 
are-tools) for the purpose of duplicate identification and activity cliff 
determination. 

2.1.3. Descriptor calculation and data pre-treatment 
A pool of 457 descriptors was computed by applying two software 

tools, namely, Dragon version 7 [43] and PaDEL-Descriptor software 
version 2.20 [44]. In this work, we computed only 2D descriptors 
including constitutional, ring descriptors, connectivity index, functional 
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group counts, atom centred fragments, 2D atom pairs, atom type 
E-states, molecular properties and extended topochemical atom (ETA) 
indices. After descriptor calculation, we performed the data 
pre-treatment using the tool Pre-treatment V-WSP version 1.2 (http://d 
tclab.webs.com/software-tools) to discard the descriptors with incom-
plete information or with nearly constant values. 

2.1.4. Dataset division 
In this study, our aim was to develop QSAR models having good 

reliable prediction ability. Therefore, QSAR models were developed by 
using a training set and validated using new chemical entities, i.e., a test 
set to check the predictive capacity of the developed models. In this 
study, the whole data set (n ¼ 314) was divided into a training set (n ¼
252, 80% of the total number of compounds), and a test set (n ¼ 62, 20% 
of the total number of compounds) based on an Euclidean distance based 
algorithm using the “Dataset Division GUI” developed by our group 
(https://dtclab.webs.com/software-tools). 

2.1.5. Multilayered variable selection strategy and model development 
Prior to the development of the final model, we tried to extract the 

important descriptors from the large pool of initial descriptors using 
various variable selection strategies. For this purpose, we applied a 
multilayered variable selection strategy before the development of the 
final model using multistage stepwise regression (using a suitable 
stepping criterion, e.g., ‘F-for-inclusion ‘and ‘F-for-exclusion’ based on 
partial F-statistic) followed by a genetic algorithm (GA) followed by the 
best subset selection, and the final models were built by using partial 
least squares (PLS) regression techniques. The detailed multi-layered 
variable selection strategy is schematically represented in Fig. S1 (See 
S3 in supplementary information). 

2.1.6. Statistical validation metrics 
Validation of the robustness and predictive ability of the developed 

models is an important step in a QSAR study [17]. In this study, we 
employed different statistical approaches such as internal and external 
validation metrics to justify the robustness and predictive quality of the 
developed models. In the case of internal validation, we determined 
various statistical metrics such as determination coefficient (r2), 
leave-one-out cross-validated correlation coefficient (Q2

(LOO)), Avg 
rm
2

(LOO), and Δrm
2 [17]. Higher values of the metrics r2, Q2

(LOO)) and Avg 
rm
2

(LOO) indicated a better fit of the model, but all of these parameters are 
not sufficient to evaluate the robustness and predictivity of significant 
models [17]. Thus, we determined other statistical validation parame-
ters (external validation parameters) such as Q2F1, Q2F2, r2

m parameters 
like average rm

2
(test) and Δrm

2 and concordance correlation coefficient 
(CCC) to assure the significance of the developed models [17]. The de-
tails of validation metrics are depicted in Table S1 (See S4 in supple-
mentary information). Moreover, we also performed a Y-randomization 
test, checked applicability domain criteria, etc. to investigate the 
robustness of the developed models. The Y-randomization test was 
performed using the Simca-P software [45] by randomly reordering 
(100 permutations) the dependent variable [46]. The details of the 
methodology are depicted in Fig. S2. (See S3 in supplementary 
information). 

2.2. Development and validation of 3D-pharmacophore model 

In the current work, we performed a pharmacophore modelling 
study to reveal the required features which are essential for β-amyloid 
aggregation inhibitory activity. The β-amyloid aggregation inhibitory 
activity stated in terms of IC50 (nM) was used as dependent variable for 
the purpose of the development of pharmacophore models. Previously 
prepared compound structures were used for this study. The dataset was 
rationally distributed into training (62 compounds) (for model devel-
opment) and test sets (252 compounds for validation) based on the 
biological activity values spanned over four orders of magnitude 

[47–49]. The BIOVIA Discovery Studio Client 4.1 [50] platform was 
used to build the pharmacophore models. The details of the methodol-
ogy for the development of the pharmacophore model are as described 
by Aher et al. [51]. Validation of the developed models was performed 
using different parameters like cost analysis, the Fischer randomization 
test (F-test), and test set prediction in order to judge the robustness and 
predictive quality of models as described by Aher et al. [51]. 

2.3. Molecular docking studies 

Investigation of important structural features that will be helpful for 
development of novel inhibitors which control the aggregation of 
β-amyloid was the goal of this study. Here, we performed a molecular 
docking study for the purpose of identifying of the interaction pattern 
between the β-amyloid peptide (PDB ID:1IYT [52]) and selected β-am-
yloid aggregation inhibitors from the dataset. Molecular docking studies 
were performed by using BIOVIA Discovery Studio client 4.1 [50] 
platform using the CDOCKER module of receptor-ligand interactions 
[53]. After docking, the generated poses were sorted according to 
CDOCKER interaction energy and the top scoring poses were kept for 
further analysis. 

3. Results and discussion 

3.1. Mechanistic interpretation of modelled descriptors 

In this analysis, we developed statistically significant and robust 2D- 
QSAR models using the PLS regression based technique; the values of the 
validation parameters are shown below in Equations 1 and 2 (Box 1). 
The developed models were validated carefully utilizing the deferent 
validation metrics (internal and external) for exploration of robust and 
statistically significant models. The details of their validation metric 
values are also summarized in Table S1 (see S4 in supplementary ma-
terials). Two PLS models were developed with 12 and 13 descriptors 
using 6 and 7 latent variables (LVs), respectively. The obtained results 
suggested that the models were acceptable in terms of fitness, stability 
and classical predictivity measures. Descriptors appearing in the 
developed models demonstrated the structural and functional re-
quirements which can improve the inhibitory activity of molecules 
against β-amyloid aggregation. We have presented the scatter plots in 
Fig. 1 to show the closeness of the observed and predicted values for the 
β-amyloid aggregation inhibitors (βAAI). The randomization of models 
assured that the developed models were not found by any chance cor-
relation. The results obtained from the randomized models (for Model 1: 
R2intercepts (int) ¼ 0.00833 and Q2int ¼ � 0.296 and for Model 2: R2int 
¼ 0.00756 and Q2int ¼ � 0.392) suggested that the reported models 
were not obtained by chance (see S3 Fig. S3 in supplementary 
materials). 

The descriptors in the PLS models are arranged according to their 
importance, and then described separately. The significance level and 
contribution of the model descriptors towards the β-amyloid aggrega-
tion inhibitory activity are determined based on a regression coefficient 
plot [54] and variable importance plot (VIP) [55] as shown in Figs. S4 
and S5 (See S3 in supplementary information). The definition and 
contributions of all the descriptors obtained from the PLS models are 
mentioned in Table S2 (see S4 in supplementary materials). 

The highest contributing descriptor, nArNHR, a functional group 
count descriptor, denotes the number of secondary aromatic amines 
present in the compounds.

The lone pair of electrons on nitrogen is delocalized in the aromatic 
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ring thus reducing the electron density on nitrogen [56]. The positive 
regression coefficient of this descriptor indicated that the activity of 
inhibitors is directly proportional to the numerical value of nArNHR. 
Thus, the compounds having a higher number of secondary aromatic 
amines may enhance the β-amyloid aggregation inhibitory activity as 
shown in (Fig. 2). Compounds like 88 (pIC50: � 0.217), 67 (pIC50: 
0.537), and 231 (pIC50: � 0.190) and their corresponding descriptor 
values are 1 each. In contrast, compounds like 294 (pIC50: � 5.338), 293 
(pIC50: � 5.190), and 87 (pIC50: � 4.949) have lower inhibitory activity, 
because these compounds have no such fragment (Fig. 2). From these 
observations, we have concluded that a secondary aromatic amine is 
important for β-amyloid aggregation inhibitory activity. 

The next significant descriptor, SaasC, an E-state index descriptor, 
denotes the sum of the atom level E-state values for all non-substituted 
aromatic carbon atoms (Kier and Hall, 1999) [57]. According to Kier and 
Hall 1999 [57], each atom or bond in molecules has their intrinsic state, 
which is altered by every other atom or bond in the same molecule, 
encoding information related to electronic distribution and topological 
aspects. SaasC is related to aromatic carbons with an attached substit-
uent atom [58]. The positive regression coefficient of this descriptor 
indicates that the presence of aromatic carbons with an attached sub-
stituent atom is beneficial for the inhibitory activity as shown in com-
pounds (Fig. 3) 71 (pIC50: 0.0861), 70 (pIC50: 0.086), and 74 (pIC50: 

� 0.357), and their corresponding descriptor values are 9.396, 8.807, 
and 8.779, respectively. On the other hand, the absence of such frag-
ments is detrimental to β-amyloid aggregation inhibitory activity as 
observed in (Fig. 3) compounds 93 (pIC50: � 3.978) and 341 (pIC50: 
� 3.469). 

The next significant descriptor, F07 [C–O] is a 2D atom pair 
descriptor that accounts for the frequency of C and O atoms at topo-
logical distance 7. It contributes negatively toward the endpoint value, 
which suggests that the numerical values of the descriptor are inversely 
proportional to the inhibitory activity. Thus, the compounds bearing 
such fragments show lower values of inhibitory activity as evidenced by 
(Fig. 3) compounds 153 (pIC50: � 3.176), 86 (pIC50: � 4.869), and 294 
(pIC50: � 5.338) (their corresponding descriptor values are 14, 13, and 
10, respectively). Whereas, compounds having no such fragments show 
higher β-amyloid aggregation inhibitory activity as shown in com-
pounds 231 (pIC50: � 0.190), 106 (pIC50: � 0.301) and 201 (pIC50: 
� 0.301) (Fig. 3). 

The ring descriptor, NNRS, indicates a normalized number of ring 
systems. This can be calculated by the following equation [59]. 

NNRS ¼ NRS=Xmax 

Here, NNRS denotes a normalized number of ring systems, NRS 
represents the number of ring systems, an Xmax means the possibility of a 

Box 1 
PLS based 2D QSAR models and their statistical validation metrics obtained from the developed models  

Model 1: PLS Model against β-amyloid aggregation 

pIC50(nM)

¼ � 3:017þ 0:843� nArNHRþ 0:178� SaasC � 0:102� F07½C � O�
� 1:097� NNRS � 0:006� D=Dtr12
� 1:185� B06½C � N� � 0:730� B05½N � N� � 0:655� B06½N � O�
þ1:610� B05½C � N� þ 0:079� F09½C � C� � 1:051� nFuranes � 0:031� F06½C � C�

(1) 

Internal Validation Parameters: ntraining ¼ 252, r2 ¼ 0:664, Q2 ¼ 0:621, Fitting quality ¼ Moderate. 
External Validation Parameters: ntest ¼ 62, Q2F1 ¼ 0:765, Q2F2 ¼ 0:763, Avg R2m ¼ 0:601, ΔR2m ¼ 0:199, CCC ¼ 0:861, MAE ¼ 0:456, SD ¼ 0:394, Fitting quality ¼
Moderate, LV¼ 6, No. of descriptors ¼ 12  

Model 2: PLS Model against β-amyloid aggregation 

pIC50(nM)

¼ � 2:842þ 0:754� nArNHRþ 0:191� SaasC � 0:114� F07½C � O�
� 1:089� NNRS � 0:005� D=Dtr12 � 0:739� B05½N � N� � 1:159� B06½C � N�
� 0:539� B06½N � O� þ 1:427� B05½C � N� þ 0:813� F05½O � O�
� 1:274� nFuranesþ 0:076� F09½C � C� � 0:032 � F06½C � C�

(2) 

Internal Validation Parameters: ntraining ¼ 252, r2 ¼ 0:684, Q2 ¼ 0:638, Fitting quality ¼ Moderate. 
External Validation Parameters: ntest ¼ 62;Q2F1 ¼ 0:771, Q2F2 ¼ 0:769, Avg R2m ¼ 0:634, ΔR2m ¼ 0:186, CCC ¼ 0:867, MAE ¼ 0:462, SD ¼ 0:375 
Fitting quality ¼ Good, LV¼ 7, No. of descriptors¼ 13     

Fig. 1. The scatter plots of observed and predicted values of final PLS models for β-amyloid aggregation inhibitors (A: Model 1, B: Model 2).  
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maximum number of ring systems [59]. The negative regression coef-
ficient of this descriptor suggests that NNRS negatively influences the 
inhibitory activity against β-amyloid plaque. The details about this 
descriptor were described by the Das et al., 2016 [59]. From this, it can 
be suggested that for the development of inhibitors against beta amyloid 

aggregation, the normalized number of ring system should be high, as 
shown in (Fig. 4) compounds 162 (pIC50: � 4.243) (one cyclohexane and 
two benzene rings), 163 (pIC50: � 4.350) (one cyclohexane and two 
benzene rings), and 293 (pIC50: � 5.190) (three benzene rings) and vice 
versa in the case of compounds 88 (pIC50: � 0.217) (two fused rings), 

Fig. 2. Contribution of nArNHR, B05 [C–N] and F05 [O–O] descriptors on β-amyloid aggregation inhibition.  

Fig. 3. Contribution of SaasC and F07 [C–O] descriptors on β-amyloid aggregation inhibition.  
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106 (pIC50: � 0.301) (one fused ring), and 323 (pIC50: � 1.38) (one fused 
ring, one benzene ring, and one pyridine ring) (Fig. 4). 

The ring descriptor, D/Dtr12, denotes the distance/detour ring index 
of order 12 (size of ring) in the compounds. The negative impact of this 
descriptor recommends that a higher numerical value of this descriptor 
leads to a lower inhibitory activity as evidenced by the compounds 
(Fig. 4) 143 (pIC50: � 3.760), 145 (pIC50: � 4.746), and 144 (pIC50: 
� 4.068) (their corresponding descriptors values are 98.958, 75.971, and 
69.627, respectively). On the contrary, the compounds (Fig. 4) having 
no such fragments show higher β-amyloid aggregation inhibitory ac-
tivity as observed in case of compounds 67 (pIC50: 0.537), 68 (pIC50: 
0.221) and 69 (pIC50: 0.173). 

Another 2D atom pair descriptor, B05 [N–N], indicates the presence 
of two nitrogen atoms at the topological distance of 5. The negative 
regression coefficient of this descriptor suggests that the presence of an 
N–N fragment at the topological distance 5 inversely affects the β-am-
yloid aggregation inhibitory activity. This is observed in compounds 
(Fig. 4) 50 (pIC50: � 4.100), 144 (pIC50: � 4.068), and 145 (pIC50: 
� 4.74) (all these compounds have a descriptor value of 1). The opposite 
is observed in the compounds (Fig. 4) 67 (pIC50: 0.537), 68 (pIC50: 
0.221), and 69 (pIC50: 0.173). 

Another 2D atom pairs descriptor, B06 [C–N], indicates the pres-
ence/absence of C and N atoms at the topological distance 6. This 
descriptor contributes negatively towards the β-amyloid aggregation as 
indicated by the negative regression coefficient. For example, com-
pounds (Fig. 5) 50 (pIC50: � 4.100), 144 (pIC50: � 4.068), and 145 
(pIC50: � 4.746) (having a descriptor value of 1 each) have lower 
β-amyloid aggregation inhibitory activity due to the presence of such a 
fragment at the topological distance 5. On the other hand, the molecules 
without such a fragment show higher inhibitory activity as shown in 
compounds (Fig. 5) 106 (pIC50: � 0.301), 177 (pIC50: � 1.531), and 179 
(pIC50: � 1.892). 

The 2D atom pair descriptors, B06 [N–O], describes the presence/ 
absence of N–O at topological distance 6. The negative regression co-
efficient of this descriptor suggests that the absence of such a fragment in 
the molecules showed good β-amyloid aggregation inhibitory activity as 
shown in (Fig. 4) compounds 67 (pIC50: 0.537), 68 (pIC50: 0.221), and 
69 (pIC50: 0.173). While presence of a higher number of this fragment 
shows lower inhibitory activity as observed in (Fig. 4) compounds 144 
(pIC50: � 4.068), 145 (pIC50: � 4.746), and 293 (pIC50: � 5.190) (all of 
these compounds have a descriptor value of 1). 

Another 2D atom pairs descriptor, B05 [C–N], denotes presence/ 
absence of C–N at the topological distance 5. This descriptor positively 
influences the activity of β-amyloid aggregation inhibitors as suggested 
by its positive regression coefficient. Thus, the compounds containing a 
higher number of C–N fragments at topological distance 5 may have 
high β-amyloid aggregation inhibitory activity as evidenced by (Fig. 2) 
compounds 67 (pIC50: 0.537), 68 (pIC50: 0.221), and 69 (pIC50: 0.173) 
(their corresponding descriptors values are 1). On the other hand, the 
molecules which do not contain such a feature may have lower inhibi-
tory activity as shown in compounds 159 (pIC50: � 3.857), 162 (pIC50: 
� 4.243), and 163 (pIC50: � 4.350) (Fig. 2). 

Another 2D atom pair descriptor, F05 [O–O], stands for the fre-
quency of O–O at the topological distance 5. For the β-amyloid aggre-
gation inhibitors, this fragment indeed plays an important role in the 
binding process and may influence the inhibitory activity prominently. 
The positive impact of this descriptor towards the β-amyloid aggregation 
inhibitors was indicated by its positive regression coefficient. Thus, the 
information obtained from this descriptor suggested that the molecules 
containing an O–O fragment at the topological distance 5 show higher 
β-amyloid aggregation inhibitory activity as shown in compounds 
(Fig. 2) 67 (pIC50: 0.537), 68 (pIC50: 0.221), and 69 (pIC50: 0.173) 
(containing descriptor value 1 respectively), while compounds 294 
(pIC50: � 5.338), 293 (pIC50: � 5.190), and 87 (pIC50: � 4.949) show 

Fig. 4. Contribution of D/Dtr12, B05 [N–N], B06 [N–O], and NNRS descriptors on β-amyloid aggregation inhibition.  
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lower inhibitory activity due to the absence of this fragment (Fig. 2). 
The functional group count descriptor, nFuranes, describes the 

number of furane rings present in the compounds. The negative 
regression coefficient of this descriptor suggests that the presence of this 
ring is inversely proportional to the β-amyloid aggregation inhibitory 
activity as observed in case of compounds (Fig. 5) 83 (pIC50: � 4.33), 84 
(pIC50: � 4.580), and 86 (pIC50: � 4.869) (all of these compounds have 
descriptor value 1), while the absence of such a ring system in the 
compounds (Fig. 5) indicated higher inhibitory activity as observed in 
the compounds 67 (pIC50: 0.537), 68 (pIC50: 0.221), and 69 (pIC50: 
0.173). 

Another 2D atom pair descriptor, F09 [C–C], stands for the frequency 
of C–C at the topological distance 9. The positive regression coefficient 
of this descriptor suggests that an increase in the frequency of a C–C 
fragment at topological distance 9 may favour β-amyloid aggregation 
inhibitory activity. Thus, the molecules bearing such a fragment may 
enhance the β-amyloid aggregation inhibitory activity as shown in 
(Fig. 6) compounds 67 (pIC50: 0.537), 68 (pIC50: 0.221), and 69 (pIC50: 
0.173) (their corresponding descriptors values are 29, 23, and 27, 
respectively). The opposite is observed in the case of (Fig. 6) compounds 
144 (pIC50: � 4.068), 145 (pIC50: � 4.746), and 93 (pIC50: � 3.978) 
(containing descriptors values 4, 7, and 0, respectively). 

Another 2D atom pair descriptor, F06 [C–C], indicates the frequency 
of C–C at the topological distance 6. The negative regression coefficient 
of this descriptor suggests that the presence of higher numbers of this 
fragment is inversely proportional to the β-amyloid aggregation inhibi-
tory activity as observed in case of compounds (Fig. 6) 86 (pIC50: 
� 4.869), 87 (pIC50: � 4.949), and 83 (pIC50: � 4.336) (corresponding 
descriptor values are 49, 48, and 48, respectively). In contrast, a lower 
numerical value of this descriptor may favour the β-amyloid aggregation 
inhibitory activity as observed in case of compound (Fig. 6) 106 (pIC50: 
� 0.301) (containing descriptor value 6). 

3.2. Applicability domain (AD) of PLS models 

In this work, the reported PLS models were checked for their appli-
cability domain at a confidence level of 99% according to the DModX 
(distance to model in the X-space) approach using SIMCA-P 10.0 soft-
ware [45]. In case of model 1 (see S3 Fig. S6 in supplementary mate-
rials), we found that 5 compounds (i.e., compounds number 26, 81, 85, 
262, and 278) in the test set are located outside the critical DModX 
value (D-Crit ¼ 1.813). In case of model 2 (see S3 Fig. S6 in supple-
mentary materials), we found that 3 compounds (i.e., compounds 
number 262, 274, and 278) in the test set are located outside the critical 
DModX value (D-Crit ¼ 1.814). 

3.3. Loading plot 

A loading plot of a PLS model (see S3 Fig. S8 in supplementary 
materials) provides information about the relationship among the X- 
variables and Y-variables. The amount of the loading for each descriptor 
to the latent variables can be seen from their corresponding loading plot 
using SIMCA-P 10.0 software [45]. In the loading plot, a descriptor 
which is close to zero is not well associated with the trends contained in 
the related scores [60]. As we have observed from the loading plot (see 
S3 Fig. S7 in supplementary materials), the X-variables nArNHR, SaasC, 
F09(C–C), B05(C–N), and F05(O–O) are significant for the Y-variable 
(pIC50), because they are very close to the Y-variable. On the other hand, 
the variables NNRS, D/Dtr12, nFuranes, B05 [N–N], B06 [C–N], B06 
[N–O], F06 [C–C] F07 [C–O]), which are situated on the opposite side of 
the plot origin with respect to the activity (Y-variable), contribute 
negatively. 

3.4. 3D-pharmacophore model 

In the current work, we developed ten different pharmacophore 

Fig. 5. Contribution of B06 [C–N] and nFuranes descriptors on β-amyloid aggregation inhibition.  
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models from a training set of 62 compounds. For the development of a 
pharmacophore model, we used Discovery Studio 2016 Client 4.1 [50]. 
In terms of internal validation, the best pharmacophore model (Hypo 1) 
was found in the cost analysis with a higher correlation coefficient (r: 
0.724), lower root mean square deviation (rmsd: 2.293), total cost 
(366.258), maximum fit (6.573), configuration cost (21.364), error 
(343.071), and weight (1.821). These values indicated that the devel-
oped model was acceptable. The results of ten pharmacophore hypoth-
eses against β-amyloid peptide are given in Table S3 (See S4 in 
supplementary information). Based on all reported metrics, Hypo-1 was 
found to be the best one among the ten hypotheses with one hydrogen 
bond acceptor (HBA), one hydrophobic (HYD), one hydrophobic aro-
matic, and one ring aromatic (RA) feature (Fig. 7). External validation of 
the model has been carried out by mapping the test set molecules (Fig. 7) 
on Hypo-1 with the same settings as employed for the pharmacophore 
generation by the FAST method. After mapping, we found that 240 
molecules from the data set of 252 compounds were mapped properly. 
Only 12 compounds failed to map due to the absence of the features 
found in the developed pharmacophore model. The observed and esti-
mated activity of the training and test set compounds obtained from the 
analysis using Hypo-1 are given in the supplementary materials section 
(S2 sheet 1 and 2). The results obtained from the qualitative analysis for 
the training and test sets using Hypo-1 are given in Table S4 (See S4 in 
supplementary information) (qualitative validation parameters). The 
F-test confirms the non-randomness of the developed pharmacophore 
(Hypo-1) model. The total cost and correlation values obtained from the 
original and randomized models of the hypothesis for the F-test are 
given in the supplementary materials section (S2 sheet 3 and 4). 

3.4.1. Relation of the 3D-pharmacophore model with the 2D-QSAR model 
All of the compounds in the dataset have at least one aromatic ring 

feature. The RA feature is a preliminary requirement for inhibitory 

activity against β-amyloid aggregation. The RA feature is in accordance 
with the nArNHR and SaasC descriptors of the 2D-QSAR models. Hy-
drophobic and hydrophobic aromatic features are in harmony with the 
F09 [C–C] and SaasC descriptors of the 2D-QSAR models. The hydrogen 
bond acceptor feature is well corroborated with B05 [C–N] and F05 
[O–O] descriptors of the 2D-QSAR models. The most active compound of 
the training set (69, IC50: 0.67 nM) mapped entirely on Hypo-1 with all 
of the four features (see S3 Fig. S8 in supplementary materials). One 
benzene ring lies in the RA region, an amino group is in the hydrogen 
bond acceptor region, and a ring system lies in the hydrophobic region. 
The least active compound 24 (IC50: 6323 nM) of the training set lacks 
RA features; thus it does not map completely (see S3 Fig. S8 in supple-
mentary materials). The most active compound of the test set (66, IC50: 
0.09 nM) mapped completely on Hypo-1 with all of the four features 
(Fig. 7). The least active compound (86, IC50: 74100 nM) of the test set 
mapped partially with Hypo-1 (Fig. 7). From the above discussion, we 
have concluded that the absence of any feature among these four fea-
tures in a molecule decreases the β-amyloid aggregation inhibitory 
potency. 

3.5. Molecular docking 

In this study, we performed a molecular docking study of the two 
most active (67 and 231), two moderately active (208 and 276) and two 
least active (87 and 145) compounds from this dataset. The docking 
interactions suggest that the molecules interacted with a pocket con-
taining HIS A:13, (hydrophilic nature), LYS A: 16 (Charged), and LEU 
A:17, VAL A:24, PHE A:20 and ALA A:21 (Hydrophobic nature) amino 
acid residues. 

3.5.1. Molecular docking of the most active compounds from the dataset 
The two most active compounds (67 and 231) from the dataset 

Fig. 6. Contribution of F09 [C–C] and F06 [C–C] descriptors on β-amyloid aggregation inhibition.  
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(pIC50 ¼ 0.537 and � 0.190, respectively) interacted with the active site 
amino acid residues through different interaction forces like hydrogen 
bonding interactions (carbon hydrogen bonds and conventional 
hydrogen bonds), electrostatic interactions (π-cation), and hydrophobic 
interactions (π-alkyl bonds, alkyl and π-π-T-shaped). The amino acid 
residues involved in interactions with these compounds are HIS A:13, 
LYS A:16, PHE A:20, LEU A:17, VAL A:24 and ALA A:21 (see S3 Figs. S9 
and S10 in supplementary materials). The details of docking results are 
tabulated in Table S5 (see S4 in supplementary materials). 

Fig. S9 (see S3 in supplementary materials) shows that compound 67 
(one of the most active compounds in the dataset) interacts with HIS 
A:13, LYS A: 16 and LEU A:17 amino acid residues through a hydrogen 
bonding interaction, with PHE A:20 through a π-cation, and VAL A:24 
and ALA A:21 amino acid residues through alkyl and π-alkyl in-
teractions, respectively. 

Another of the most active compounds, compound 231, interacts 
with the amino acid residue through hydrogen bonding and π-π T-sha-
ped interaction (HIS A:13) and π-alkyl and alkyl (VAL A:24 and ALA 
A:21) interactions (See in supplementary section S3, Fig. S10). 

3.5.2. Molecular docking of the moderately active compounds from the 
dataset 

Two moderately active compounds (208 and 276) from the dataset 
(pIC50 ¼ � 2.908 and � 2.989, respectively) interacted with the active 
site amino acid residues through various interaction forces like 
hydrogen bonds (carbon hydrogen bonds and conventional hydrogen 
bonds) and hydrophobic interactions (π-π-T shaped, π-alkyl and 
π-sigma). The amino acid residues involved in interactions with these 
compounds are ALA A:21, LEU A:17, PHE A:20, HIS A:13, VAL A:24 and 
LYS A:16 (see S3 Figs. S11 and S12 in supplementary materials). 

Fig. S11 (see S3 in supplementary materials) shows that compound 
208 interacts with LEU A: 17 and LYS A:16 (through hydrogen bonding), 
PHE A:20 (π-π-T-shaped and pi-sigma), and ALA A:21 (π-alkyl bonds) 
amino acid residues. 

Another moderately active compound (compound 276) from the 
dataset interacted with the amino acid residues through hydrogen 
bonding (LEU A: 17 and LYS A:16) and hydrophobic interactions such as 
π-π T-shaped and π-alkyl bonding (HIS A:13 ALA A:21 and VAL A:24) 
(See in supplementary section S3 Fig. S12). 

3.5.3. Molecular docking of the least active molecules from the dataset 
The two least active compounds from the dataset (pIC50 ¼ � 4.949 

and � 4.746, respectively) namely 87 and 145 interacted with the active 
site amino acid residues through different interaction forces like 
hydrogen bonding (carbon hydrogen bonds and conventional hydrogen 
bonds), electrostatic (π-cation) and hydrophobic interactions 
(π-π-stacking and π-alkyl). The amino acid residues involved in in-
teractions with these compounds are ALA A:21, PHE A:24, LYS A:16 and 
VAL A:24 (see S3 Figs. S13 and S14 in supplementary materials). 

Fig. S13 (see S3 in supplementary materials) shows that compound 
87 (one of the least active compounds from the dataset) interacted with 
ALA A:21 and LYS A:16 amino acid residues through hydrogen bonding 
interaction, LYS A:16 amino acid residue through π-cation and PHE A:20 
and ALA A:21 through π-π -T-shaped and π-alkyl interactions. 

Another least active compound from the dataset, compound 145, 
interacts with the amino acid residues through hydrogen bonding (LYS 
A: 16) and hydrophobic interactions such as π-alkyl bonding (ALA A: 21, 
VAL A: 24) (See in supplementary section S3 Fig. S14). 

We have observed from the docking results that the most active 
compounds from the dataset (67 and 231) (See in supplementary S3 
Figs. S9 and S10) interacted with maximum number of active amino acid 
residues with higher number of interacting forces (non-covalent forces) 
in comparison with the least active compounds from the data set like 87 
and 145 (See in supplementaryS3 Figs. S13 and S14). In pharmacophore 
mapping, we have also seen that the most active compounds (66 and 67) 
from the data set correctly mapped with all features appeared in the 
model, whereas the least active compounds (86 and 87) partially 
mapped with the model. The least active compound from the data set 

Fig. 7. The best pharmacophore model (Hypo1) of β-amyloid aggregation inhibitors generated by the HypoGen module: (A) the best pharmacophore model Hypo1 
represented with distance constraints (Å), (B) Hypo-1 mapping with one of the most active compounds 66 of test set compounds and (C) Hypo-1 mapping with one of 
the least active compounds 86 of test set compounds. Pharmacophoric features are coloured as follows: hydrogen bond acceptor (green), hydrophobic (cyan), 
hydrophobic aromatic (light blue colour), and ring aromatic (orange). 
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failed to map in the absence of the features appearing in the developed 
models, which are most important for inhibitory activity against β-am-
yloid plaque. 

3.5.4. Relation with the QSAR models 
From the docking studies, we have observed that the formation of a 

hydrogen bond and alkyl bond between the ligand and receptor play a 
vital role in interactions. Hydrogen bonding may correlate with de-
scriptors nArNHR (number of secondary aromatic amines present in the 
compounds), F05 [O–O] (frequency of O–O at topological distance 5) 
and B05 [C–N] (presence/absence of C–N at topological distance 5 in the 
compounds) in the 2D-QSAR models. Descriptors SaasC (aromatic car-
bons with an attached substituent atom) and nArNHR are well related 
with interactions formed via π-interactions (π-alkyl and π-π T-shaped) 
between the protein and ligands and define the importance of this 
descriptor as we have observed in compound nos. 67, 231, 208, and 276 
(See in supplementary S3 Figs. S9, S10, S11 and S12). But in contrast, in 
case of compounds 87 and 145 (least active), the descriptor NNRS 
(normalized number of ring systems) contributes negatively to the 
response and is found to be related with π- π-T-shaped, and π-alkyl 
bonding interactions with those fragments in the docking experiments 
(See in supplementary S3 Fig. S13 and S14). Thus, from above said in-
formation, we can conclude that hydrogen bonding, hydrophobicity, 
and alkyl (π interaction) features obtained from both 2D-QSAR model 
and docking results are essential for inhibitory activity against β-amy-
loid aggregation. 

3.6. Comparisons of the performance of the reported models with previous 
published models 

In this investigation, we have performed a comparison of the best 
models of this study with previously published models (Leal et al., 2015 
[10], Zhao et al., 2013 [11], Aswathy et al., 2018 [12], Hossein et al., 
2019 [13], Xiangji 2006 [61], Yang et al., 2010 [62], Najmeh et al., 
2014 [63] and Sehan et al., 2015 [64]) for the prediction of the bioac-
tivity against β-amyloid plaques, as depicted in Table 1. The details of 
different internal and external validation parameters obtained from our 
models and those obtained from previous models are given in Table 1. 
Based on the statistical quality in terms of both internal and external 
validation criteria, the models reported in this work are statistically 
significant and robust enough as compared to the previously reported 
models (Table 1). Moreover, the models presented in this study are 
derived from a larger set of molecules than those reported in the pre-
vious studies. 

4. Overview and conclusion 

In this research, we have applied chemoinformatic tools to examine a 
set of 314 heterocyclic [15] compounds with defined β-amyloid aggre-
gation inhibitory activity in order to identify the structural requirements 
essential for the inhibitory activity. The QSAR models were developed 
with simple, meaningful, and easily interpretable descriptors. Prior to 
the development of the final models, we applied a multilayered variable 
selection strategy to investigate the meaningful descriptors, and the final 
models were built by using the PLS regression based methodology 
following strict OECD guidelines. The obtained results suggest that the 
developed model showed good predictivity based on both internal and 
external validation parameters. The information obtained from the PLS 
models (as also confirmed by the regression coefficient plot, variable 
importance plot and loading plot in Fig. S4, S5 and S7 in supplementary 
information S3), suggested the following: (i) the presence of a secondary 
aromatic amine in compounds, (ii) the presence of C–N fragments at the 
topological distance 5, and (iii) aromatic carbons with an attached 
substituent atom are favourable for enhancing β-amyloid aggregation 
inhibitory activity; whereas, (iv) the presence of a higher number of the 
normalized number of ring systems and a furane ring in the molecules is 
detrimental to the inhibitory activity. The results obtained from phar-
macophore mapping and molecular docking studies are well supported 
with those of the QSAR analysis. The present results may be used for 
screening purposes for the discovery and development of new β-amyloid 
aggregation inhibitors. 

5. Future perspective 

The developed 2D-QSAR models may be useful for predicting the 
activity of new analogues even before their synthesis and evaluation. 
Features obtained from the developed models (2D-QSAR and 3D-phar-
macophore) and molecular docking can be helpful for the design of 
novel inhibitors against β-amyloid aggregation, and the overall 
approach established can be adopted for ligand-based drug-design 
campaigns. 
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Table 1 
Comparisons of proposed study with previous published studies against β-amyloid aggregation.  

Sources E. L. LV Model Training set Test set 

n r2 Q2 n R2
pred 

Model-1 in this study 12 6 PLS 252 0.664 0.621 62 0.763 
Model-2 in this study 13 7 PLS 252 0.684 0.638 62 0.769 
Leal et al., 2015 [10] 5 – HQSAR 36 0.937 0.757 10 0.659 
Zhao et al., 2013 [11] – 5 CoMFA 32 0.877 0.431 7 0.834 
Zhao et al., 2013 [11] – 8 CoMSIA 32 0.836 0.447 7 0.617 
Zhao et al., 2013 [11] – 5 CoMFA 34 0.828 0.522 5 0.915 
Zhao et al., 2013 [11] – 6 CoMSIA 34 0.800 0.493 5 0.902 
Aswathy et al., 2018 [12] 4 – HQSAR 24 0.931 0.615 6 0.956 
Aswathy et al., 2018 [12] – 5 CoMFA 24 0.787 0.687 6 0.731 
Aswathy et al., 2018 [12] – 3 CoMSIA 24 0.972 0.743 6 0.713 
Aswathy et al., 2018 [12] 6 – MLR 24 0.908 0.747 6 0.807 
Hossein et al., 2019 [13] 4  MLR 28 0.912 0.915 12 0.836 
Xiangji 2006 [61] 4 – PLS 22 0.857 – – – 
Yang et al., 2010 [62] – 6 CoMSIA 21 0.911 0.512 – – 
Najmeh et al., 2014 [63] 5 – PCA 25 0.631 – – – 
Sehan et al., 2015 [64] – – 3D-QSAR 63 0.93 0.89 26 0.89 

Abbreviations: LV ¼ Latent variables, E. L. ¼ Equation length, MLR ¼ Multiple linear regression, CoMFA¼Comparative Molecular Field Analysis, CoMSIA¼
Comparative molecular similarity index analysis, PCA ¼ Principal component analysis and HQSAR¼ Hologram QSAR. 
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ABSTRACT

In this research, we have developed two-dimensional quantitative structure-activity relationship
(2D-QSAR) and group-based QSAR (GQSAR) models employing a dataset of 78 carbamate
derivatives(acetylcholinesteraseenzymeinhibitors).Thedevelopedmodelswerevalidatedusing
variousstringentvalidationparameters.Fromtheinsightsobtainedfromthedeveloped2D-QSARand
GQSARmodels,wehavefoundthatthestructuralfeaturesappearinginthemodelsareresponsible
for the enhancementof the inhibitoryactivity against theAChEenzyme.Furthermore,wehave
performedthepharmacophoremodelingtounveilthestructuralrequirementsfortheinhibitoryactivity.
Additionally,moleculardockingstudieswereperformedtounderstandthemolecularinteractions
involvedinbinding,andtheresultsarethencorrelatedwiththerequisitestructuralfeaturesobtained
fromtheQSARandpharmacophoremodels.

KEywoRDS
2D-QSAR, AChE, Carbamates, Dataset, Docking, GQSAR, Pharmacophore, Validation

1. INTRoDUCTIoN

Alzheimer’sdisease (AD) isaneurologicaldisorder, characterizedbydegenerativechanges ina
varietyofneurotransmittersystems(Wenk,2003).Theinitialsignsofthediseasemaybeaconstant
declineinlossofshort-termmemoryandintellectualfunctions,repeatedlyaccompaniedbyabnormal
behaviorsuchasaggressionanddepression(Wenk,2003;Khachaturian,1985).Varioushypotheses
havebeenproposedtoexplainADpathogenesissuchascholinergichypothesis,tauhypothesisand
amyloidhypothesis,etc.,thatonlydescribethebasiccausesofdiseaseprogression(Roses,1996).
Amongthesehypotheses,themostprominentisthecholinergichypothesiswhichstatesthatADis
causedbyareductionoftheactivityofcholineacetyltransferaseinthecerebralcortexandhippocampus
ofbrainarea(SinghandKauretal.,2013andAnandandSingh,2013).Thedecreasedlevelofthe
neurotransmittercauseslossofthecholinergicneurotransmissionandlarge-scaleaggregationofAβ
leadingtothelossofintellectualabilities(Talesa,2001).Thishypothesisusuallysuggeststhatthe
cholinergicamplificationwillimprovetheperceptioninAD(AnandandSingh,2013).Thus,the
AChEhasbeenproventobethemostpromisingtherapeutictargetforthesymptomatictreatment
ofAD(AnandandSingh,2013;Talesa,2001).Therearenowfiveapproveddrugsforthetreatment
ofcognitivesymptomsofAD,fourareAChEinhibitors(Tacrine,Rivastigmine,Galantamineand
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Donepezil) and one is non-competitive glutamate (NMDA) receptors antagonist (Memantine)
(Schelternsetal.,2003).Thebenefitfromtheiruseisonlysymptomatic,andnomedicinehasbeen
clearlyshowntodelayorhalttheprogressofthedisease(Schelternsetal.,2003).Therefore,thereis
anurgentneedtodevelopnoveltreatmentstrategiesforthepropercureofAD.Forthisobservation,
incurrentstudy,wehaveperformed2D-QSAR,GQSARand3Dpharmacophoremodelingalong
withmoleculardockingstudiestorevealthestructuralrequirementsfortheAChEenzymeinhibitory
activity.

In the current scenario, computational and chemoinformatic methods such as quantitative
structure-activityrelationships(QSARs)andmoleculardockinghavedemonstratedtheirgreatpotential
indesigningleadsforcomplexdiseases.Amongthesemethodologies,QSARshavebeeneffectively
usedtoidentifytheimportantstructuralfeaturesforselectivebiologicalactivities.Currently,anumber
ofdifferentregressionandpatternrecognitiontechniquesareavailable,whichcanbeusedforthe
selectionofsignificantvariablesandQSARmodeldevelopment.Anumberofcomputationalstudies
havebeenreported(Brahmacharietal.,2015;Shenetal.,2007;deSouzaetal.,2012;Goyaletal.,
2014;Solomonetal.,2009;Karmakaretal.,2019;Guptaetal.,2011;Berndetal.,2003;Sawetal.,
2016;Paulaetal.,2017;Plancheetal.,2013;Plancheetal.,2012;Franciscoetal.,2012;Plancheet
al.,2012)sofarforthedesigningofnewagentsagainstAD,butstillwearefarfromfindingaprecise
treatmentstrategyforAD.Inthepresentstudy,wehaveemployedadatasetof78(Sterlingetal.,2002)
structurallydiversecarbamatesderivativeswithdefinedAChEenzymeinhibitoryactivityforthe
purposeQSARmodeldevelopmentinordertoexplorethekeystructuralfeaturesthatareessentialfor
inhibitoryactivityagainstAChEenzyme.Priortothedevelopmentoffinalmodels,wehaveapplied
amultilayeredvariableselectionapproachtoreducenoiseintheinput,andthefinalmodelswas
developedusingthePartialLeastSquares(PLS)regressiontechnique.TheQSARmodelswerebuilt
withtheguidelinesoftheOrganizationforEconomiccooperationanddevelopment(OECD)(Royet
al.,2015).Thedevelopedmodelshavebeenvalidatedtakingintoconsiderationvariousstrictinternal
andexternalvalidationmetrics.Moreover,wehaveperformedpharmacophoremodelingtounveil
thestructuralrequirementsfortheinhibitoryactivityandtocategorizethecompoundsintomore
activeandlessactiveclassesfortheirinhibitorypotentialagainsttheAChEenzyme.Furthermore,
wehaveimplementedmoleculardockingstudieswithmostactiveandleastactivecompoundsfrom
thewholedatasetandtriedtojustifythecontributionsofdifferentdescriptors/featuresasapparent
intheQSAR/pharmacophoremodels.

2. MATERIALS AND METHoDS

2.1 QSAR modeling
2.1.1 Dataset
Inthecurrentstudy,wehavecollectedacongenericseriesof78carbamatederivatives(Sterlinget
al.,2002)(SeeTable5)withinhibitoryactivityagainstAChEenzymefromthepreviouspublished
literature.All78structuresoftheAChEI(carbamatederivatives)presentinthedatasetwiththeir
names,structuresandactivity(observedandpredicted)againsttheAChEenzymearedepictedin
TablesS2-S7.Theactivityvaluesforallthecompoundsweremeasuredusingthesameexperimental
method(Ellmanassay)(Sterlingetal.,2002)bythesameresearchgroup.Theactivityvaluesofallthe
datasetcompoundsexpressedasIC50(µM)valueswereconvertedtonegativelogarithmofIC50(i.e.,
pIC50)valuesforthepurposeofmodeldevelopment.ThestructuresweredrawnusingMarvinSketch
softwareversion5.9.4(Availableathttps://chemaxon.com/products/marvin)andChemDrawUltra
softwareversion12.0(Availableathttps://www.perkinelmer.com/category/chemdraw).InGQSAR
modeldevelopment,thedesignationofcommonscaffoldandsubstitutionsitesisaprerequisitestep
asshowninFigure1(Sterlingetal.,2002).ItcanbeseenthattherearethreesubstitutionsitesR1,R2
andR3inthecongenericseriesusedintheGQSARstudy.IntheGQSARmethodology,everydataset
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moleculeisconsideredasasetoffragments,andthefragmentationschemeiseithertemplate-based
oruserdefined.Oncethecommonscaffoldandsubstitutionsitesaredefined,variousdescriptorsare
calculatedforeachfragmentofthemolecule.Nowusinganappropriatevariableselectionmethod,
thesignificantdescriptorsrepresentingtheparticularsubstituentsitesareselected.

2.1.2 Descriptor Calculation and Data Pretreatment
Incaseof2D-QSARmodeldevelopment,apoolof174descriptorswascomputedfromthecongeneric
seriesof78carbamatederivatives(Sterlingetal.,2002)againstAChEenzymeusingtwosoftware
tools,namely,Dragonversion7(Availableathttp://www.talete.mi.it/products/dragon_description.
htm) and PaDEL-Descriptor version 2.20 software (Available at http://www.yapcwsoft.com/dd/
padeldescriptor/).Wehavecalculatedonly2Ddescriptorscoveringconstitutional,ringdescriptors,
connectivity index, functionalgroupcounts,atomcenteredfragments,2Datompairs,atomtype
E-statesandmolecularproperties(Dragonsoftwareversion7)andETAindices(PaDEL-descriptor
2.20).IncaseofGQSARmodeling,apoolof213descriptorswascalculatedforeveryfragmentat
thesubstitutionsites(R1,R2,andR3)usingthetoolVLifeMDSversion3(Availableathttps://www.
vlifesciences.com/support/request_demo.php)softwarecoveringphysiochemicalandatomtypecount
descriptors.Wehaveperformeddatapretreatmentforboththesetsofdescriptorstoremoveinter-
correlateddescriptorsfromthedatasetsusingthetoolPretreatmentV-WSPversion1.2(availableat
http://dtclab.webs.com/software-tools).

2.1.3 Dataset Division
Inpresentstudy,ouraimwastodevelopQSARmodelsthatarerobustenoughandcapableofmaking
accurateandreliablepredictions.Therefore,QSARmodelsweredevelopedbyatrainingsetand
validatedusingnewchemicalentities,i.e.,atestsettocheckthepredictivecapacityofthedeveloped
models.Inthisstudy,thewholedatasetwasdividedintoatrainingsetandatestsetbasedonactivity/
propertyalgorithmusingthe“DatasetDivisionGUI”developedbyourgroup(availableathttp://
dtclab.webs.com/software-tools).ThesamestrategywasalsoappliedinthecaseGQSARstudy.

2.1.4 Multilayered Variable Selection and QSAR Model Development
Priortothedevelopmentofthefinalmodels,wetriedtoextracttheimportantdescriptorsfromthe
largepoolofinitialdescriptorsusingvariousvariableselectionstrategies(Kumaretal.2019).For

Figure 1. Common scaffold (carbamate) and the substitution sites assigned for the GQSAR study



International Journal of Quantitative Structure-Property Relationships
Volume 5 • Issue 3 • July-September 2020

9

thispurpose,wehaveappliedamultilayeredvariableselectionstrategybeforethedevelopmentofthe
finalmodelsusingstepwiseregression(usingasuitablesteppingcriterion,e.g.,‘F-for-inclusion‘and
‘F-for-exclusion’basedonpartialF-statistic)(Khanetal.,2019)followedbygeneticalgorithm(GA)
followedbybestsubsetselection,andthefinalmodelswerebuildusingpartialleastsquares(PLS)
regressiontechniques.Thesamevariableselectionstrategywasappliedinbothcases(2D-QSARand
GQSAR).Thedetailmulti-layeredvariableselectionstrategyisschematicallyrepresentedinFigure5.

2.1.5 Statistical Validation Metrics
TojudgetherobustnessandpredictivequalityofthedevelopedmodelsisacriticalstepintheQSAR
study(Royetal.,2007).Inthisstudy,wehaveemployeddifferentstatisticalapproachessuchasinternal
andexternalvalidationmetricstojustifytherobustnessandpredictivequalityofdevelopedmodels.
Incaseofinternalvalidation,wehavedeterminedvariousstatisticalmetricssuchasdetermination
coefficient(R2),leave-one-outcross-validatedcorrelationcoefficient(Q2

(LOO)),Avgrm2
(LOO)andΔrm2

(Royetal.,2007).HighervaluesofthemetricsR2,Q2
(LOO))andAvgrm2

(LOOindicatedabetterfitof
themodel,butalltheseparametersarenotsufficienttoevaluatetherobustnessandpredictivityof
significantmodels(Royetal.,2007).Thus,wehavedeterminedotherstatisticalvalidationparameters
(externalvalidationparameters)suchasQ2F1,Q

2
F2,r

2mparameterslikeaveragerm2(test)andΔrm2
and concordance correlation coefficient (CCC) to assure the significance of developed models
(Royetal.,2007).Moreover,wehavealsoperformedY-randomizationtest,checkedapplicability
domaincriteria,etc.,toinvestigatetherobustnessofdevelopedmodels.TheY-randomizationtest
wasperformedusingtheSimca-Psoftware(Availableathttp://www.minitab.com/en-us/products/
minitab/)throughrandomlyreordering(100permutations)thedependentvariable(Veerasamyetal.,
2011).ThedetailsofthemethodologyaredepictedinFigure6.

2.2 Development and Validation of 3D QSAR Pharmacophore Model
Inpresentstudy,wehaveappliedpharmacophoremodelingstudy to reveal the requiredfeatures
essentialfor theinhibitoryactivityagainstAChEenzyme.TheAChEenzymeinhibitoryactivity
expressedintermofIC50(µM)wasusedasdependentvariableforthepurposeofthedevelopment
ofpharmacophoremodels.Previouslypreparedcompoundstructureswereusedforthisstudy.The
datasetwasrationallydistributedintotraining(23)(formodeldevelopment)andtestset(55)(For
validation)compoundsbasedonthespanoverfourorderofmagnitude(Paletal.,2019).BIOVIA
DiscoveryStudioclient4.1(Availableathttps://www.3dsbiovia.com/)platformwasusedtobuild
thepharmacophoremodels.Thedetailsofthemethodologyforthedevelopmentofpharmacophore
modelareasdescribedbyAheretal.(Aheretal.,2014).Validationofthedevelopedmodelswas
performedusingdifferentparameterslikecostanalysis,Fischerrandomizationtest(F-test)andtest
setprediction,tojudgetherobustnessandpredictivequalityofmodelsasdescribedbyAheretal.
(Aheretal.,2014).

2.3 Molecular Docking Studies
Inthisstudy,wehaveperformedmoleculardockingstudiestoidentifytheinteractionsoftheAChE
enzyme(thestructureof theproteinwasretrievedfromProteinDataBankwithPDBID:4M0E
(Murzin et al., 1995))with themost and least activeAChEenzyme inhibitors from thedataset.
MoleculardockingstudieswerecarriedoutusingBIOVIADiscoveryStudioclient4.1(Availableat
https://www.3dsbiovia.com/)platformusingCDOCKERmoduleofreceptor-ligandinteraction(Wu
etal.,2003).Afterdocking,thegeneratedposesweresortedaccordingtoCDOCKERinteraction
energyandthetopscoring(mostnegative,thusfavorabletobinding)posesarekept.
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3. RESULTS AND DISCUSSIoN

3.1 Mechanistic Interpretation of Modeled Descriptors
Thestatisticallysignificant2D-QSARandGQSARmodelsderivedusingthePLSregression-based
techniquealongwiththevaluesoftheirvalidationparametersareshownbelowinequations1and2.
ThedetailsoftheirvalidationmetricvaluesaresummarizedinTable14.Theobtainedresultssuggested
thatthemodelswereacceptableintermsoffitness,stabilityandclassicalpredictivitymeasures.The
reported2D-QSARmodelwasdevelopedbyusing6descriptorswithcorrespondinglatentvariablesof
3,whiletheGQSARmodelwasdevelopedbyusing7descriptorswithcorrespondinglatentvariables
of6.Thedescriptorsappearinginthemodelsdefinethestructuralandfunctionalrequirementswhich
canimprovetheinhibitoryactivityofmoleculesagainstAChEenzyme.Theproximityoftheobserved
andpredictedvaluesfortheAChEenzymeinhibitorsinthedatasetcanbefurtherestablishedfrom
thescatterplotsasshowninFigure2.Thequantitativecontributionsofsimilar/dissimilardescriptors
(similardescriptorsareplacedincloseproximity)andtheinterrelationshipsbetweentheX-variables
andtheY-responsearedepictedintheloadingplotsFigure7.Additionally,wehavealsoperformed
Y-Randomizationtesttocheckwhetherthemodelswereobtainedbyanychanceornot.Theresults
obtainedfromtherandomizedmodelsincaseof2D-QSAR(Model1:R2rand=-0.0166andQ2rand
=-0.379)andGQSAR(Model2:R2rand=0.0545andQ2rand=-0.606)suggestedthatthedeveloped
modelswerenotobtainedbyanychancecorrelationasgiveninFigure8.

3.1.1 2D-QSAR Analysis
Model1

pIC µM C F C N H
50

9 011 0 541 006 0 466 07 0 190

05
( ) = − − × − − × −


 − × −. . . .

22 28 395 2

0 554 06 0 481

+ ×

+ × −

 + ×

.

. .

X A

F C N NRS

 (1)

Ntraining=�63 ,R2=� .0 789 ,Q2
LOO=� .0 732 ,Avgrm2

(LOO)=� .0 634 ,Δrm2=� .0 149 ,LV= 3 ,EL=6,
Predictionquality= MODERATE ;Ntest= 15 ,Q2F1= 0 883. ,Q2F2= 0 883. ,Avgrm2= 0 852. ,

Δrm2= 0 062. ,CCC= 0 935. ,MAE= 0 261. ,SD= 0 174. ,Predictionquality= GOOD .

The descriptors in the PLS models are arranged accordingly to their importance, and then
describedseparately.Thesignificancelevelandcontributionofthemodeldescriptorstowardsthe
AChEinhibitoryactivityaredeterminedbasedonvariableimportanceplot(VIP)andregression
coefficientplotasshowninFigure9(Popelieretal.2006).

ThedescriptorC-006belongstotheclassofatom-centredfragmentsthatencodesinformation
about the topological environment of an atom.This descriptor indicates thenumberofCH2RX
functionalgroups(X:heteroatom(O,N,S,P,Se,orhalogens),R:anygrouplinkedthroughcarbon)
thatdescribeseachatombyitsownatomtypeandthebondtypesandatomtypesofitsfirstneighbors
(Duchowiczetal.,2007).Theneighborsofacarbonatominthiscasecanbehydrogen(represented
asH),carbon(representedasR),orheteroatoms(representedasX).Ontheotherhand,2Datompair
descriptor,F07[C-N],issimplycharacterizedbythefrequencyofC-Nattopologicaldistance7.The
negativeregressioncoefficientofthesedescriptorssuggeststhattheabsenceofsuchfragmentsinthe
compoundsmayincreasetheinhibitoryactivityagainstAChEenzymeasobservedin(SeeFigure
10)caseofcompounds18(pIC50:2.045)and55(pIC50:1.886),whereaspresenceofsuchfragments
correlatestolowerinhibitoryactivityasobservedin(SeeFigure10)compounds52(pIC50:-2.309)
and73(pIC50:-2.309).
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Anotheratom-centredfragmentsdescriptor,H-052,describesH(hydrogen)attachedtoC(sp3)
with1X(heteroatom)attachedtothenextC(Todeschinietal.2009).Itisasimplemoleculardescriptor

Figure 2. Scatter plots of observed and predicted values of final PLS (2D QSAR and GQSAR) models against AChE enzyme (A: 
2D QSAR, B: GQSAR).



International Journal of Quantitative Structure-Property Relationships
Volume 5 • Issue 3 • July-September 2020

12

definedas thenumberofspecificatomtypes inamolecule,andit iscalculatedbyknowingthe
molecularcompositionandatomconnectivity.ThenegativesignofH-052indicatesthatcompounds
withhighernumberofHatomsattachedtoC0(sp3)with1X(X=O)attachedtonextCwouldshow
lowerinhibitoryactivityasobservedin(SeeFigure11)compounds73(pIC50:-2.369)and52(pIC50:
-2.309)whilelowernumericalvaluesofthisfragmentcorrelatesthehigherinhibitoryactivityas
shownincompounds18(pIC50:2.045)and55(pIC50:1.886)(SeeFigure11).

Another2Datompairdescriptor,F06[C-N],indicatesthefrequencyofC-Natthetopological
distance6.Thepositiveregressioncoefficientofthisdescriptorindicatesthatthepresenceofthe
C-N fragment at the topological distance 6 may favor the inhibitory activity against the AChE
enzymeasfoundin(SeeFigure11)compounds18(pIC50:2.045)and19(pIC50:1.858)(containing
descriptorvalueof4forallthecases).Ontheotherhand,compoundswithlowernumericalvalue
ofthisdescriptorshowlowerinhibitoryactivityasobservedin(SeeFigure11in)compounds40
(pIC50:-2.720)and43(pIC50:-2.642).

Theconnectivitydescriptor,X2A,correspondstoaverageconnectivityindex2χandrepresentsthe
stericfeatureofthemolecule.ThepositivecoefficientofX2Aindicatesthatanincreaseinthevalues
ofthedescriptorwillresultinanincreaseininhibitoryactivity.Thisisobservedin(SeeFigure12)case
ofcompound61(pIC50:0.795),77(pIC50:0.769)(descriptorvalue0.333and0.32,respectively),and
theoppositeisseenincompound40(pIC50:-2.720)and43(pIC50:-2.642)asdepictedinFigure12.

The functional group count descriptor, NRS, indicates the number of ring systems present
in the compounds, which contributes positively towards the AChE enzyme inhibitory activity.
HydrophobicityplaysanimportantroleforbetterAChEinhibitoryactivityaswehaveobservedin
compounds(SeeFigure12)suchas8(pIC50:0.522)and35(pIC50:-0.250)containingdescriptor
value4and3,respectively,showinghigherinhibitoryactivity,whilecompounds40(pIC50:-2.720),
43(pIC50:-2.642),and73(pIC50:-2.369)(containinglowerdescriptorvalues1inallthreecases)
(SeeFigure12)showlowerinhibitoryactivity.

3.1.2 GQSAR Analysis

Model2

pIC50(µM)=
1 681 0 650 2 0 071 2. . .− × − + × −R XKMostHydrophobicHydrophilic R 
+ − × − − × −vePotentialSurfaceArea R HosoyaIndex R

Sss

0 0001 1 0 483 1. .

CCH count2 −


0 015 1 0 276 3 1

0 0007 3

. . _

.

× −+ − × − +
×
R vePotentialSurfaceArea R MMFF

R −−MomInertiaX
 (2)

Ntrain=63,R2=0.625,Q2=0.538,EL=7,LV=6;Ntest=15,Q2F1=0.735,Q2F2=0.734,Avg
rm2=0.681,Δrm2=0.151,SD=0.231,Predictionquality=Moderate.

Equation2corresponds to thebestGQSARmodel thatcomprises7descriptors.Thedescriptors
appearinginthemodelarearrangedaccordinglytotheirimportance,andthendescribedseparately.
TheVIPandregressioncoefficientplot(Popelieretal.2006)definetheimportanceofeachvariable
obtainedfromthefinalPLSmodelsthatareresponsibletoregulatetheAChEenzymeinhibitory
activityasshowninFigure13intheregressioncoefficientplot.
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Thephysicochemicaldescriptor,R2-XKMostHydrophobicHydrophilicDistance,belongingtothe
subclassHydrophobicityXlogpK,impliesthedistancebetweenmosthydrophobicandhydrophilic
pointontheVdWsurfacecomputedusingtheKellogXlogPmethod(Mannholdetal.2006).For
eachfragment,thedescriptorvalueiscalculatedbygeneratingvanderWaalssurfaceofthefragment
(R2 position), putting a probe atom at each point on van der Waals surface and calculating the
distancebetweenmosthydrophobicandhydrophilicpoints(Availableathttps://www.vlifesciences.
com/support/request_demo.php).Itshowsanegativecontributiontotheinhibitoryactivitywhich
suggeststhatrelativelylessdistancebetweenmosthydrophobicandhydrophilicgroupatR2position
mayfavortheinhibitoryactivityagainstAChEenzyme.Forinstance,mostactivecompounds(See
Figure14)76(pIC50:-0.938)and42(pIC50:-0.845)inthedatasetcontainmethylgroupatR2position
withminimumdistancefromnitrogengroupincontrasttheleastactivecompounds(SeeFigure14)
32(pIC50:-1.053)and33(pIC50:-1.86)inthedatasetcontainingmethylgroupatR2positionwith
maximumdistancefromnitrogengroup.

Another physicochemical descriptor, +vePotentialSurfaceArea, belongs to the subclass
Electrostaticdescriptors,whichsignifiesthetotalvanderWaalssurfaceareawithpositiveelectrostatic
potentialofthecompoundshavingelectronacceptingorpositivecentersatsubstitutionsites(Available
athttps://www.vlifesciences.com/support/request_demo.php).Themostcontributingdescriptorin
positionR2withapositivecoefficientvalue is+vePotentialSurfaceAreawhich suggests that an
increaseinpositiveelectrostaticpotentialoffragmentR2mayleadtoanincreaseintheinhibitory
activityagainstAChEenzyme.Wehaveobservedthatthemostactivecompounds(SeeFigure15)
75(pIC50:-0.486)and58(pIC50:-0.892)inthedatasetshowhigherinhibitoryactivitywhereasthe
leastactivecompounds(SeeFigure15)52(pIC50:-2.31)inthedatasetwithdescriptorvalues21.624
showlowerinhibitoryactivity.Incontrast,+vePotentialSurfaceAreaisdetrimentalforR1position
inthecompoundsaswehaveobservedfromtheleastactivecompounds(SeeFigure15)52(pIC50:
-2.31)and73(pIC50:-2.369)inthedatasetcontaininghighernumberelectronacceptingorpositive
centersatR1substitutionssite,whereasthemostactivecompounds(SeeFigure15)18(pIC50:2.046)
and19(pIC50:1.585)fromdatasetcontainlowernumberofelectronacceptinggroupatR1position.

The distance based topological descriptor, R1-HosoyaIndex, belonging to the family of
physicochemicaldescriptors,signifiesthetopologicalindexorZindexofagraphwhichisthetotal
numberofmatchinginitplus1(“plus1”accountsforthenumberofmatchingswith0edges),and
itcanbecalculatedthroughequation,

k

n

Z m G k
=













=∑ ( )
0

2

, 

wherenisthenumberoftheverticesofgraphG(orderofgraphG),[n/2]standsfortheinteger
partofn/2andm(G,k)isthenumberofk-matchingsofgraphG(Randićetal.,2004).Itshowsa
negativecontributiontotheinhibitoryactivityagainstAChEenzymeandsuggeststhatrelatively
lowernumericalvaluesofthisfragmentmaycontributetotheinhibitoryactivity.Wehaveobserved
thatthemostactivecompounds(SeeFigure16)58(pIC50:-0.892)and19(pIC50:-1.585)inthedata
setcontainingsinglephenylringatR1positionhavelowernumericalvaluesforthisdescriptor,while
theleastactivecompounds(SeeFigure16)43(pIC50:-2.642)and73(pIC50:-2.369)inthedataset
containindeneringonR1position(whichmeanshighernumberofedgeandvertices)showhigher
numericalvaluesforthisdescriptor.

Thephysicochemicaldescriptor,R1-SssCH2count,belongstothesubclassE-statenumbers.It
givesanindicationaboutthetotalnumberof–CH2groupswhichareconnectedwiththehelpoftwo
singlebonds.ItshowsanegativecontributionatR1substitutionsiteofthecompoundshintingthata
reductioninthenumberofsuchgroupswouldbebetterfortheinhibitoryactivityofthecompounds.
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Wehaveobservedthatthemostactivecompounds(SeeFigure17)2(pIC50:0.036)thatabsenceof
suchfragmentatR1positionshowshigherinhibitoryactivitywhereasincaseoftheleastactive
compounds(SeeFigure17)43(pIC50:-2.642),52(pIC50:-2.31)and40(pIC50:-2.72),therearehigher
numberofsuchfragmentatR1positionwhichisdetrimentalforinhibitoryactivity.

R3-MMFF_1isanatomtypecountdescriptorandisbasedonMMFFatomtypesandtheircount
ineachmolecule(N-CH3groupatR3position).Itshowsanegativecontributiontotheinhibitory
activityandsuggeststhatabsenceofthisgroupatR3positionmayfavortheinhibitoryactivityagainst
AChEenzyme.Forinstance,mostactivecompounds(SeeFigure17)36(pIC50:0.26)inthedataset
foundabsenceofmethylgroupatR3position;incontrasttheleastactivecompounds(SeeFigure17)
52(pIC50:-2.31)and28(pIC50:-1.615)inthedatasetcontainN-CH3groupatR3position,whichis
detrimentalforinhibitoryactivity.

R3-MomInertiaX,isadistancebasedtopologicaldescriptor.Itreferstothemomentofinertiaat
X-axisofthemoleculesandimpliesthatincorporationofanygroupatR3positionthatincreasethe
resistanceorrestrictstheinternalrotationofthemoleculewillincreasetheAChEenzymeinhibitory
activity.ItshowsapositivecontributiontotheinhibitoryactivityagainstAChEenzyme.Wehave
observedfromthemostactivecompounds(SeeFigure17)18(pIC50:2.046)and55(pIC50:1.886)in
thedatasetthatanincreaseinthevalueofthisdescriptoraddstotheactivityprofilesofthemolecules.
Ontheotherhand,theleastactivecompounds(SeeFigure17)73(pIC50:-2.369)inthedatasetshow
lowernumericalvaluesofthisdescriptor.

3.1.3 Applicability Domain of the PLS Models
Incurrentwork,wehavetestedtheapplicabilitydomainasdescribedbyRoyetal(Royetal.,2019
andKhanetal.2019)fortestsetcompoundsat99%confidencelevelusingtheDModX(distanceto
modelinX-space)approachavailableinSIMCA-P10.0software(Availableathttps://umetrics.com/
products/simca).WecanseefromFigure18thatallthetestsetcompoundsinboth2D-QSARand
GQSARmodelsarewithinthecriticalDModXvalues(Model1:D-Crit=2.412,Model2:D-Crit
=3.506).

3.2 3D-Pharmacophore Model Analysis
In this study,wehavedeveloped tendifferentpharmacophoremodelsusinga training setof23
compounds.Fromtendifferentpharmacophorehypotheses,Hypo-2withahighcorrelationcoefficient
(r:0.858), lowerrootmeansquaredeviation(rmsd:2.061),error66.77,lowerconfigurationcost
(9.909)andweight1.12werefoundtobeofacceptablequality.Theresultsoftenpharmacophore
hypothesesagainstAChEenzymearegiven inTable15.Basedonall reportedmetrics,Hypo-2
wasfoundtobethebestoneamongthetenhypotheseswithoneHBA,oneHBD,oneRAandone
hydrophobicfeatures(Figure3).Externalvalidationofthemodelhasbeencarriedoutbymappingthe
testsetmolecules(Figure3)onHypo-2withthesamesettingsasemployedforthepharmacophore
generationbytheBESTmethod.Aftermapping,wehaveobservedthat50moleculesfromthetest
setof55compoundsweremapped,only5compoundsfailedinabsenceofthefeaturesfoundinthe
developedmodel.Theobservedandestimatedactivityofthetrainingandtestsetscompoundsusing
Hypo-2aregiveninTable12and13.Thevaluesofdifferentvalidationparametersforthetraining
aswellastestsetsaregiveninTable16(qualitativevalidationparameters).TheF-testconfirmsthe
non-randomnessofthedevelopedpharmacophore(Hypo-2).Theoriginalandrandomizedtotalcost
valuesofthehypothesesforF-testaregiveninFigures18and19.Correlationof3Dpharmacophore
modelwithQSAR(2D-QSARandGQSAR)modelsaredepictedinTable1.

3.3. Molecular Docking
Wehaveperformedmoleculardockingstudyofsomemostactive(19,18,44,55and61)(Figure4
andFigures21-24)andleastactive(33,40,43,52and73)(Figure4andFigures25-28)compounds
ofthedataset.ThedetailsofdockinginteractionsaredepictedinTable2andtheircorrelationswith
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thefinalQSAR(2D-QSARandGQSAR)modelsareshowninTable3.Figure4showsthedocking
interactionsofmostandleastactivecompoundsofdataset(compound19and43).

3.4 Relationship of the Docking Results with QSAR (2D QSAR And GQSAR) Results
Inthemoleculardockingstudies,wehaveobservedthattheformationofhydrogenbonds(classical
andnon-classical),hydrophobicbonding(π-πStacked,π-π-T-Shaped,alkylandπ-alkyl)andsome
otherelectrostaticinteractionssuchasπ-cationandattractivechargesbetweentheligandandthe
proteinplayavitalroleinthebindingprocess.Hydrogenandhydrophobicbondingcanbecorrelated
with X2A, R2-+vePotentialSurfaceArea, R3-MomInertiaX and NRS descriptors in the QSAR
models.X2A,R2-+vePotentialSurfaceAreaandR3-MomInertiaXarerelatedtohydrogenbonding,
electrostatic interactionsbetweenprotein and ligand.Thedescriptor,NRS,gives anevidenceof
hydrophobic interaction. The descriptor +vePotentialSurfaceArea contributes positively for the
substitutionsiteR2;butincontrast,itcontributesnegativelyincaseofR1substitutionsiteaswehave
observedintheleastactivecompoundsfromdatasetlike33and40(Figures25and26).Furthermore,
theR3-MomInertiaX(momentofinertiaatX-axis)descriptorsupportstheevidenceofhydrophobic
interactionsalongwithhydrogenbondinginteractionsaswehaveobservedin(Figures4,21-24)most
activecompoundsfromthedataset(19,18,44,55and61),Thus,fromabovestatedinformation,we

Figure 3. (A) Pharmacophore hypothesis (Hypo-2) with one hydrogen bond acceptor (HBA), one hydrophobic (HYD), one hydrogen 
bond donor and one ring aromatic (RA) features and interfeature distance (A°); (B) Mapping of the most active compound 77 of 
the test set (pharmacophore mapping) on the Hypo-2, (C) Mapping of the least active compound 52 of the test set (pharmacophore 
mapping) on Hypo-2.
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canconcludethathydrogenbonding,hydrophobicity,electrostaticinteractionsandunsaturation(π-π
interaction)featuresasobtainedfrombothQSARanddockingstudyareessentialfortheinhibitory
activityagainsttheAChEenzyme.

3.5. Comparison of the Performance of the Present QSAR 
Models with Previously Published Models
Inthepresentwork,wehaveperformedacomparisonofthebestmodelsofthisstudywithpreviously
publishedmodels(Brahmacharietal.,2015,Shenetal.,2007,deSouzaetal.,2012,Goyaletal.,
2014,Solomonetal.,2009,Karmakaretal.,2019,Guptaetal.2011andBernd.,etal2003)for
thepredictionofthebioactivityagainstAChEenzyme,asdepictedintheTable4.Thedetailsof
differentinternalandexternalvalidationparametersobtainedfromourmodelsandthoseobtained
frompreviousmodelsaregiveninTable4.Itisimportanttonotethatthemodelsdevelopedinthis
studyshowbetterqualitymodelsoflowequationlengthandlessnumberofvariablesofLVsand
considermorediversecompoundsascomparedtopreviouslyreportedmodels.

4. oVERVIEw AND CoNCLUSIoN

In thecurrentareaofdrug researchanddevelopment,computationalapproacheshave theirown
importance,andtheyarewidelyusedforthepredictionofnumerousactivity/property/toxicityof
differentorganicmaterialsagainstdifferenttargets.Inthecurrentstudy,wehavedeveloped2D-QSAR
andGQSARmodelsforthepredictionofinhibitoryactivityagainstAChEenzymeusingdataset
containing78carbamatederivatives(Sterlingetal.,2002).Thestatisticalresultsofthedeveloped
modelsshowgoodpredictivitybasedonbothinternalandexternalvalidationparameters.Fromthe
evidencesobtainedfromdevelopedmodels(2DQSARandGQSAR)wehaveconcludedthat:(1)
highernumberofstericfeaturesinthemoleculemayenhancetheinhibitoryactivityagainstAChE
enzyme,(2)highernumberofringsystemspresentinthemoleculesareessentialtoincreasethe
inhibitoryactivityagainstAChEenzymeasalsocorroboratedwiththedevelopedpharmacophore
model, (3) the CH2RX fragment and H attached to C0(sp3) with 1X attached to next “C” are

Table 1. Correlation of 3D-QSAR pharmacophore model with QSAR (2D-QSAR and GQSAR) models

Pharmacophoric 
features

Correlation with QSAR (2D-QSAR and GQSAR) models

Ringaromatic Thecompoundspresentinthedatasethaveatleastoneringaromaticfeature,whichiseither
pyrazole/pyridine/thiazole/phenylorotherheterocycle.TheRAfeaturesarethepreliminary
requirementsfortheinhibitoryactivityagainstAChEenzyme.TheRAfeaturesareaccordance
withtheNRSdescriptorofthe2D-QSARmodel(Eqs.1).Thisobservationwecanseefromthe
mostactivecompoundofthetestset(77IC50:0.17µM)(Figure3)onebenzeneringliesintheRA
region.

Hydrogenbond
acceptor

TheHBAfeature(-CO)ofpharmacophoremodelisalsoinaccordancewiththe
+vePotentialSurfaceAreaandMomInertiaX(momentofinertiaatX-axis)descriptorsofthe
GQSARmodelsatR2andR3positionsrespectivelyinthecompounds(Eq.2).Themost
contributingdescriptorinpositionR2is+vePotentialSurfaceArea,whichsuggeststhatanincrease
inpositiveelectrostaticpotentialoffragmentatR2sitemayleadtoanincreaseintheinhibitory
activityagainstAChEenzyme.Asfoundtheinmostactivecompoundoftestset(Figure3)(77
IC50:0.17µM),thepresenceofthisfeaturesincompoundshowshigherinhibitoryactivity.

Hydrogenbond
donor

HydrogenbonddonorfeaturefromtheobtainedmodelaccordancewithF06[C-N]descriptorof
the2D-QSARmodel.

Hydrophobic Hydrophobicfeature(-CH3)fromthedevelopedmodelisinaccordancewiththeX2Adescriptor
ofthe2D-QSARmodel(Eqs.1).Wehaveobservedfrommostactivecompoundofthetestset(77
IC50:0.17µM)Figure3,hydrophobicfeatureonHypo2mappedcompletelywiththemolecule.
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detrimental for the AChE enzyme inhibitory activity, (4) relatively less distance between most
hydrophobicandhydrophilicgroupatR2positionmayfavortheinhibitoryactivityagainstAChE
enzyme,(5)anincreaseinpositiveelectrostaticpotentialoffragmentR2mayleadtoanincreasein
theinhibitoryactivityagainstAChEenzyme,(6)reductioninthenumberof–CH2groupswhichare
connectedwiththehelpoftwosinglebondsatR1positionwouldbebetterfortheinhibitoryactivity
ofthecompoundsand(7)absenceofN-CH3groupatR3positionmayfavortheinhibitoryactivity
againstAChEenzyme.Moreover,theresultsobtainedfromtheQSARanalysisarewellsupported
bypharmacophoremappingandmoleculardockingstudies.ThedevelopedQSARmodelsthusmay
behelpfulforpredictionoftheactivityofnewanaloguesevenbeforetheirsynthesisandevaluation.

Table 2. Details of docking interactions (Most and Least active compounds from dataset)

Sr. No. Name of 
compound

Docking interactions

1 19 Mostactivecompoundfromthedataset;itinteractedwiththeaminoacidresiduesthrough
hydrogenbonding(SERA:293,TYRA:341andTYRA:124),alkyl,π-alkyl,π-πstacked
andπ-cationinteractions(TRPA:286andTYRA:341respectively)andsaltbridgeformation
(LEUA:289andASPA:74)(Figure4).

2 18 Figure21showedthatcompound18(mostactivecompoundindataset)interactedwith
SERA:293,TYRA:341andTYRA:124aminoacidresiduesthroughhydrogenbonding
interaction,TYRA:341andTRPA:286throughπ-cation,π-alkylandπ-πstacked)andASP
A:74aminoacidthroughsaltbridgeformation.

3 44 Figure22showedthatcompound44interactedwithSERA:293andTYRA:124(through
hydrogenbonding),LEUA:289,VALA:294,TYRA:124,PHEA:297,TRPA:286and
TYRA:341(alkyl,π-alkylandπ-π-stackedbondrespectively)aminoacidresidues.

4 55 Compound55(SeeFigure23)interactedwiththeaminoacidresiduesthroughhydrogen
bonding(TYRA:341andSERA:293)andπ-alkylandπ-π-stacked(TYRA:337,PHEA:
297,PHEA:338,TYRA:341andTRPA:286respectively)aminoacidresidues.

5 61 Mostactivecompoundfromthedataset,compound61(SeeFigure24)interactedwithTYR
A:337andTYRA:72(throughhydrogenbonding),TYRA:337,PHEA:297TRPA:286
(throughπ-alkylandπ-cationrespectively),TYRA:341andASPA:74(viaπ-πstackedand
pi-cation)aminoacidresidues.

6 33 Theleastactivecompoundfromthedataset,compound33(Figure25),interactedwithTYR
A:124andTYRA:73(throughhydrogenbonding),PHEA:338,TRYA:337,PHEA:297,
TYRA:124,TYRA:341,TYRA:286(throughπ-alkylinteraction),TRPA:286(viaπ-π
stackedinteraction)andLEUA:76(throughalkylbond)aminoacidresidues.

7 40 Anotherleastactivecompoundfromthedataset,compound40,interactedwiththeaminoacid
residuesthroughhydrogenbonding(SERA:293,TRPA:286,TYRA:341),π-alkyl(TYR
A:72,TRPA:286andTYRA:341)alky(LEUA:289andVALA:294)andπ-πstacked
interactions(TRPA:286andTYRA:341)(SeeFigure26).

8 43 Figure4showedthatcompound43(oneoftheleastactivecompoundfromdataset)interacted
withSERA:293andTYRA:73aminoacidresiduesthroughhydrogenbondinginteraction,
TYRA:72,TRPA:286,TYRA:341aminoacidresiduesthroughπ-alkylinteraction,
LEUA:289viaalkylbondandTYRA:341andTRPA:286aminoacidsviaπ-πstacked
interaction.

9 52 Compound52(SeeFigure27interactedwiththeaminoacidresiduesthroughhydrogen
bonding(TYRA:124),π-alkyl(TYRA:72,TYRA:337,TRPA:286andTYRA:341)and
π-π-stackedinteractions(TRPA:286andTYRA:341)aminoacidresidues.

10 73 Figure28showedthatcompound73interactedwithTYRA:124(throughhydrogenbonding),
TYRA:337,PHEA:338,TYRA:72andTYRA:341throughπ-alkyl,TYRA:341and
VALA:294viaalkylbondandTRPA:286viaπ-π-stackedbond)aminoacidresidues.
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Table 3. Docking results and their correlation with the final QSAR (2D QSAR and GQSAR) models

S. No. Compound 
Number

-CDocker 
interaction 

energy (kcal/
mol)

Interacting 
residues

Interactions Correlation with QSAR model

1 18(highpIC50) 40.306 SERA:293,TYR
A:341,ASPA:74,
TYRA:124and
TRPA:286

Hydrogenbonding
(Classicalandnon-classical),
electrostatics(Saltbridge,
attractivechargesand
π-cation)andhydrophobic
(π-πstackedandπ-alkyl)

NRS,R2-+vePotentialSurfaceArea
andR3-MomInertiaX

2 19(highpIC50) 42.26 LEUA:289,SER
A:293,TRPA:
286,TYRA:341,
ASPA:74and
TYRA:124

Hydrogenbonding(Classical,
non-classicalandSalt
bridge),electrostatics(Salt
bridge,attractivechargesand
π-cation)andhydrophobic
(π-πstacked,π-alkyland
alkyl)

NRSandR2-
+vePotentialSurfaceArea

3 44(highpIC50) 36.76 LEUA:289,SER
A:293,TRPA:
286,TYRA:341,
VALA:249,PHE
A:297andTYR
A:124

Hydrogenbonding(Classical,
non-classicalandSalt
bridge)andhydrophobic(π-π
stacked,π-alkylandalkyl)

NRS,X2A,R2-
+vePotentialSurfaceAreaandR3-
MomInertiaX

4 55(highpIC50) 40.88 TRPA:286,SER
A:293,TYRA:
341,PHEA:297,
PHEA:338and
TYRA:337

Hydrogenbonding(Classical
andnon-classical)and
hydrophobic(π-πstackedand
pi-alkyl)

NRS,R2-+vePotentialSurfaceArea
andR3-MomInertiaX

5 61(highpIC50) 42.625 PHEA:297,TYR
A:341,TRPA:
286,ASPA:74,
TYRA:72and
TYRA:337

Hydrogenbonding(Non-
classical),Electrostatics
(attractivechargesand
π-cation),hydrophobic(π-π
stackedandπ-alkyl)

NRS,R2-+vePotentialSurfaceArea
andR3-MomInertiaX

6 33(lowpIC50) 34.295 TYRA:124,TYR
A:73,PHEA:338,
TRYA:337,PHE
A:297,TYRA:
341,TRPA:286
andLEUA:76

Hydrogenbonding
(Classicalandnon-classical),
hydrophobic(π-πstacked,
alkylandπ-alkyl)

NRS,X2A,R1-
+vePotentialSurfaceArea

7 40(lowpIC50) 31.686 SERA:293,TRP
A:286,TYRA:
341,TYRA:72,
LEUA:289,VAL
A:294andTYR
A:341

Hydrogenbonding(non-
classical),hydrophobic(π-π
stackedandπ-alkyl)

NRS,X2A,R1-
+vePotentialSurfaceArea

8 43(lowpIC50) 31.129 SERA:293,TYR
A:72,TYRA:341,
LEUA:289and
TRPA:286

Hydrogenbonding(non-
classical),hydrophobic(π-π
stacked,alkylandπ-alkyl)

NRS,X2A,R2-
+vePotentialSurfaceArea

9 52(lowpIC50) 34.114 TYRA:124,TYR
A:72,TYRA:337,
TRPA:286and
TYRA:341

Hydrogenbonding
(Classicalandnon-classical),
hydrophobic(π-πstackedand
π-alkyl)

X2A,R2-+vePotentialSurfaceArea

10 73(lowpIC50) 32.807 TYRA:124,TYR
A:337,PHEA:
338,TYRA:72,
TYRA:341,VAL
A:294,TRPA:286

Hydrogenbonding(non-
classical),hydrophobic(π-π
stacked,alkylandπ-alkyl)

NRS,X2A,R2-
+vePotentialSurfaceArea
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Figure 4. Docking interactions of most and least active compounds of dataset (compound 19 and 43 respectively)

Table 4. Comparisons of proposed study with previous published studies against AChE enzyme

Sources EL LV Model Training set Test set

n R2 Q2 n R2
pred

Model 1 (2D QSAR) 6 3 PLS 63 0.789 0.732 15 0.88

Model 2 (GQSAR) 7 6 PLS 63 0.625 0.538 15 0.735

Brahmacharietal.2015 8 5 PLS 325 0.647 0.625 105 0.675

Shenetal.2007 - 5 CoMFA 36 0.974 0.784 9 0.968

Shenetal.2007 - 4 CoMSIA 36 0.947 0.736 9 0.927

deSouzaetal.2012 - 8 HQSAR 29 0.965 0.787 7 -

GoyalMetal.2014 4 4 PLS 19 0.822 0.683 5 0.789

SolomonKAetal.2009 5 - GFA 62 0.857 0.803 26 0.882

KarmakarAetal.2019 3 - GFA 28 0:683 0:589 - 0:641

Guptaetal2011 6 - GFA 31 0.88 0.838 11 0.75

Guptaetal2011 6 - GPLS 31 0.889 0.739 11 0.706

Guptaetal2011 - - SVM 31 0.798 - 11 0.762

Guptaetal2011 - - ANN 31 0.753 - 11 0.694

Bernd.,etal2003 - - CoMFA 28 0.974 0.671 4 -

Abbreviations: LV= Latent variables, MLR= Multiple linear regression, CoMFA= Comparative Molecular Field Analysis, CoMSIA= Comparative molecular 
similarity index analysis, ANN = Artificial neural network, SVM = Support vector machine, PLS= Partial least square, GFA= genetic function approximation 
and HQSAR= Hologram QSAR.
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APPENDIX 1

Abbreviations

AChE:Acetylcholinesteraseenzyme
AD:Alzheimer’sdisease,
AD:Applicabilitydomain,
VIP:Variableimportanceplot,
PLS:Partialleastsquare,
SW:Stepwise,
ETA:Extendedtopochemicalatom,
LOO:Leaveoneout,
QSAR:Quantitativestructureactivityrelationship,
GQSAR:GroupbasedQSAR,
OECD:Organizationforeconomicco-operationanddevelopment,
MAE:Meanabsoluteerror
CCC:Concordancecorrelationcoefficient
APP:Amyloidprecursorprotein
BSS:Bestsubsetselection
LV:Latentvariable
CHARMm:ChemistryatHarvardMacromolecularMechanics
MLR:MultilinearRegression
CoMFA:ComparativeMolecularFieldAnalysis
CoMSIA:Comparativemolecularsimilarityindexanalysis
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APPENDIX 2

Supplementary Tables

Table 5. Dataset employed in present study

NAME Smiles pIC50µM

1 c1ccc(cc1[C@H](N(C)C)C)OC(=O)N(C)C 1.522879

2 c1ccc(cc1[C@H](N(C)C)C)OC(=O)N(CC)C 0.036212

3 c12CC[C@H](c1cc(cc2)OC(=O)N(C)C)N 0.119186

4 c12CC[C@H](c1cc(cc2)OC(=O)N(CC)C)N -1.27875

5 c12CC[C@H](c1cc(cc2)OC(=O)N(CCC)C)N -0.86332

6 c12CC[C@H](c1cc(cc2)OC(=O)N(C)CCCCCC)N 0.275724

7 c12CC[C@H](c1cc(cc2)OC(=O)N(C)C1CCCCC1)N -0.5977

8 c12CC[C@H](c1cc(cc2)OC(=O)N(C)c1ccc(cc1)OC)N 0.522879

9 c12CC[C@H](c1cc(cc2)OC(=O)NCC)N -1.24797

10 c12CC[C@H](c1cc(cc2)OC(=O)NCCC)N -0.17026

11 c12CC[C@H](c1cc(cc2)OC(=O)N(C)C)NC -0.02938

12 c12CC[C@H](c1cc(cc2)OC(=O)N(CC)C)NC -1.58659

13 c12CC[C@H](c1cc(cc2)OC(=O)N(C)C)NCC -1.38917

14 c12CC[C@H](c1cc(cc2)OC(=O)N(C)CC)NCCC -0.5563

15 c1c2c([C@@H](CC2)N)c(cc1)OC(=O)N(C)C 0.337242

16 c1c2c(c(cc1)OC(=O)N(CC)C)[C@@H](CC2)N -1.02119

17 c1c2c(c(cc1)OC(=O)N(C)C)[C@@H](CC2)NC 0.29243

18 c1ccc(c2CC[C@H](c12)N)OC(=O)N(C)C 2.045757

19 c1ccc(c2CC[C@H](c12)N)OC(=O)N(CC)C 1.585027

20 c12CCC[C@H](c1cc(cc2)OC(=O)N(C)C)N -0.17026

21 c12CCC[C@H](c1cc(cc2)OC(=O)N(CC)C)N -0.79379

22 c12CC[C@H](Cc1cc(cc2)OC(=O)N(C)C)N -0.51055

23 c12CC[C@H](Cc1cc(cc2)OC(=O)N(CC)C)N -1.90091

24 c12CC[C@H](c1cc(cc2)OC(=O)N(C)C)NCC#C -0.4624

25 c12CC[C@H](c1cc(cc2)OC(=O)N(CC)C)NCC#C -1.6721

26 c12CC[C@H](c1cc(cc2)OC(=O)N(CCC)C)NCC#C -1.16435

27 c12CC[C@H](c1cc(cc2)OC(=O)N(C)CCCCCC)NCC#C -1.1959

28 c12CC[C@H](c1cc(cc2)OC(=O)N(C)C1CCCCC1)NCC#C -1.6149

29 c12CC[C@H](c1cc(cc2)OC(=O)N(C)c1ccc(cc1)OC)NCC#C 0.065502

30 c12CC[C@H](c1cc(cc2)OC(=O)NCC)NCC#C -1.13672

31 c12CC[C@H](c1cc(cc2)OC(=O)NCCC)NCC#C -0.37658

32 c12CC[C@H](c1cc(cc2)OC(=O)N(CCCC)C)NCC#C -1.05308

33 c12c(cc(cc2)OC(=O)N(CCCC)CC)[C@@H](CC1)NCC#C -1.85974

34 c12CC[C@H](c1cc(cc2)OC(=O)N(CC)C1CCCCC1)NCC#C -1.25285

35 c12CC[C@H](c1cc(cc2)OC(=O)N(C)Cc1ccccc1)NCC#C -0.25042

36 c12CC[C@H](c1cc(cc2)OC(=O)N(C)c1ccccc1)NCC#C 0.259637

37 c12CC[C@H](c1cc(cc2)OC(=O)N(C)C)N(C)CC#C -1.11059

38 c12CC[C@H](c1cc(cc2)OC(=O)N(C)C)N(CC)CC#C -1.25285

39 c1c2c([C@@H](CC2)NCC#C)c(cc1)OC(=O)N(C)C -0.39794

40 c1c2c([C@@H](CC2)NCC#C)c(cc1)OC(=O)N(CC)C -2.72016

41 c1c2c(c(cc1)OC(=O)N(CCC)C)[C@@H](CC2)NCC#C -1.65321

42 c1c2c([C@@H](CC2)N(C)CC#C)c(cc1)OC(=O)N(C)C -0.8451

43 c1c2c([C@@H](CC2)N(C)CC#C)c(cc1)OC(=O)N(CC)C -2.64246

44 c1ccc(c2CC[C@H](c12)NCC#C)OC(=O)N(C)C 1.275724

45 c1ccc(c2CC[C@H](c12)NCC#C)OC(=O)N(C)CC -0.33244

continued on following page
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NAME Smiles pIC50µM

46 c12CC[C@H](c1cc(c(Cl)c2)OC(=O)N(CC)C)NCC#C -1.40654

47 c12CC[C@H](c1cc(c(Cl)c2)OC(=O)N(CCC)C)NCC#C -1.64246

48 c12CC[C@H](c1cc(cc2)OC(=O)N(C)C)N[C@H](C#C)C -0.25527

49 c12CCC[C@H](c2cc(cc1)OC(=O)N(C)C)NCC#C -0.5955

50 c12CCC[C@H](c2cc(cc1)OC(=O)N(CC)C)NCC#C -1.71933

51 c12CC[C@H](Cc2cc(cc1)OC(=O)N(C)C)NCC#C -0.61278

52 c12ccc(cc2C[C@@H](CC1)NCC#C)OC(=O)N(C)CC -2.30963

53 c1ccc(c2CC[C@H](c12)N(C)CC#C)OC(=O)N(CC)C -1.17319

54 c12CC[C@H](c2cc(cc1)OC(=O)N(C)C)N(C)C -0.33244

55 c1ccc(c2CC[C@H](c12)N(C)C)OC(=O)N(C)C 1.886057

56 c1ccc(cc1CCN)OC(=O)N(C)C 0.638272

57 c1ccc(cc1CCN)OC(=O)N(CC)C -1.55023

58 c1ccc(cc1CCN)OC(=O)N(CCC)C -0.89209

59 c1ccc(cc1CCNC)OC(=O)N(C)C 0.552842

60 c1ccc(cc1CCNC)OC(=O)N(CC)C -1.31597

61 c1ccc(cc1CCN(C)C)OC(=O)N(C)C 0.79588

62 c1ccc(cc1CCNCC#C)OC(=O)N(C)C 0.657577

63 c1ccc(cc1CCNCC#C)OC(=O)N(C)CC -1.48001

64 c1ccc(cc1CCNCC#C)OC(=O)N(CCC)C -1.18752

65 c1ccc(cc1CCN(CC#C)C)OC(=O)N(C)C 0.070581

66 c1ccc(cc1CCN(CC#C)C)OC(=O)N(CC)C -1.22011

67 c1ccc(cc1C[C@H](C)NCC#C)OC(=O)N(C)C 0.267606

68 c1ccc(cc1C[C@@H](C)NCC#C)OC(=O)N(CC)C -1.5302

69 c1ccc(cc1C[C@@H](C)NCC#C)OC(=O)N(CCC)C -1.28103

70 c1ccc(cc1C[C@@H](NCC#C)C)OC(=O)N(C)C1CCCCC1 -0.5563

71 c1ccc(cc1C[C@@H](C)NCC#C)OC(=O)N(C)CCCC -1.08636

72 c1ccc(cc1C[C@H](C)N(CC#C)C)OC(=O)N(C)C -0.21484

73 c1ccc(cc1C[C@@H](C)N(C)CC#C)OC(=O)N(CC)C -2.36922

74 c1ccc(cc1C[C@@H](N(C)CC#C)C)OC(=O)N(CCC)C -1.51983

75 c1ccc(cc1C[C@@H](N(CC#C)C)C)OC(=O)N(CCCCCC)C -0.48572

76 c1ccc(cc1C[C@H](C)N(CC#C)C)OC(=O)N(C)C1CCCCC1 -0.93802

77 c1c(CCN[C@@H](C#C)C)cc(cc1)OC(=O)N(C)C 0.769551

78 c1ccc(cc1CCN[C@@H](C#C)C)OC(=O)N(CC)C -1.14301

Table 5.Continued
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Table 6. The list of Carbamate derivatives present in the dataset with their name, structure, and activity (observed and 
predicted) against AChE enzyme
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Table 7. The list of Carbamate derivatives present in the dataset with their name, structure, and activity (observed and 
predicted) against AChE enzyme
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Table 8. The list of Carbamate derivatives present in the dataset with their name, structure, and activity (observed and 
predicted) against AChE enzyme
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Table 9. The list of Carbamate derivatives present in the dataset with their name, structure, and activity (observed and 
predicted) against AChE enzyme
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Table 10. The list of Carbamate derivatives present in the dataset with their name, structure, and activity (observed and 
predicted) against AChE enzyme
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Table 11. The list of Carbamate derivatives present in the dataset with their name, structure, and activity (observed and 
predicted) against AChE enzyme
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Table 12. Training set implemented in 2D QSAR modeling

NAME C-006 F07[C-N] H-052 X2A F06[C-N] NRS pIC50(µm)

2 1 1 6 0.312265 3 1 0.036212

3 0 2 2 0.296444 3 1 0.119186

4 1 2 5 0.290247 3 1 -1.27875

5 1 2 4 0.293715 3 1 -0.86332

7 0 2 6 0.285245 3 2 -0.5977

8 0 2 2 0.283394 4 2 0.522879

9 1 2 5 0.295095 3 1 -1.24797

10 1 2 4 0.297531 3 1 -0.17026

11 0 2 2 0.292228 3 1 -0.02938

12 1 2 5 0.286431 3 1 -1.58659

13 1 2 5 0.29562 3 1 -1.38917

14 2 2 7 0.292185 3 1 -0.5563

15 0 2 2 0.293335 3 1 0.337242

17 0 3 2 0.289244 3 1 0.29243

18 0 0 2 0.29293 4 1 2.045757

19 1 0 5 0.286874 4 1 1.585027

20 0 2 2 0.298728 3 1 -0.17026

22 0 3 4 0.302979 3 1 -0.51055

24 1 2 2 0.297766 3 1 -0.4624

25 2 2 5 0.292185 3 1 -1.6721

26 2 2 4 0.295228 3 1 -1.16435

27 2 2 4 0.300696 4 1 -1.1959

28 1 2 6 0.287225 3 2 -1.6149

30 2 2 5 0.296624 3 1 -1.13672

32 2 2 4 0.297172 3 1 -1.05308

33 3 2 7 0.293749 3 1 -1.85974

34 2 2 9 0.285162 3 2 -1.25285

35 2 2 2 0.292019 3 2 -0.25042

36 1 2 2 0.287225 3 2 0.259637

37 1 2 2 0.29542 3 1 -1.11059

38 2 2 5 0.291941 3 1 -1.25285

39 1 3 2 0.295003 3 1 -0.39794

40 2 3 5 0.289521 3 1 -2.72016

41 2 3 4 0.292656 3 1 -1.65321

42 1 4 2 0.292848 3 1 -0.8451

43 2 4 5 0.287803 3 1 -2.64246

44 1 0 2 0.294643 4 1 1.275724

45 2 0 5 0.289174 4 1 -0.33244

46 2 2 5 0.290363 3 1 -1.40654

48 0 2 5 0.298157 3 1 -0.25527

49 1 2 2 0.299758 3 1 -0.5955

50 2 2 5 0.294301 3 1 -1.71933

51 1 3 4 0.30277 3 1 -0.61278

52 2 3 7 0.297209 3 1 -2.30963

53 2 0 5 0.287479 4 1 -1.17319

54 0 2 2 0.297972 3 1 -0.33244

55 0 0 2 0.294849 4 1 1.886057

57 2 2 5 0.314293 3 1 -1.55023

58 2 2 4 0.317442 3 1 -0.89209

59 1 2 2 0.324894 3 1 0.552842

60 2 2 5 0.316162 3 1 -1.31597

continued on following page
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NAME C-006 F07[C-N] H-052 X2A F06[C-N] NRS pIC50(µm)

61 1 2 2 0.333039 3 1 0.79588

62 2 2 2 0.3275 3 1 0.657577

63 3 2 5 0.319413 3 1 -1.48001

64 3 2 4 0.321956 3 1 -1.18752

65 2 2 2 0.326119 3 1 0.070581

67 1 2 5 0.326615 3 1 0.267606

68 2 2 8 0.319211 3 1 -1.5302

71 2 2 7 0.32275 3 1 -1.08636

73 2 2 8 0.31393 3 1 -2.36922

75 2 2 7 0.31991 4 1 -0.48572

76 1 2 9 0.304347 3 2 -0.93802

77 1 2 5 0.324999 3 1 0.769551

Table 12. Continued
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Table 13. Training set implemented in GQSAR modeling
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2 34.66 141 3.213 1 99.541 0 3.782 0.036

3 23.841 126 3.295 1 92.561 2 0 0.119

4 32.941 126 3.203 1 91.927 2 3.929 -1.279

5 41.084 126 3.212 1 92.199 2 3.652 -0.863

7 22.574 126 162.121 6 90.048 2 0 -0.598

8 22.303 126 334.82 1 91.158 2 0 0.523

9 32.669 126 0.225 0 92.426 2 3.947 -1.248

10 40.223 126 0.228 0 92.335 2 3.941 -0.17

11 22.665 216 3.207 1 102.298 2 0 -0.029

12 32.352 216 3.218 1 102.027 2 3.909 -1.587

13 22.303 348 3.208 1 114.3 3 0 -1.389

14 21.669 575 12.987 2 124.447 4 0 -0.556

15 22.031 124 304.169 1 90.965 2 0 0.337

17 22.077 216 260.871 1 98.454 2 0 0.292

18 22.167 126 172.521 1 90.74 2 0 2.046

19 34.614 126 3.209 1 89.154 2 3.27 1.585

20 21.986 208 3.205 1 100.417 3 0 -0.17

22 21.941 203 3.205 1 98.046 3 0 -0.511

24 22.031 575 3.211 1 112.95 3 0 -0.462

25 35.384 575 3.209 1 112.814 3 3.587 -1.672

26 44.567 575 3.207 1 113.313 3 3.938 -1.164

27 21.715 575 37.393 6 113.041 3 0 -1.196

28 21.715 575 118.106 6 112.814 3 0 -1.615

30 35.384 575 0.064 0 112.95 3 3.575 -1.137

32 54.703 575 3.204 1 113.268 3 5.417 -1.053

33 53.797 575 447.913 2 113.815 3 5.37 -1.86

34 34.342 575 2753.977 6 113.9 3 3.788 -1.253

35 21.896 575 97.237 1 113.226 3 0 -0.25

36 21.624 575 87.021 0 111.454 3 0 0.26

37 22.077 847 3.213 1 119.879 3 0 -1.111

38 22.167 1418 3.216 1 126.027 4 0 -1.253

39 22.258 575 268.74 1 111.682 3 0 -0.398

40 35.384 575 3.212 1 110.277 3 3.574 -2.72

41 44.522 575 3.208 1 111.86 3 3.86 -1.653

42 22.258 847 231.153 1 118.156 3 0 -0.845

43 35.384 847 3.213 1 117.522 3 3.573 -2.642

44 22.258 575 418.186 1 114.129 3 0 1.276

45 21.896 575 15.803 2 113.537 3 0 -0.332

46 35.384 830 3.209 1 122.079 3 3.581 -1.407

48 22.031 842 3.212 1 129.672 2 0 -0.255

49 22.031 937 3.214 1 103.993 4 0 -0.595

50 35.429 937 3.214 1 104.175 4 3.589 -1.719

51 22.077 922 3.215 1 119.013 4 0 -0.613

52 21.624 922 9.9 2 127.848 4 0 -2.31

continued on following page
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Table 14. Statistical validation parameters obtained from the developed PLS (2D QSAR and GQAR) models

Models EL LV

Internal 
matrices External matrices

R2 Q2 Q2F1 Q2F2 rm2 Δrm2 MAE Quality

Model1(2D
QSAR) 6 3 0.789 0.732 0.88 0.88 0.85 0.06 0.261 Good

Model2
(GQSAR) 7 6 0.625 0.538 0.735 0.734 0.68 0.151 0.412 Moderate

Note. EL: Equation length, LV: Latent variables, MAE: Mean average error.

N
am

e

R
2-

+
ve

Po
te

nt
ia

lS
ur

fa
ce

A
re

a

R
1-

H
os

oy
aI

nd
ex

R
3-

M
om

In
er

tia
X

R
3-

M
M

FF
_1

R
1-

+
ve

Po
te

nt
ia

lS
ur

fa
ce

A
re

a

R
1-

Ss
sC

H
2c

ou
nt

R
2-

X
K

M
os

tH
yd

ro
ph

ob
ic

H
yd

ro
ph

ili
cD

ist
an

ce

pI
C

50
 (µ

M
)

53 35.565 847 3.214 1 119.516 3 3.604 -1.173

54 21.986 306 3.215 1 101.894 2 0 -0.332

55 22.077 306 274.513 1 107.373 2 0 1.886

57 34.66 63 159.949 1 82.522 2 3.782 -1.55

58 43.209 63 124.779 1 78.917 2 3.729 -0.892

59 22.258 106 370.681 1 92.645 2 0 0.553

60 33.393 106 3.252 1 108.198 2 3.86 -1.316

61 22.348 149 3.211 1 99.857 2 0 0.796

62 22.348 288 3.211 1 103.656 3 0 0.658

63 22.212 288 13.891 2 106.464 3 0 -1.48

64 39.047 288 3.202 1 108.639 3 3.815 -1.188

65 22.574 419 3.214 1 116.523 3 0 0.071

67 22.529 417 3.213 1 116.2 2 0 0.268

68 34.344 417 3.223 1 121.047 2 3.95 -1.53

71 23.705 417 140.011 4 120.281 2 0 -1.086

73 33.032 626 3.212 1 124.264 2 3.449 -2.369

75 59.546 626 3.215 1 116.331 2 5.259 -0.486

76 23.796 626 198.639 6 118.096 2 0 -0.938

77 23.66 427 3.297 1 119.329 2 0 0.77

Table 13. Continued
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Table 15. Results of 3D-QSAR pharmacophore development against AChE enzyme

Hypo. Total cost ΔCosta ΔCostb Correlation (R) RMS Features

1 136.016 110.71 58.212 0.849 2.104 HBA,HBD,RA

2C 137.453 109.27 59.649 0.858 2.061 HBA, HBD, HYD, RA

3 140.601 106.12 62.797 0.823 2.253 HBA,HBD,HYD,RA

4 147.077 99.648 69.273 0.799 2.382 HBA,HBD,HYD,HYDA

5 152.184 94.541 74.38 0.786 2.454 HBA,HBD,HYD,HYD

6 153.808 92.917 76.004 0.770 2.526 HBA,HBD,HYD,RA

7 155.333 91.392 77.529 0.759 2.574 HBA,HBD,HYD,RA

8 157.052 89.673 79.248 0.757 2.585 HBD,HBA,RA

9 161.523 85.202 83.719 0.742815 2.653 HBA,HBD,RA

10 161.814 84.911 84.01 0.750 2.626 HBA,HBD,RA

Cost differencea= Null cost - total cost, Cost differenceb= Total cost - fixed cost, Null cost = 246.725, Fixed Cost = 77.804, Best records in pass: 3, 
Config. Cost: 9.909, C= Best Hypothesis, Note: RA: Ring aromatic, HYD: Hydrophobic, HYDA: Hydrophobic aromatic, HBA: Hydrogen bond acceptor, HBD: 
Hydrogen bond donor

Table 16. Different qualitative validation parameters (%) of Hypo-2 model obtained by classification of more active and less 
active compounds for the training and test sets of AChEI

Dataset No. of 
compounds

           Qualitative validation parameters (%)

Sensitivity Specificity Accuracy Precision F-measure G-Means

Train 23 100 95 97.36 94.73 97.29 97.46

Test 55 80 95.91 94.44 66.66 72.72 87.59

*Compounds with IC50 ≤0.20 µM: more active (H) and IC50 > 0.20 µM: least active (L)
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Table 17. Training set predicted values from pharmacophore model

Comp 
no.

EXP. (IC50µM) Estimated 
(IC50µM)

Error Activity Scale 
(exp.)

Activity Scale 
(est.)

Fit value

18 0.009 0.0101925 -0.00119 H H 12.7369

19 0.026 0.09681 -0.07081 H H 11.7593

56 0.23 0.103692 0.126308 L H 11.7295

44 0.053 0.157293 -0.10429 H H 11.5485

36 0.55 2.3706 -1.8206 L L 10.3703

58 7.8 2.73119 5.06881 L L 10.3088

12 38.6 5.34238 33.25762 L L 10.0175

20 1.48 6.4641 -4.9841 L L 9.93469

22 3.24 8.21193 -4.97193 L L 9.83075

54 2.15 8.25217 -6.10217 L L 9.82863

17 0.51 8.37215 -7.86215 L L 9.82236

51 4.1 8.41832 -4.31832 L L 9.81997

71 12.2 9.44707 2.75293 L L 9.7699

78 13.9 11.4896 2.4104 L L 9.68489

4 19 12.8935 6.1065 L L 9.63483

50 52.4 17.4649 34.9351 L L 9.50303

66 16.6 17.5582 -0.9582 L L 9.50072

53 14.9 18.0564 -3.1564 L L 9.48857

41 45 19.5647 25.4353 L L 9.45373

40 525 19.6188 505.3812 L L 9.45253

43 439 19.8227 419.1773 L L 9.44804

21 6.22 20.044 -13.824 L L 9.44322

16 10.5 20.8033 -10.3033 L L 9.42707
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Table 18. Test set predicted values from pharmacophore model

Comp no. EXP. (IC50µM) Estimated (IC50µM) Error Activity Scale 
(exp.)

Activity Scale 
(est.)

Fit value

63 30 0.112044 30 L H 11.6958

45 2.15 0.14687 2 L H 11.5783

57 35.5 0.341721 35 L L 11.2115

67 1 0.387513 0 L L 11.1569

11 1.07 1.68274 -1 L L 10.5192

60 21 1.72756 19 L L 10.5078

59 0 1.76714 -1 H L 10.4979

77 0 1.95491 -2 H L 10.4541

64 15.4 2.04088 13 L L 10.4354

5 7.3 4.52902 3 L L 10.0892

7 3.96 4.6176 -1 L L 10.0808

62 0.22 4.95031 -5 L L 10.0506

24 2.9 5.01809 -2 L L 10.0447

76 8.67 7.35166 1 L L 9.87881

28 41.2 7.91492 33 L L 9.84675

6 0.53 7.9489 -7 L L 9.84489

10 1 11.5544 -10 L L 9.68245

34 18 12.9399 5 L L 9.63327

46 26 15.3451 10 L L 9.55923

33 72.4 17.9202 54 L L 9.49186

8 0.3 18.7173 -18 L L 9.47296

48 1.8 22.9839 -21 L L 9.38378

52 204 28.7447 175 L L 9.28664

68 34 35.1554 -1 L L 9.19921

32 11.3 35.5421 -24 L L 9.19446

23 79.6 46.1456 33 L L 9.08107

30 13.7 76.78 -63 L L 8.85997

69 19 79.09 -60 L L 8.8471

31 2.38 109.02 -107 L L 8.7077

25 47 113.22 -66 L L 8.69129

27 16 129.38 -114 L L 8.63333

29 1 266.81 -266 L L 8.319

3 1 284.75 -284 L L 8.29074

70 4 299.49 -296 L L 8.26881

9 17.7 366.92 -349 L L 8.18063

14 4 441.16 -438 L L 8.10061

35 2 446.26 -444 L L 8.09561

47 44 555.91 -512 L L 8.0002

73 234 639.43 -405 L L 7.93941

75 3 684.17 -681 L L 7.91004

26 14.6 1,135.01 -1,120 L L 7.6902

49 4 1,454.94 -1,451 L L 7.58235

13 25 4,368 -4,343 L L 7.10495

65 1 8,403.49 -8,403 L L 6.82074

74 33.1 8,935.01 -8,902 L L 6.79411

37 13 11,212 -11,200 L L 6.6955

72 1.64 118,701.00 -118,699 L L 5.67074

39 2.5 2,228,060.00 -2,228,058 L L 4.39727

15 0 3,994,510.00 -3,994,510 H L 4.14374

42 7 5,035,180,000.00 -5,035,179 L L 1.04318
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APPENDIX 3
Supplementary Figures

Figure 5. Schematic representation of multi-layered variable selection strategy for the development of model
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Figure 6. Schematic work flow of QSAR model development against AChE enzyme [PLS = Partial least squares, SR = Stepwise 
regression, BSS = Best subset selection, GAs = Genetic algorithms]
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Figure 7. Loading plot for final PLS (2D QSAR and GQSAR) models against AChE enzyme (A: model 1 and B: model 2)
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Figure 8. Model Randomization plots for final PLS (2D QSAR and GQSAR) models against AChE enzyme (A: model 1 and B: model 2)
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Figure 9. Variable importance plot (VIP) and regression coefficient plot of final PLS (2D QSAR) models against AChE enzyme (A: 
VIP plot and B: Regression coefficient plot)
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Figure 10. Contributions of C-006 and F07[C-N] descriptors on AChE enzyme inhibitory activity

Figure 11. Contributions of H-052 and F06[C-N] descriptors on AChE enzyme inhibitory activity
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Figure 12. Contributions of X2A and NRS descriptor on AChE enzyme inhibitory activity
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Figure 13. Variable importance plot (VIP) and Regression coefficient plot of final PLS (GQSAR) models against AChE enzyme (A: 
VIP and B: Regression coefficient plot)
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Figure 14. Contribution of XKMostHydrophobicHydrophilicDistance descriptor at R2 position on AChE enzyme inhibitory activity
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Figure 15. Contributions of +vePotentialSurfaceArea descriptor at R2 position and +vePotentialSurfaceArea descriptor at R1 
position on AChE enzyme inhibitory activity



International Journal of Quantitative Structure-Property Relationships
Volume 5 • Issue 3 • July-September 2020

49

Figure 16. Contributions of HosoyaIndex descriptor at R1 position on AChE enzyme inhibitory activity
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Figure 17. Contributions of SssCH2count descriptor at R1 position, MMFF_1 descriptor at R3 position and MomInertiaX descriptor 
at R3 position on AChE enzyme inhibitory activity
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Figure 18. Applicability domain DModX values of the test set compounds at 99% confidence level of the developed PLS (2D QSAR 
and GQSAR) model against AChE enzyme (A: 2D QSAR and B: GQSAR)
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Figure 19. The original and randomized total cost values of the hypotheses for F-test

Figure 20. The original and randomized correlation values of the hypotheses for F-test
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Figure 21. Docking interactions of most active compound of dataset (compound 18)
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Figure 22. Docking interactions of most active compound of dataset (compound 44)
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Figure 23. Docking interactions of most active compound of dataset (compound 55)
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Figure 24. Docking interactions of most active compound of dataset (compound 61)
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Figure 25. Docking interactions of least active compound of dataset (compound 33)
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Figure 26. Docking interactions of least active compound of dataset (compound 40)
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Figure 27. Docking interactions of least active compound of dataset (compound 52)



International Journal of Quantitative Structure-Property Relationships
Volume 5 • Issue 3 • July-September 2020

60

Vinay Kumar is working on the “Molecular Modelling of Potential anti-Alzheimer Agents Using Chemoinformatics 
Tools” as a registered Ph.D. scholar in the Department of Pharmaceutical Technology, Jadavpur University, Kolkata 
(India). He completed his B. Pharmacy (2015) degree from Goel group of institutions, Lucknow, Uttar Pradesh 
(UP) and M.S. in Pharmacy (2017) degree from National Institute of Pharmaceutical Education and Research 
(NIPER), Kolkata (WB). Mr. Vinay’s research interests include QSAR, Chemoinformatics and molecular modeling 
with special reference to development of inhibitors for the treatment of Alzheimer disease.

Achintya Saha is a faculty member of Dept. of Chemical Technology, University of Calcutta. He has published 
more than 135 papers in standard journals.

Figure 28. Docking interactions of least active compound of dataset (compound 73)



Contents lists available at ScienceDirect 

Computational Biology and Chemistry 

journal homepage: www.elsevier.com/locate/cbac 

Research Article 

In silico modeling for dual inhibition of acetylcholinesterase (AChE) and 
butyrylcholinesterase (BuChE) enzymes in Alzheimer’s disease 
Vinay Kumara, Achintya Sahab, Kunal Roya,*,1 

a Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India 
b Department of Chemical Technology, University of Calcutta, 92 A P C Road, Kolkata 700 009, India   

A R T I C L E  I N F O   

Keywords: 
2D-QSAR 
PLS 
AChE 
BuChE 
Selectivity 
Docking 

A B S T R A C T   

In this research, we have implemented two-dimensional quantitative structure-activity relationship (2D-QSAR) 
modeling using two different datasets, namely, acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) 
enzyme inhibitors. A third dataset has been derived based on their selectivity and used for the development of 
partial least squares (PLS) based regression models. The developed models were extensively validated using 
various internal and external validation parameters. The features appearing in the model against AChE enzyme 
suggest that a small ring size, higher number of −CH2- groups, higher number of secondary aromatic amines 
and higher number of aromatic ketone groups may contribute to the inhibitory activity. The features obtained 
from the model against BuChE enzyme suggest that the sum of topological distances between two nitrogen 
atoms, higher number of fragments X-C(=X)-X, higher number of secondary aromatic amides, fragment R–CR-X 
may be more favorable for inhibition. The features obtained from selectivity based model suggest that the 
number of aromatic ethers, unsaturation content relative to the molecular size and molecular shape may be more 
specific for the inhibition of the AChE enzyme in comparison to the BuChE enzyme. Moreover, we have im-
plemented the molecular docking studies using the most and least active molecules from the datasets in order to 
identify the binding pattern between ligand and target enzyme. The obtained information is then correlated with 
the essential structural features associated with the 2D-QSAR models.   

1. Introduction 

Alzheimer’s disease (AD) is a neuropathological disorder, found in the 
most common type of dementia, which mostly affects elderly persons 
(Orhan et al., 2004). The word ‘common type of dementia’ describes a set 
of symptoms that may comprise memory loss, difficulties with thinking, 
problem-solving or language. These changes are often small to start with, 
but for someone with dementia, they become severe enough to affect the 
daily life. A person with dementia may also experience changes in their 
mood or behavior (Schelterns and Feldman, 2003). AD is characterized by 
the multiple cortical disturbances, such loss of memory, learning skill, 
unable to perform daily life activity, intellectual functions, and repeatedly 
accompanied by abnormal behavior, such as aggression and depression 
(Orhan et al., 2004; Kumar, 2015). There are several hypotheses reported 

to explain the AD, but none of them is able to provide the exact cause of 
AD (Du et al., 2018). Among them, the cholinergic hypothesis (covering 
acetylcholinesterase or AChE and butyrylcholinesterase or BuChE en-
zymes) is the most prominent hypothesis for the treatment of AD (Liston 
et al., 2004). Acetylcholine is an important neurotransmitter for healthy 
brain, playing an important role to perform the cognitive functions 
(Liston et al., 2004; Nordberg and Svensson, 1998; Ganeshpurkar et al., 
2019; Shi et al., 2017). BuChE is a sister enzyme of AChE (Nordberg and 
Svensson, 1998; Awasthi et al., 2018). In AD, the activity level of AChE 
enzyme declines and the level of BuChE activity increases and the normal 
ratio of BuChE and AChE in the brain can alter from 0.6–11 (Kumar, 
2015). Based on these facts, the dual inhibition strategy for these enzymes 
has been proposed to increase the effectiveness of the treatment strategy 
and expand the indications (Orhan et al., 2004; Kumar, 2015). Therefore, 
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AChE and BuChE inhibitors have become significant tools in the treat-
ment of AD. Though the effects of the enzymes appear mainly to be 
symptomatic, but have possible neuroprotective effects. Currently four 
cholinesterase inhibitors, like tacrine, donepezil, galantamine and rivas-
tigmine (FDA approved) are used for the symptomatic treatment of AD 
(Liston et al., 2004). In the present study, we have examined the essential 
features, which are responsible for dual inhibition of these enzymes. 

The development of inhibitors against AD is a challenging and diffi-
cult procedure due to the complication of the molecular pathways in-
volved in the progression of the disease (Mouchlis et al., 2020). Compu-
ter‐Aided Drug Design (CADD) uses computer power, three‐dimensional 
graphics, mathematics, and statistics to understand and predict the 
binding mode and energy of small molecule inhibitors with potential 
targets (Mouchlis et al., 2020). The most common in-silico techniques 
employed by medicinal chemists to help them rationalize the selection of 
hit compounds and to perform hit‐to‐lead optimization include struc-
ture‐based design like molecular docking and dynamics and ligand‐based 
design like quantitative structure‐activity relationships (QSAR), and 
pharmacophore mapping (Mouchlis et al., 2020). The main molecular 
targets employed in the development of drugs against AD include β‐se-
cretase, γ‐secretase, acetylcholinesterase, glycogen synthase kinase, 
muscarinic acetylcholine receptor and Tau-protein (Mouchlis et al., 
2020). Among different in silico methodologies, the quantitative struc-
ture-activity relationship (QSAR) and molecular docking have their great 
applications in the area of in-silico search. The QSAR methods are es-
sential for the exploration of important structural features and prediction 
of the biological activity of novel compounds based on mathematical and 
statistical relations (Ekins et al., 2007). The idea of QSAR is based on the 
concept that end point values of compounds change systematically with 
modification of the structural attributes (Ekins et al., 2007). There have 
been a large number of computational studies performed (Shrivastava 
et al. 2019 (Shrivastava et al., 2019), Bukhari et al. 2014 (Bukhari et al., 
2014), De Souza et al. 2012 (De Souza et al., 2012), Pang et al. 2017 et al. 
(Pang et al., 2017), F. Türkan 2019 (Türkan, 2019), K Buldurun et al. 
2019 (Buldurun et al., 2020) and Taslimi P. et al. 2020 (Taslimi et al., 
2020)) so far for designing new inhibitors against AD, but still we are far 
from finding a precise treatment strategy for AD. In the current research, 
we have developed the PLS-regression based 2D-QSAR models using two 
different datasets namely, AChE and BuChE enzymes’ inhibitors. We have 
also developed another PLS-regression based QSAR model for specificity 
against both these enzymes (198 compounds containing inhibitory ac-
tivity against both these enzymes) to identify which structural fragments/ 
properties are specifically essential to inhibit a specific type of enzyme. 
Multilayered variable section strategy has been applied for the selection 
of important descriptors for the bioactivity before the development of 
final models. The validated models showed acceptable values for various 
internal and external validation metrics. The models were also developed 
based on the Organization for Economic Co-operation and Development 
(OECD) guidelines (https://www.oecd.org/env/ehs/risk-assessment/ 
validationofqsarmodels.htm). The obtained models highlight the struc-
tural requirements or molecular properties necessary to design safer dual 
inhibitors. The study has identified the structural attributes in small 
molecules that confer human BuChE and AChE enzymes inhibitory ac-
tivities and their correlation to ligand-receptor interactions for further 
development of new generation drugs for AD. Additionally, we have also 
implemented the molecular docking studies using the most and least ac-
tive compounds from the datasets and tried to rationalize the influences of 
different descriptors/features as apparent from the 2D-QSAR models. 

2. Materials and methods 

2.1. 2D-QSAR analysis 

2.1.1. Dataset selection 
In the current work, we have used two different datasets against two 

important targets, namely AChE (number of compounds = 997) and 

BuChE (number of compounds = 761) enzymes (see supplementary in-
formation S1 Sheets 1 and 2) collected from previously published lit-
eratures (Jaén et al., 1996; Högenauer et al., 2001; Andreani et al., 2008;  
Carlier et al., 1999a; Ceschi et al., 2016; Contreras et al., 1999; da Costa 
et al., 2013; DeBernardis et al., 1988; Anand and Singh, 2012a; Barreiro 
et al., 2003; Cardoso et al., 2004; Li et al., 2016; Erlanson et al., 2004;  
Feng et al., 2005a; Fink et al., 1995; Girisha et al., 2009; Gray et al., 
1985; Han et al., 1991; He et al., 2007; Hu et al., 2002, 2013; Huang 
et al., 2011; Ishihara et al., 1994; Jia et al., 2009; Kapples et al., 1993;  
Kavitha et al., 2007; Li et al., 2014, 2017a; Liu et al., 2014; McKenna 
et al., 1997; Morini et al., 2008; Pool et al., 1996; Anand and Singh, 
2012b; Sadashiva et al., 2006; Sang et al., 2015a, b; Sang et al., 2015c;  
dos Santos et al., 2010; Shao et al., 2004; Shen et al., 2008; Sheng et al., 
2005, 2009a; Sheng et al., 2009b; Shi et al., 2013; Shinada et al., 2012;  
Shutske et al., 1989; Simoni et al., 2012; Sugimoto et al., 1992, 1995;  
Valenti et al., 1997; Vidaluc et al., 1994, 1995; Wong et al., 2003; Yang 
et al., 2017; Zeng et al., 1999; Zhan et al., 2010; Zheng et al., 2010; Zhu 
et al., 2009; Szymański et al., 2011; Krátký et al., 2015, 2017; Rodríguez- 
Franco et al., 2006; Conejo-García et al., 2011; Rodríguez et al., 2016;  
Yurttaş et al., 2013; Zelík et al., 2010; Ahmad and Fatima, 2008; Ahmad 
et al., 2016; Ahmed et al., 2006; Bacalhau et al., 2016; Bagheri et al., 
2015; Bolognesi et al., 2005; Camps et al., 2008; Carlier et al., 1999b;  
Cho et al., 2017; Czarnecka et al., 2017; Decker, 2006; Decker et al., 
2008; Fang et al., 2008a, b; Feng et al., 2005b; Lin et al., 1998; Gregor 
et al., 1992; Hameed et al., 2015, 2016; Hasan et al., 2005; Huang et al., 
2010; Jiang et al., 2011; Kanhed et al., 2015; Kurt et al., 2015; Leader 
et al., 2002; Leng et al., 2016; Li et al., 2013, 2017b; Luo et al., 2011;  
Mohamed et al., 2011; Mohammadi et al., 2015; Najafi et al., 2016;  
Pouramiri et al., 2017; Rydberg et al., 2006; Saeed et al., 2015; Saeedi 
et al., 2017; Samadi et al., 2010, 2012; Sarfraz et al., 2017; Shi et al., 
2011; Skrzypek et al., 2013; Sterling et al., 2002; Tang et al., 2007;  
Villalobos et al., 1994; Wen et al., 2007; Yanovsky et al., 2012; Zakhari 
et al., 2011). In both the datasets, some compounds have inhibitory ac-
tivities both against AChE and BuChE enzymes (number of compounds 
198) (Högenauer et al., 2001; Andreani et al., 2008; Carlier et al., 1999a;  
Anand and Singh, 2012a; Barreiro et al., 2003; Feng et al., 2005a; Fink 
et al., 1995; He et al., 2007; Jia et al., 2009; Li et al., 2014, 2017a; Sang 
et al., 2015c; Shao et al., 2004; Shen et al., 2008; Sheng et al., 2005,  
2009a; Sheng et al., 2009b; Shinada et al., 2012; Sugimoto et al., 1992,  
1995; Valenti et al., 1997; Yang et al., 2017; Zhan et al., 2010; Zheng 
et al., 2010; Camps et al., 2008; Carlier et al., 1999b; Feng et al., 2005b;  
Li et al., 2017b; Rydberg et al., 2006), Therefore, we have used the 
difference of activities against AChE and BuChE enzymes as the depen-
dent variable (AChE-BuChE) for modeling selectivity (the third dataset) 
(See supplementary information S1 Sheet 3). The datasets comprise di-
verse classes of heterocyclic compounds, and the experimental activity of 
each compound is expressed in IC50 (nM) values. Although the original 
authors adopted different bioassay protocols in different publications to 
check the inhibitory activity on different species (rat brain, Electro-
phorous electricus, human or horse plasma) for the comparison of in-
hibition rate, in the present work, we have selected only the compounds 
which were examined for the inhibitory activity using modified colori-
metric Ellman assay on rat brain showing good inhibitory activity 
(modified colorimetric Ellman assay (Komersova et al., 2007)). For the 
purpose of the models development, we have converted the IC50 values 
to pIC50 (pIC50 = -logIC50) values as customary in QSAR analysis, and all 
the compounds from each dataset set were drawn using MarvienSketch 
(ChemAxon - Software Solutions and, 2020), followed by cleaning of 
molecules. Then, hydrogens were added and the file was saved as sdf 
format. Prior to descriptor calculation, we have carefully checked all 
structures in the datasets for development of significant 2D-QSAR 
models. 

2.1.2. Descriptor calculation and pretreatment 
In this section, we have calculated only 2D descriptors using two 

software, namely Dragon 7 (Mauri et al., 2006) (covering functional 
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group counts, constitutional, ring descriptors, connectivity index, atom 
centered fragments, 2D atom pairs, atom type E-states and molecular 
properties) and PaDEL-Descriptor 2.20 (Yap, 2011) (for extended to-
pochemical atom indices). After descriptor calculation, we have per-
formed data curation utilizing the tool Pretreatment V-WSP version 1.2 
(available at http://dtclab.webs.com/software-tools) in order to elim-
inate the descriptors with missing or near constant values. 

2.1.3. Dataset division 
In this method, we have split the whole dataset in to training and 

test sets based on the sorted activity based algorithm using the “Dataset 
Division GUI” developed by our group (available at http://dtclab.webs. 
com/software-tools). Initially the dataset was divided into training and 
test sets in a random manner (andom, 2020) for 30 trials. Then the 
whole range of activities was sorted through ascending order, and every 
fourth compound was assigned to the test set. Finally an attempt was 
made to rationalize the division process, in which the division was 
performed so that points representing both training and test sets were 
distributed within the whole descriptor space occupied by the entire 
dataset, and each point of the test set was close to at least one point of 
the training set (Leonard and Roy, 2000). The training set was used for 
the development of models, and the test set compounds for the vali-
dation of the developed models. 

2.1.4. Multi-layered variable selection strategy and 2D-QSAR model 
development 

Selection of important descriptors from the large pool of initial 
descriptors using different variable selection methodologies is an im-
portant task in QSAR modeling. Based on this concept, we have adopted 
a multi-layered variable selection strategy before the development of 
the final models. In the multi-layered variable selection, first we have 
applied stepwise regression in successive iterations using the Minitab 
software (Minitab IN, 2000) followed by genetic algorithm (GA) using 
the GA software (available at http://dtclab.webs.com/software-tools), 
and afterwards we applied double cross-validation (DCV) for the AChE 
and BuChE enzyme inhibition models. On the other hand, for the se-
lectivity based models, we have applied Best Subset Selection (BSS), 
while partial least squares (PLS) regression technique was used for the 
development of final models in all cases. Additionally, we have applied 
additional selection strategies for the purpose of checking the statistical 
quality of the developed models. Thus, to address the above said si-
tuation, we have performed (1) PLS without stepwise regression (SR) + 
GA, (2) PLS + SR, (3) PLS + GA, (4) PLS + SR + GA to find out the 
optimal combinations of predictors (see supplementary information S3 
(in case of model against the AChE enzyme), S4 (in case of model 
against the BuChE enzyme) and S5 (in case of selectivity based model)). 
From the developed models, we have found that models reported in this 
study are more robust than models obtained from the above strategies. 
The details of the steps used in the multi-layered variable selection 

strategy are schematically represented in Figure S1 (see supplementary 
materials S6). 

2.1.5. Statistical validation of the generated2D-QSAR models 
In present work, we have applied various statistical methodologies 

like internal (determination coefficient (r2), leave-one-out cross-vali-
dated correlation coefficient (Q2

(LOO)), Avg r m2
(LOO) and Δrm2) and ex-

ternal (Q2F1, Q2
F2, r m2 parameters like average r m2 (test) and Δr m2 and 

concordance correlation coefficient (CCC)) validation methods in order 
to assure the significant level of the generated models (Tropsha, 2010;  
Veerasamy et al., 2011). Additionally, we have also implemented the Y- 
randomization test (Kumar et al., 2020a), checked applicability domain 
criteria etc using Simca-P 10.0 software (SIMCA, 2020). The details of 
various statistical validation parameters are discussed in the Box S1 (see 
supplementary materials S4). The detailed methodologies are depicted 
in Figure S2 (see supplementary materials S6). 

2.2. Molecular docking studies 

In this analysis, we have applied the molecular docking studies in 
order to investigate the binding pattern of molecules (most and least 
actives from the dataset) with the respective enzymes, such as AChE 
and BuChE. The enzyme crystal structures were extracted from the 
protein databank with the PDB id: 4M0E (structure of human acet-
ylcholinesterase bound to Dihydrotanshinone I) and 4BDS (crystal 
structure of human butyrylcholinesterase in Complex with Tacrine) 
(Murzin et al., 1995) (AChE and BuChE enzymes, respectively). The 
molecular docking study was performed by using BIOVIA discovery 
studio client 4.1 (Discovery Studio Predictive Science Application, 
2020) platform with the CDOCKER module of receptor-ligand interac-
tion as discussed by Pal S et al, Singh N et al, Ercan S et al. and Kumar V 
et al. (Pal et al., 2019; Singh et al., 2020; Ercan and Şenses, 2020;  
Kumar et al., 2020b). Prior to the docking analysis, we have prepared 
the target enzyme and selected inhibitors using the protein and ligand 
preparation protocol available in BIOVIA discovery studio client 4.1 
(Discovery Studio Predictive Science Application, 2020). The active site 
in the enzyme was defined by the “define and edit binding site” pro-
tocol available in BIOVIA discovery studio client 4.1 (Discovery Studio 
Predictive Science Application, 2020). After docking analysis, we have 
sorted the generated poses as per the CDOCKER interaction energy, and 
the poses with top scoring values were used for further analysis. The 
obtained poses were validated using the bound ligand present in the 
crystal structure of the enzyme. On the basis of number of interactions 
and the active residues interacting with the bound ligand, we have 
selected the final pose for the further study. From the ligplot (Figure S3 
See supplementary information S6), we can see the number of inter-
actions and active residues responsible for the significant interactions in 
crystal structure of AChE and BuChE enzyme with their bound ligand. 

Box 1 
2D-QSAR model and statistical validation parameters obtained from the developed model 
against AChE enzyme.   

pIC50-

= + × × ×
+ × + × + ×
+ × × + × + ×

× × + × + ×
×

SssCH totalcharge F C C
nArNHR D Dtr B N N

ETA Shape P D Dtr D Dtr Ui
B C N B C N F N O nArCO
F O O

2.806 0.148 2 0.905 0.027 09[ ]
0.504 0.004 / 05 0.588 08[ ]
6.32076 _ _ 0.007 / 12 0.009 / 08 1.125
0.284 06[ ] 0.337 08[ ] 0.361 10[ ] 0.669
0.209 04[ ]

(1) 

Internal Validation Parameters: ntrain= 798, r2= 0.662, Q2= 0.645, EL = 15, LV = 6, 
Prediction quality = Good. 
External Validation Parameters: ntest= 199, Q2F1= 661, Q2F2= 660, Prediction 
quality = Good.   
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3. Results and discussion 

In this research, we have generated the PLS regression based 2D- 
QSAR models for AChE and BuChE enzyme inhibitory activities. In the 
datasets, some compounds have both AChE and BuChE inhibitory va-
lues. A PLS regression-based 2D-QSAR model (equation 3) has been 
developed based on their selectivity (AChEI-BuChEI). The details of the 
different validation metrics values for the models are summarized in 
equations 1, 2 and 3 (Boxs , and ) and also in Table S1 (See S7 in 
supplementary materials). The statistical results obtained from the 
models suggested that the developed models are acceptable in terms of 
stability, predictive and fitness criteria. The nearness of the observed 
and predicted values for the AChE and BuChE enzyme inhibitors and 
also the selectivity values can be further established from the scatter 
plots as shown in Fig. 1 and 2. The quantitative contributions of si-
milar/dissimilar descriptors and the interrelationships between the X- 
variables and the Y-response are depicted in the loading plots of Figure 
S4 (See S6 in supplementary materials). Moreover, we have also em-
ployed Y-Randomization test in order to cross verify whether the 
models were obtained by any chance or not using Simca-P 10.0 soft-
ware (SIMCA, 2020). The results obtained from the randomized models, 
in case of AChE inhibitors (Model 1: R2int (intercept values) = -0.0011 
and Q2int = -0.157), whereas in case of BuChE inhibitors (Model 2: 
R2int = 0.0017 and Q2int = -0.184) and in case of selectivity based 
model (Model 3: R2int = -0.0013 and Q2int = -0.26), suggested that 
the developed models were not obtained by any chance correlation as 
depicted in Figure S5 (See S6 in supplementary materials). 

3.1. Mechanistic interpretation of modeled descriptors 

3.1.1. 2D-QSAR analysis against AChE enzyme: Model 1 
The descriptors appearing in the model are ranked accordingly to 

their significance, and then described individually. The importance and 
contribution of the obtained descriptors in the models towards the 
AChE inhibitory activity are identified based on variable importance 
plot (VIP) and regression coefficient plot as shown in Fig. 3 (Kumar 
et al., 2020c). The importance of each descriptor against AChE enzyme 
has been analyzed with their appropriate examples. 

According to the VIP plot, SssCH2 is the most important descriptor 
contributing positively to the response. It is an atom-type E-state index 
encoding information about sum of ssCH2 count in the compounds. 
Sharma et al. (Sharma et al., 2020) suggested that the descriptor re-
presents the electro-topological state for the number of −CH2- groups. 
The positive contribution suggests that the AChE enzyme inhibitory 
activity may be increased by an increase in the number of such −CH2- 
groups in the molecules. A higher number of −CH2– groups (corre-
sponding to the descriptor values of SssCH2 not more than 40) in 
compounds leads to better inhibitory activity against the AChE enzyme 
as longer chain compounds with higher number −CH2 groups would 
be more lipophilic resulting in improved brain permeability. Com-
pounds like 597 and 841 (Fig. 4) have higher number of −CH2- groups 
in their structure, showing higher descriptor values (32.05 and 24.37), 
leading to their higher range of AChE enzyme inhibitory activity 
(-1.418 and -0.365 respectively). On the other hand, compounds 884 
and 896 showed AChE enzyme inhibitory activity in very a lower range 
(-5.505 and -5.361 respectively), due to the absence of such group in 
the compounds. 

The extended topochemical atom (ETA) descriptor, ETA_Shape_P, 
represents the effect of branching in the cationic structure (one central 
atom is attached to three other non-hydrogen atoms) on the inhibitory 
activity against AChE enzyme. This descriptor particularly denotes the 
branching where one central atom is attached to three other non-hy-
drogen atoms, making a Y-shaped structural fragment (Das et al., 
2017a). The positive contribution of this descriptor indicates that the 
inhibitory activity of compounds is directly proportional to the nu-
merical value of ETA_Shape_P. Therefore, the compounds with higher 
numerical value of this descriptor may enhance the AChE enzyme in-
hibitory activity as shown in (Fig. 4) compounds like 735 (pIC50: 
-1.929) and 740 (pIC50: -1.875) and their corresponding descriptor 
values are 0.367 and 0.314, respectively. In contrast, compounds like 
379 (pIC50: -5.414) and 723 (pIC50: -5) have no such fragment show 
lower inhibitory activity (Fig. 4). 

The functional group count descriptor, nArNHR, simply represents 
the higher number of secondary aromatic amines (corresponding to 
descriptor values not more than 4) in the compounds. The fragment 
contributes significantly to increase the intermolecular interactions by 
strong H-bonds (discussed later in the docking part). Here, we have 
represented the general structure of secondary aromatic amine (1) to 
allow the beginners for proper understanding of the important struc-
tural fragments responsible for the inhibition. 

(1)  

As per the regression coefficient plot (See Fig. 3), this descriptor 
contributed positively towards AChE enzyme inhibitory activity. Thus, 
the compounds with the higher number this fragment (secondary aro-
matic amines) may enhance the AChE inhibitory activity as shown in 
compounds 3 (pIC50: 0.698) and 18 (pIC50: 1.154) (containing 

Box 2 
2D QSAR model and statistical validation parameters obtained from the developed model 
against BuChE enzyme.   

pIC50-

= + × × + ×
× × + ×
× + × + × ×

+ × + × ×

C F C O T N N
B O O B N N F C O
nThiazoles B C O C C
nArCONHR B N N H

4.13393 0.617 028 0.059 05[ ] 0.018 ( . . )
0.219 06[ ] 0.931 03[ ] 0.041 09[ ]
2.192 0.276 09[ ] 0.727 041 0.981 019
0.374 0.194 07[ ] 0.097 053

(2) 

Internal Validation Parameters: ntrain= 603, r2= 0.674, Q2= 0.656, Average rm2= 0.54, 
EL = 13, LV = 5. 
External Validation Parameters: ntest= 158, Q2F1= 0.663, Q2F2 = 0.660, Average 
rm2= 0.499,   

Box 3 
2D QSAR model and statistical validation parameters obtained from the de-
veloped model based on selectivity (AChEI-BuChEI).   

Selectivity 
[pIC50]-
= × + × ×

+ × + × + ×
F N O ETA Shape X nCq

nArOR ETA dBetaP B C C
0.891 0.720 05[ ] 79.839 _ _ 2.607
0.505 5.599 _ 2.962 10[ ]

(3) 

Internal Validation Parameters: ntrain= 159, r2= 0.679, Q2= 0.650, Average 
rm2= 0.524, EL = 6, LV = 5. 
External Validation Parameters: ntest= 39, Q2F1= 0.787, Q2F2= 0.785, Average 
rm2= 0.686, Δrm2= 0.176,    
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descriptor values 2) (Fig. 5). On the other hand, the compounds con-
taining no such fragments have lower inhibitory activity as observed in 
compounds 675 (pIC50: -7.683) and 681 (pIC50: -7.152). 

The descriptor Ui belongs to the class of molecular properties of an 
unsaturation index. The positive contribution (as per the regression 
coefficient plot) of this descriptor implies that it has a positive impact 
towards the AChE enzyme inhibitory activity. So, the compounds 
bearing higher unsaturation index may have enhanced inhibitory ac-
tivity as presented in compounds (Fig. 5) 18 (pIC50: 1.154) and 3 
(pIC50: 0.698) (containing descriptor value 3.584), while the com-
pounds with a lower unsaturation index may have lower AChE enzyme 
inhibitory activity as displayed in compounds (Fig. 5) 848 (pIC50: 
-5.414). 

The 2D atom pair descriptor, B08[N-N], signifies the presence/ab-
sence of N-N at the topological distance 8. As per the regression coef-
ficient plot (see Fig. 3), this descriptor positively influences the in-
hibitory activity against AChE enzyme. So, the compounds containing 
higher number of N-N fragments at the topological distance 8 may have 
higher AChE enzyme inhibitory activity as shown by compounds 18 
(pIC50: 1.154) and 3 (pIC50: 0.698) (their corresponding descriptors 
values are 1) (Fig. 5). Again, the compounds with no such fragments 
shows lower inhibitory activity as shown in compounds 675 (pIC50: 

-7.683), 681 (pIC50: -7.152). 
2D atom pair descriptor, F09[C-C], represents the frequency of C - C 

at the topological distance 9. This descriptor negatively influences the 
inhibitory activity against the AChE enzyme as per the negative re-
gression coefficient value. So, the higher number of this fragment cor-
relates to lower AChE enzyme inhibitory activity as observed in com-
pounds numbers 675 (pIC50:-7.683), 681 (pIC50: -7.152) (Fig. 6), while 
absence of this feature correlates to higher potency of AChE enzyme 
inhibitory activity as observed in compounds 747 (pIC50: -1.785) and 
740 (pIC50: -1.875). 

The descriptor, B06[C-N] belonging to the family of 2D atom pair 
descriptor defines the presence/absence of C-N at the topological dis-
tance 6. The negative contribution (as per the regression coefficient 
plot) of this descriptor suggests that the descriptor is inversely related 
to the AChE inhibitory activity. The same has been observed in com-
pounds (Fig. 6) 675 (pIC50: -7.683) and 681 (pIC50: -7.152) (lower 
enzyme inhibitory activity as their corresponding numerical descriptor 
values are in higher range), whereas the inverse phenomena has been 
observed in compounds (Fig. 6) 747 (pIC50: -1.785), 740 (pIC50: -1.875) 
(increases in enzyme inhibitory activity as their corresponding nu-
merical descriptor value is in the lower range). 

Another 2D atom pair descriptor, B08[C-N], signifies the presence/ 
absence of C-N at the topological distance 8. This descriptor negatively 
affects the activity of AChE enzyme inhibitors as indicated by its ne-
gative regression coefficient. So, the compounds with higher number of 
C-N fragments at the topological distance 8 may have lower AChE en-
zyme inhibitory activity as evidenced by compounds 675(pIC50: 
-7.683), 681 (pIC50: -7.152) (their corresponding descriptors values are 
1). Again, the compounds with no such fragments show improved in-
hibitory activity as supported by compounds 747 (pIC50: -1.785), 740 
(pIC50: -1.875) (Fig. 6). 

The ring descriptors, D/Dtr05, D/Dtr08 and D/Dtr12, denote the 
distance/detour ring index of order 5, 8 and 12 respectively (size of the 
ring system) in the compounds. Among these descriptors, D/Dtr05 and 
D/Dtr08 contribute positively to the inhibitory activity, whereas the 
descriptor D/Dtr12 influences the inhibitory activity negatively (See  
Fig. 3) against the AChE enzyme. As per the above information, it can 
be concluded that lower the size of ring (size of the ring corresponding 
to ring index of not more than order 8) may be more favorable for the 
inhibitory activity against AChE enzyme instead of a larger the size of 
the ring. The positive regression coefficients of the descriptors (D/Dtr05 
and D/Dtr08) suggest that a higher numerical value of these descriptors 
lead to improved inhibitory activity as verified by the compounds 
(Fig. 6) 947 (pIC50: -1.633) and 717 (pIC50: -1.278) in case of D/Dtr05 
and 841 (pIC50: -0.365) and 837 (pIC50: -1.907) in case of D/Dtr08. 
Again, the compounds with no such fragments show lower AChE 

Fig. 1. Scatter plots of developed PLS models (observed and predicted values; the best fit lines are shown) against (A) AChE and (B) BuChE enzymes.  

Fig. 2. Scatter plot of the model based on selectivity (AChE-BuChE enzyme) 
(observed and predicted values; the best fit line is shown). 
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enzyme inhibitory activity as found in the compounds, such as 123 
(pIC50: -6.143) and 871 (pIC50: -6) (D/Dtr05 and D/Dtr08). The de-
scriptor D/Dtr12 negatively influences the inhibitory activity as sug-
gested by the regression coefficient plot (see Fig. 3).The negative 
contribution indicates the higher number of this fragment in the com-
pounds shows lower inhibitory activity as supported by compounds 
(Fig. 7) 675 (pIC50: -7.683) and 681 (pIC50: -7.152). On the other hand, 
absence of this feature in the compounds shows higher AChE enzyme 
inhibitory activity as observed in case of compounds (Fig. 7) 18 (pIC50: 
1.154) and 3 (pIC50: 0.698). 

Totalcharge is a constitutional indices type descriptor which nega-
tively influences the inhibitory activity against AChE enzyme. In the 
dataset, there are only 44 compounds with non-zero values for this 
descriptor, with a descriptor value of 2 in case of compound number 
872, and 1 in rest of all 43 compounds (compound numbers 685–687, 
847–849, 851–858, 860, 862–866, 869–871, 873–877, 879, 880, 

882–884, 888, 890, 892, 893, 897, 898, 900, 934, 937 and 938) (see 
supplementary materials S1 Sheet 1). The descriptor encoded the in-
formation about the total charges present in the compounds. The de-
scriptor negatively influences the inhibitory activity and suggested that 
the presence of this feature in the compounds correlates to low in-
hibitory activity as shown in compounds 872 (pIC50: -5.079) and 871 
(pIC50: -6) (containing descriptor value 2 and 1 respectively) (Fig. 7). 
On the other hand, the uncharged compounds have higher inhibitory 
activity as shown in compounds 18 (pIC50: 1.154) and 3 (pIC50: 0.698). 

The next descriptor in this model, F04[O-O] belongs to the family of 
2D atom pair descriptors that defines the frequency of two oxygen 
atoms at the topological distance 4. As per the regression coefficient 
plot (see Fig. 3), the descriptor contributes negatively to the inhibitory 
activity against AChE enzyme. So, the compounds with such fragment 
express the lower inhibitory activity as proved by the (Fig. 7) com-
pounds 902 (pIC50: -4.799) and 133 (pIC50: -5.423) (their corre-
sponding descriptor values are 6 and 5 respectively), whereas com-
pounds with no such fragments show higher AChE enzyme inhibitory 
activity as shown in compounds 18 (pIC50: 1.154) and 3 (pIC50: 0.698) 
(Fig. 7). 

2D atom pair descriptor, F10[N–O], defines the frequency of N–O at 
the topological distance 10. As per the regression coefficient plot (see  
Fig. 3), the descriptor contributed positively towards the inhibitory 
activity against the AChE enzyme. Thus, the evidence obtained from 
this descriptor suggests that the molecules containing the N–O fragment 
at the topological distance 10 show higher AChE enzyme inhibitory 
activity as shown in compounds (Fig. 7) 107 (pIC50: -0.692) and 719 
(pIC50: -0.342) (containing descriptor value 2 respectively), while 
compounds 675 (pIC50: -7.683), 681 (pIC50: -7.152) show lower in-
hibitory activity due to the absence of this fragment (Fig. 7). 

The functional group count descriptor, nArCO, denotes the number 
of aromatic ketone groups present in molecules. The positive regression 
coefficient of this descriptor suggests that the ketone group attached 
with an aromatic ring (not less than 2 fragments) is favorable for AChE 

Fig. 3. Variable importance plot (VIP) and regression coefficient plot of final PLS model against AChE enzyme.  

Fig. 4. Impact of SssCH2 and ETA_Shape_P descriptors on AChE enzyme in-
hibitory activity. 
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enzyme inhibitory activity, as found in case of compounds (Fig. 7) 653 
(pIC50: -0.619) and 1131 (pIC50: -0.619) and vice versa founds in case 
of compounds 675 (pIC50: -7.683) and 681 (pIC50: -7.152). 

3.1.2. 2D-QSAR analysis against BuChE enzyme: Model 2 
Equation 2 corresponds to the best PLS regression based 2D-QSAR 

model that comprises 13 descriptors with corresponding latent vari-
ables 5 against BuChE enzyme. The descriptors appearing in the model 
are organized accordingly to their significance, and then defined in-
dividually. The VIP and regression coefficient plot (Kumar et al., 2020c) 
define the significance level of each variable found from the final PLS 
model that are responsible to regulate the BuChE enzyme inhibitory 
activity as presented in Fig. 8 in the regression coefficient plot. 

The next 2D atom pair descriptor, F09[CeO], describes the fre-
quency of CeO at the topological distance 9. The positive contribution 
(as per regression coefficient plot) of this descriptor points out that the 
number of the CeO group at the topological distance 9 may favor the 
inhibitory activity against BuChE enzyme as found in compounds 

(Fig. 9) 513 (pIC50: -0.863) and 536 (pIC50: -1.778) (containing de-
scriptor values 6 and 7, respectively) and opposite found in case of 
compounds (Fig. 9) 624 (pIC50: -5.605) and 224 (pIC50: -5.430) (ab-
sence of such fragment). 

The next atom centered fragment descriptor, C-041, exemplifies the 
fragment (X-C(=X)-X) indicating the number of fragments containing 
C(sp2) atoms that are attached with two electronegative atoms (O, N, S, 
Se and halogens), i.e., one by a single bond and another by a double 
bond (Todeschini and Consonni, 2020). The positive regression coeffi-
cient suggests the influential effect of the feature containing C(sp2) 
atoms directly attached with two electronegative atoms towards the 
BuChE inhibitory activity. This is witnessed by the compounds (Fig. 9) 
748 (pIC50: -1.462) and 750 (pIC50: -1.531) (descriptor value 1 in both 
cases), and the opposite is seen in compounds 624 (pIC50: -5.605) and 
772 (pIC50: -5.594) as depicted in Fig. 9. 

The functional group count descriptor, nArCONHR, stands for the 
number of secondary amides (aromatic) in the compounds. The frag-
ment contributes significantly to increase the intermolecular 

Fig. 5. Impact of nArNHR, Ui and B08[N-N] descriptors on AChE enzyme inhibitory activity.  

Fig. 6. Impact of F09[C-C], B06[C-N], B08[C-N], D/Dtr05 and D/Dtr08 descriptors on AChE enzyme inhibitory activity.  
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interactions by strong H-bonds (discussed later in the docking part). 
The descriptor contributes positively to the BuChE inhibitory activity as 
specified by the positive regression coefficient. Thus, the molecules 
bearing such fragment may have enhanced BuChE inhibitory activity as 
presented in compounds (Fig. 9) 391 (pIC50: -0.578) and 388 (pIC50: 
-0.892) (containing descriptor values 1). Although the compounds 
containing no such fragments have lower inhibitory activity as shown 
in compounds (Fig. 9) 624 (pIC50: -5.605) and 772 (pIC50: -5.594). 

The 2D atom pair descriptor, B06[O-O] represents the presence/ 
absence of two oxygen atoms at the topological distance 6. The negative 
contribution of this descriptor indicates that the presence of two oxygen 
atoms at the topological distance 6 may be detrimental for BuChE en-
zyme inhibitory activity. This is evidenced by compounds (Fig. 9) such 
as 772 (pIC50: -5.594) and 621 (pIC50: -5.593) (with descriptor value 1 
in each case), while an absence of this fragment in the compounds leads 
to a higher inhibitory activity as observed in compounds (Fig. 9) 13 
(pIC50: -0.397) and 547 (pIC50: -0.428). 

The functional group count descriptor, nThiazoles, designates the 
number of thiazole ring present in the molecules. As per the regression 
coefficient plot (see Fig. 8) this descriptor contributed negatively to the 
BuChE enzyme inhibitory activity. The information obtained from the 
regression coefficient plot suggests that presence of such fragments in 
the compounds is inversely proportional to the BuChE enzyme in-
hibitory activity as witnessed by the compounds (Fig. 9) 135 (pIC50: 
-5.202) and 137 (pIC50: -5.073) (both compounds have descriptor value 
1), even though the absence of such ring system in the compounds 
(Fig. 9) leads to an improved inhibitory activity as detected in the 
compounds 13 (pIC50: -0.397) and 547 (pIC50:-0.428). 

The next atom-centred fragment descriptor, C-019, simply refers to 
CRX, where R represents any group connected through carbon atom; X 
signifies any heteroatom (O, N, S, P, Se, and halogens) (Todeschini and 

Consonni, 2020). This descriptor negatively influences the inhibitory 
activity of BuChE enzyme inhibitors as specified by its negative re-
gression coefficient, which indicates that this feature does not enhance 
the BuChE enzyme inhibitory activity of molecules as found in com-
pounds (Fig. 9) 66 (pIC50: -4.100) and 793 (pIC50: -5.096) (containing 
descriptor values 2 in both cases). But, the compounds with no such 
fragment have higher inhibitory activity as shown in compounds 
(Fig. 9) 13 (pIC50: -0.397) and 547 (pIC50: -0.428). 

The most contributing descriptor, C-028, an atom-centred fragment 
descriptor, describes each atom by its own atom type and the bond 
types and atom types of its first neighbors (R–CR-X) (Das et al., 2017a). 
In this situation, R–CR-X can be defined as a central carbon atom (C) on 
an aromatic ring that has one carbon neighbor (R) and one heteroatom 
neighbor (X) on the same aromatic ring and the third neighbor outside 
this ring is a carbon (R) (Todeschini and Consonni, 2020; Nekoei et al., 
2011). The positive contribution of this descriptor to the BuChE in-
hibitors indicates that by increasing the number of heteroatoms (with 
R–CR-X format) in compounds, the value of this descriptor increases, 
resulting in an increase of its activity values. This has been noticed in 
compounds (Fig. 10) 13 (pIC50:-0.397) and 547 (pIC50: -0.428) having 
corresponding descriptor value 2 in each case showing higher in-
hibitory activity, whereas in case of compounds (Fig. 10) like 624 
(pIC50: -5.594) and 772 (pIC50: -5.605), the absence of such fragments 
in the compounds shows lower inhibitory activity. 

The 2D atom pair descriptor, B09[C-O], stands for the presence/ 
absence of C-O at the topological distance 9. According to the regres-
sion coefficient plot, this feature positively affects the activity of the 
BuChE enzyme inhibitors. So, the compounds with the higher number 
of C-O fragments at the topological distance 9 may have improved 
BuChE enzyme inhibitory activity as verified by (Fig. 10) compounds 
13 (pIC50: -0.397) and 547 (pIC50: -0.428) (their corresponding 

Fig. 7. Impact of Totalcharge, D/Dtr12, F04[O-O], F10[N-O] and nArCO descriptors on AChE enzyme inhibitory activity.  
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descriptors values are 1). But, the compounds with no such fragment 
show lower inhibitory activity as revealed in compounds 624 (pIC50: 
-5.605) and 224 (pIC50: -5.430). 

The 2D atom pair descriptor in this model, B07[N-N], describes the 
presence/absence of two nitrogen atoms at the topological distance 7. 
As per the regression coefficient plot (see Fig. 8), the descriptor posi-
tively influences the inhibitory activity against BuChE enzyme. This 
phenomenon is well observed in compounds (Fig. 10) 547 (pIC50: 
-0.428) and 555 (pIC50: -0.715), and the reverse is seen in case of 
compounds (Fig. 10) 624 (pIC50: -5.605) and 772 (pIC50: -5.594) (no 
such fragment at topological distance 7). 

The descriptor, B03[N-N] belongs to the family of 2D atom pair, 

describes the presence/absence of two nitrogen atoms at the topological 
distance 3. As per the regression coefficient plot (see Fig. 8), the de-
scriptor contributed negatively to the inhibitory activity against BuChE 
enzyme, suggesting that compounds containing lower number or ab-
sence of such fragments have good inhibitory activity against BuChE 
enzyme as presented in compounds (Fig. 10) 13 (pIC50: -0.397) and 547 
(pIC50: -0.428) (absence of such fragment), while higher number of this 
fragment shows lower inhibitory activity as detected in compounds 
(Fig. 10) 624 (pIC50: -5.605) and 772 (pIC50: -5.594). 

The next important descriptor, F05[C-O], belongs to the family of 
2D atom pair descriptor that defines the frequency of C and O atoms at 
the topological distance 5. As per the regression coefficient plot (see  

Fig. 8. Variable importance plot (VIP) and regression coefficient plot of final PLS model against BuChE enzyme.  

Fig. 9. Contribution of F09[C-O], C-041, nArCONHR, B06[O-O], nThiazoles and C-019 descriptors for the inhibition of BuChE enzyme.  
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Fig. 8), the descriptor negatively influenced the inhibitory activity 
against the BuChE enzyme. So, the compounds having such fragment 
show lower values of inhibitory activity as proved by (Fig. 11) com-
pounds 74 (pIC50: -4.212) and 75 (pIC50: -4.394) (their corresponding 
descriptor values are 21 and 19 respectively), whereas the absence of 
such fragment in the compounds show higher BuChE enzyme inhibitory 
activity as presented in compounds 466 (pIC50: -0.929) and 2 (pIC50: 
-1) (Fig. 11). 

The descriptor, T(N..N), stands for the 2D atom pair descriptor, 
simply characterizes the sum of topological distances between two ni-
trogen atoms. This descriptor contributes positively to the BuChE in-
hibitory activity as suggested by positive regression coefficient. Thus, 
the molecules bearing higher topological distance between two ni-
trogen atoms may have higher BuChE inhibitory activity as presented in 
(Fig. 11) compounds 8 (pIC50: -0.908) and 466 (pIC50: -0.929) (con-
taining descriptor values 59 and 124 respectively), whereas in contrary, 
compounds 770 (pIC50: -5.539) and 779 (pIC50: -5.459) which do not 
contain any such fragment showed less BuChE inhibitory activity. From 
this observation, it can be concluded that the topological distances 
between two nitrogen atoms should be higher for improved inhibitory 
activity against BuChE enzyme. 

The last atom centered fragment descriptor in this model, H-053, 
simply refers to H atoms attached to C°(sp3) with 2X connected to next 
C, where X signifies any heteroatom (O, N, S, P, Se, and halogens) and 
the superscript characterizes the formal oxidation number (Todeschini 
and Consonni, 2020). The formal oxidation number of a carbon atom 
equals to the sum of the conventional bond orders with electronegative 
atoms (Todeschini and Consonni, 2020). This descriptor is defined as 
the number of definite atom types in a compound and can be calculated 
by knowing only molecular composition and atom connectivity 
(Todeschini and Consonni, 2020). The negative regression coefficient of 
this descriptor suggested that compounds containing larger number of 
such hydrogen atoms have lower inhibitory activity against BuChE 
enzyme as shown in compounds (Fig. 11) 280 (pIC50: -4.989) and 296 
(pIC50: -4.935), and their corresponding descriptor values are 6 in both 
cases. On the other hand, compounds 13 (pIC50: -0.397) and 597 
(pIC50: -0.428) show higher inhibitory activity because of the absence 
of such H atom. 

3.1.3. 2D-QSAR analysis based on selectivity of AChE and BuChE enzyme 
inhibitors: Model 3 

In brain, two varieties of cholinesterase enzymes (AChE and BuChE) 

are capable of hydrolyzing acetylcholine neurotransmitter (Du et al., 
2018). Throughout the development of AD, BuChE activity increases by 
40–90 % in the temporal cortex and hippocampus, while at the same 
time AChE activity decreases (Du et al., 2018). Therefore, the con-
current inhibition of both AChE and BuChE should provide extra ben-
efits in the treatment of AD. In this research, we have developed PLS 
regression-based 2D-QSAR model based on selectivity for both AChE 
and BuChE (difference of pIC50 values between them). The descriptors 
found in the developed model are organized as per the VIP plot (see  
Fig. 12) and then defined individually. The regression coefficient plot 
(Kumar et al., 2020c) describes the contribution of each descriptor in 
the model for the inhibition of both cholinesterase enzymes (see  
Fig. 12). 

The most significant descriptor, ETA_Shape_X, simply refers the 
shape index X (Das et al., 2017b; Roy and Das, 2017). We can find out 
the effect of molecular shape on the inhibitory activity against choli-
nesterase enzymes with the help of this descriptor. The positive re-
gression coefficient of the descriptor suggests that the above feature of 
the compounds is more specific for AChE enzyme inhibitory activity as 
compared to the BuChE enzyme inhibitory activity. The higher nu-
merical value of this descriptor correlates to higher AChE enzyme in-
hibitory activity as observed in case of compounds (Fig. 13) 31 (pIC50: 
2.986) and 104 (pIC50: 2.98) and opposite in case of compounds 
(Fig. 13) 57 (pIC50: -2.238) and 58 (pIC50: -1.995). 

The extended topochemical atom (ETA) descriptor, ETA_dBetaP, 
demonstrates the measure of the unsaturation content relative to mo-
lecular size (Roy and Das, 2017). The positive regression coefficient of 
this descriptor proposes that the highest unsaturation content related to 
their molecular size in the compounds is more specific for AChE enzyme 
inhibitory activity. It has been found that with an increase in the nu-
merical value of this descriptor, the inhibitory activity of compound 
also increases against AChE enzyme as presented in case of compounds 
(Fig. 13) 203 (pIC50: 3.212) and 11 (pIC50: 4.325), while the lower 
numerical value indicated the less specificity against the AChE enzyme 
as found in case of compounds (Fig. 13) 160 (pIC50: -1.122) and 158 
(pIC50: -1.477). Thus, we can conclude from above information that 
unsaturation content related to their molecular size is more specific for 
AChE enzyme inhibitory activity compared to the BuChE enzyme in-
hibitory activity. 

The descriptor, F05 [N–O], belonging to the class of 2D atom pairs, 
indicates the frequency of N–O at the topological distance 5. The ne-
gative contribution (as per the regression coefficient plot) of this 

Fig. 10. Contribution of C-028, B09[C-O], B07[N-N] and B03[N-N] descriptors for the inhibition of BuChE enzyme.  
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descriptor suggested that frequency of N–O at the topological distance 5 
is more specific to BuChE enzyme inhibitory activity than AChE enzyme 
inhibitory activity. Thus, higher number of this fragment correlates 
with lower AChE enzyme inhibitory activity as noticed in case of 
compounds (Fig. 14) 160 (pIC50: -1.122) and 57 (pIC50: -2.238). On the 
other hand, compounds having no such fragments show better AChE 
enzyme inhibitory activity values as observed in the compounds 
(Fig. 14) 11 (pIC50: 4.256) and 44 (pIC50: 4.041). 

The functional group count descriptor, nCq, denotes the number of 
total quaternary carbons (sp3) present in the molecules. As per the 
regression coefficient plot (see Fig. 12), the descriptor negatively in-
fluences the inhibitory activity and suggests that the presence of the 
number of quaternary carbon in the compounds is more specific to 
BuChE enzyme inhibitory activity compared to the AChE enzyme in-
hibitory activity. From the descriptor contribution, it can be suggested 
that molecules containing this fragment may not be favorable for the 
AChE enzyme inhibitory activity as presented in compound numbers 
(Fig. 14) 164 (pIC50: -1.852) and 158 (pIC50: -1.477). The reverse is 
seen in compounds (Fig. 14) 11 (pIC50: 4.256) and 44 (pIC50: 4.041). 

The descriptor, nArOR, belongs to the family of functional group 
count descriptor, designates the number of aromatic ether groups pre-
sent in a compounds. The positive regression coefficient of this de-
scriptor advises that the ether group attached with an aromatic ring is 
more specific and favorable for the AChE enzyme inhibitory activity, as 
found in case of compound numbers (Fig. 14) 97 (pIC50: 3.974) and 88 
(pIC50: 3.960), whereas, the lack of such fragment in the compounds 
leads to a decrease in the AChE enzyme inhibitory activity as shown in 
compound number (Fig. 14) 2 (pIC50: -1.249) and 204 (pIC50: -1.175). 
Thus, it can be concluded that the fragment is more specific for AChE 
enzyme inhibitory activity compared to the BuChE enzyme inhibitory 
activity. 

The last 2D atom pair descriptor in this model, B10[C-C], describes 
the presence/absence of two carbon atoms at the topological distance 

10. The positive contribution (as per the regression coefficient plot) of 
this descriptor specifies that presence of two carbon fragments at the 
topological distance 10 is more specific for AChE enzyme inhibitory 
activity than the BuChE enzyme inhibitory activity. This phenomenon is 
well noticed in compounds (Fig. 14) 11 (pIC50: 4.256) and 44 (pIC50: 
4.041) and the reverse is seen in case of compounds (Fig. 14) 195 
(pIC50: -1.570) and 2 (pIC50: -1.249) (no such fragment at the topolo-
gical distance 10). 

3.1.4. Applicability domain criteria 
The applicability domain for the test set compounds was checked at 

99% confidence level applying the DModX (distance to model in X- 

Fig. 11. Contribution of F05[C-O], T(N..N) and H-053 descriptors for the inhibition of BuChE enzyme.  

Fig. 12. Variable importance plot (VIP) and regression coefficient plot of final 
PLS selectivity based model. 
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space) approach available in SIMCA-P 10.0 software (SIMCA, 2020) as 
described by the Roy et al. and Khan et al.(Roy et al., 2019; Khan and 
Roy, 2019). We have noticed from the Figure S6 (see S6 in supple-
mentary materials), there is only one compound (compound 666) in the 
test set found outside the DModX value (D-Crit = 1.623) in case of 
Model 1 (AChEI model). In case of the reported Model 2 (see Figure S6 
in supplementary materials S6), we found that one compound (com-
pound 138) in the test set is traced outside the critical DModX value (D- 
Crit = 1.67), whereas in case of Model 3 (selectivity based model) (see 
Figure S6 in supplementary materials S6), we have also found the only 
one compound (Compound 30) in the test set is outside the DModX 
value (D-Crit = 3.066). 

3.2. Molecular docking 

In the present work, we have applied molecular docking studies 
using most and least active compounds from the two datasets, i.e., 
AChE and BuChE enzyme inhibitors. In case of AChE enzyme inhibitors, 
we have selected two most active compounds, i.e., 15 and 19 and two 
least active compounds 123 and 674, from the dataset; in case of BuChE 
inhibitors dataset, we have selected two most active compounds, such 
as 13 and 547 and least active compounds 621 and 624 to understand 
the docking interactions with the active site of enzymes. The details of 
docking interactions and their relation with 2D-QSAR results are de-
picted in Table 1. Here, we have discussed the details of docking in-
teraction as well as their analysis below. 

3.2.1. Molecular docking analysis of the selected compounds from AChE 
enzyme inhibitors dataset 

In this analysis, two most active compounds (15 and 19) from the 
dataset (pIC50 = 0.221 and0.522 respectively) linked with the active 
site amino acid residues (LEU A:289, TRP A:286, SER A: 293, TYR A: 

124, TRP A: 86, HIS A:447, GLU A:292, GLN A: 291, ASN A: 87, TYR A: 
72, TYR A:337 and TYR A: 341) through interacting forces, such as 
hydrogen bonding (conventional and carbon hydrogen bonds), π- 
bonding (π-donor hydrogen bond, π-π stacked, π-alkyl, π-cation, π-π T- 
shaped), alkyl, and halogen. 

One of the most active compounds form the dataset, compound 15 
(see Fig. 15), interacts with the active site cavity through Hydrogen 
bonding (TYR A:337, ASN A:87, SER A:293, GLU A:292 and GLN 
A:291), π-donor hydrogen bonding (TYR A:124), Halogen (fluorine) 
(TRP A: 86 and TRP A: 87), π-π stacked (TRP A:286, TRP A:86), π-π T- 
shaped (TYR A:124), Alkyl (LEU A:289) and π-Alkyl (TRP A: 86, HIS 
A:447, TYR A:72, TRP A:286 and LEU A:289). 

Another most active compound 19of the dataset interacted with 
amino acid residues, such as TYR A: 341, SER A: 293 and TYR A: 337 
(hydrogen bond), TYR A: 124 (π-donor hydrogen bond), TRP A: 286 (π- 
cation), TRP A: 286 and TRP A: 86 (π- π stacked), PRO A: 88 and LEU A: 
289 (alkyl bond), TRP A: 86 and HISA: 447 (π-alkyl bonding) and ASN 
A: 87 (halogen bond) (see Figure S7 in supplementary materials S6). 

In this investigation, two least active compounds (123 and 674) 
from the dataset (pIC50 = -6.143 and -6.495 respectively) interacted 
with the active site amino acid residues (ARG A:296, TYR A:341, SER 
A:293, TRP A: 286, HIS A:287, PHE A: 338, TYR A: 337) through in-
teracting forces, such as Hydrogen bonding (conventional and carbon 
hydrogen bonds) and π-bonding (π-π stacked, π-alkyl). 

One of the least active compounds of the dataset, compound 123 
(Fig. 15) interacts with amino acid residues like ARG A: 296 and SER A: 
293 through hydrogen bonding and TYR A: 341 via π- π stacked 
bonding. 

Figure S8 (see S6 in supplementary materials) displays that com-
pound 674 interacts with amino acid residues, such as HIS A: 287, SER 
A: 293 (through hydrogen bonding) and TRP A: 286, TYR A: 337 (via π- 
alkyl bond). 

Fig. 13. Contribution of ETA_Shape_X and ETA_dBetaP descriptors for the dual inhibition of AChE and BuChE enzyme.  
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3.2.2. Molecular docking analysis of the selected compounds from BuChE 
enzyme inhibitors dataset 

In this work, two most active compounds (13 and 547) from the 
dataset (pIC50 = -0.397 and -0.428 respectively) are linked with the 
active site amino acid residues, like THR A: 120, GLU A: 197, TRP A: 
82, HIS A: 438, TYR A: 440, GLY A: 116, PHE A: 329, SER A: 287, SER 
A: 79, ASP A: 70, TYR A: 332, SER A: 198 and ALA A: 328, through 
interacting forces such as hydrogen bonding (conventional and carbon 
hydrogen bonds), π-bonding (π-π stacked, π-alkyl, amide π-stacked, π- 
cation, π-π T-shaped), alkyl, and attractive charges. 

Fig. 16 shows that compound 547 interacts with amino acid re-
sidues, such as SER A: 79, ASP A: 70, TYR A: 332, HIS A: 438, SER A: 
198 (hydrogen bonding), PHE A: 329, TRP A; 82 (π-π T-shaped), ASP A: 
70, GLU A: 197 (attractive charges), TYR A: 332 (π-π stacked, π-cation), 
TRP A; 82, ALA A: 328 (π-alkyl), GLY A: 116 (Amide π-stacked). 

One of the most active compounds from dataset, compound 13 (see 
Figure S9 in supplementary information S6), interacts with amino 
acid residues, THR A: 120, GLU A: 197 TRP A: 82, HIS A: 438, TYR A: 
440, SER A: 287 via hydrogen bonds, PHE A: 329 through π-π T-shaped, 
TRP A: 82 via π-π stacked, GLY A: 116 Amide π-stacked. 

In this analysis, we have selected two least active compounds (621 
and 624) from the dataset (pIC50 = -5.593 and -5.605 respectively) 
which interacted with the active site amino acid residues, such as SER 
A: 79, ASP A: 70, GLN A: 71, TYR A: 332, GLU A: 197 and TRP A: 82, 
through interacting forces, such as hydrogen bonding (conventional, 
carbon hydrogen bonds and π-donor hydrogen bond), π-bonding (π-π 
stacked, π-cation) and salt bridge. 

One of the least active compounds from dataset, compound 624 
(Fig. 16), interacts with amino acid residues such as SER A: 79, ASP A: 
70 and TRP A: 82 through hydrogen bonding and TRP A: 82 via π-π 
stacked bond. 

Another least active compound of the dataset, compound 621 (see 
Figure S10 in supplementary materials S6), interacts with amino acid 
residues such as GLU A: 197, GLN A: 71 (via hydrogen bonding), TYR A: 
332, TRP A: 82 (π-π stacked), TRP A: 82 (through π-cation) and GLU A: 
197 (via salt bridge). 

3.2.3. Correlation with the developed 2D-QSAR models 
From the above investigation, we have concluded that hydrogen 

bonding and π-interaction among the ligand and receptor play im-
portant roles in the interactions. Hydrogen bonding may associate 
through the descriptor nArNHR (against AChE enzyme inhibitor 
model), C-028, F09[CeO], B09[CeO], B07[NeN] and T(N..N) (against 
BuChE enzyme inhibitors model) of the developed 2D-QSAR models. 
Descriptors nArNHR, ETA_Shape_P and Ui (against AChE enzyme), C- 
028, B07[NeN] and T(N..N) (against BuChE enzyme) are well corro-
borated with interactions made via π- interactions (π-π stacked, π-ca-
tion, π-alkyl and π-π T-shaped) between the protein and ligand. The 
above mentioned features are observed in compounds in case of AChE 
enzyme inhibitors such as 15 and 19 (most active) (Fig. 15 and Figure 
S7 in supplementary materials S6) and in case of BuChE enzyme in-
hibitors, such as 547 and 13 (most active) (Fig. 16 and Figure S9 in 
supplementary materials S6). But in contrast, the descriptors 
B06[CeN], D/Dtr12, F09[CeC], F04[OeO] and B06[CeN] (against 
AChE enzyme), F05[CeO], B03[NeN], B06[OeO] (against BuChE en-
zyme) contributed negatively in the 2D-QSAR model and this has been 
observed in case of AChE enzyme inhibitors such as 123, 674, 621 and 
624 (least active) respectively (see Fig. 15, Figure S8, S10 in supple-
mentary materials S6 and Fig. 16). Thus, from above investigation, we 
can conclude that features obtained from molecular docking studies and 
2D-QSAR models are in agreement and essential for the inhibitory ac-
tivity against the both AChE and BuChE enzymes. 

4. Comparisons of the performance of the reported models with 
previous published models 

In this investigation, we have performed a comparison of the best 
models of this study with previously published models (Shrivastava 
et al. 2019 (Shrivastava et al., 2019), Bukhari et al. 2014 (Bukhari 
et al., 2014), De Souza et al. 2012 (De Souza et al., 2012) and Pang 
et al. 2017 et al. (Pang et al., 2017)) for the prediction of the bioactivity 
against AChE and BuChE enzymes, as depicted in the Table 2. The 
details of different internal and external validation parameters obtained 

Fig. 14. Contribution of F05 [N-O], nCq, nArOR and B10[C-C] descriptors for the inhibition of both AChE and BuChE enzyme.  
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from our models and those obtained from previous models are given in  
Table 2. Based on the statistical quality in terms of both internal and 
external validation criteria, the models reported in this work are sta-
tistically significant and robust enough as compared to the previously 
reported models (Table 2). Moreover, the models presented in this 
study are derived from a larger set of molecules than those reported in 
the previous studies. 

5. Conclusion and future prospective 

In present investigation, we have employed chemoinformatic tools 
to investigate the datasets of 997 and 761 heterocyclic compounds 
(Jaén et al., 1996; Högenauer et al., 2001; Andreani et al., 2008; Carlier 
et al., 1999a; Ceschi et al., 2016; Contreras et al., 1999; da Costa et al., 
2013; DeBernardis et al., 1988; Anand and Singh, 2012a; Barreiro et al., 
2003; Cardoso et al., 2004; Li et al., 2016; Erlanson et al., 2004; Feng 
et al., 2005a; Fink et al., 1995; Girisha et al., 2009; Gray et al., 1985;  
Han et al., 1991; He et al., 2007; Hu et al., 2002, 2013; Huang et al., 
2011; Ishihara et al., 1994; Jia et al., 2009; Kapples et al., 1993; Kavitha 
et al., 2007; Li et al., 2014, 2017a; Liu et al., 2014; McKenna et al., 
1997; Morini et al., 2008; Pool et al., 1996; Anand and Singh, 2012b;  
Sadashiva et al., 2006; Sang et al., 2015a, b; Sang et al., 2015c; dos 
Santos et al., 2010; Shao et al., 2004; Shen et al., 2008; Sheng et al., 
2005, 2009a; Sheng et al., 2009b; Shi et al., 2013; Shinada et al., 2012;  
Shutske et al., 1989; Simoni et al., 2012; Sugimoto et al., 1992, 1995;  
Valenti et al., 1997; Vidaluc et al., 1994, 1995; Wong et al., 2003; Yang 
et al., 2017; Zeng et al., 1999; Zhan et al., 2010; Zheng et al., 2010; Zhu 
et al., 2009; Szymański et al., 2011; Krátký et al., 2015, 2017;  
Rodríguez-Franco et al., 2006; Conejo-García et al., 2011; Rodríguez 
et al., 2016; Yurttaş et al., 2013; Zelík et al., 2010; Ahmad and Fatima, 
2008; Ahmad et al., 2016; Ahmed et al., 2006; Bacalhau et al., 2016;  
Bagheri et al., 2015; Bolognesi et al., 2005; Camps et al., 2008; Carlier 
et al., 1999b; Cho et al., 2017; Czarnecka et al., 2017; Decker, 2006;  
Decker et al., 2008; Fang et al., 2008a, b; Feng et al., 2005b; Lin et al., 
1998; Gregor et al., 1992; Hameed et al., 2015, 2016; Hasan et al., 
2005; Huang et al., 2010; Jiang et al., 2011; Kanhed et al., 2015; Kurt 
et al., 2015; Leader et al., 2002; Leng et al., 2016; Li et al., 2013, 2017b;  
Luo et al., 2011; Mohamed et al., 2011; Mohammadi et al., 2015; Najafi 
et al., 2016; Pouramiri et al., 2017; Rydberg et al., 2006; Saeed et al., 
2015; Saeedi et al., 2017; Samadi et al., 2010, 2012; Sarfraz et al., 
2017; Shi et al., 2011; Skrzypek et al., 2013; Sterling et al., 2002; Tang 
et al., 2007; Villalobos et al., 1994; Wen et al., 2007; Yanovsky et al., 
2012; Zakhari et al., 2011) with defined AChE and BuChE enzyme in-
hibitory activities, respectively, to investigate the important structural 
features for enzyme inhibition. Additionally, 198 heterocyclic com-
pounds from the same datasets having dual inhibitory activity against 
AChE and BuChE enzymes have been considered for exploring se-
lectivity pattern. Significant and easily interpretable 2D descriptors are 
calculated for the purpose of model development. Prior the develop-
ment of the final models, we have employed a multilayered variable 
selection strategy for the selection of significant descriptors. The PLS 
regression based methodology was used for the developed final models 
following the OECD guidelines. The statistical results obtained from the 
developed models exhibited acceptable quality in terms of both internal 
and external validation matrices. From the insights obtained from 
generated PLS models (as also revealed in the variable importance plot, 
regression coefficient plot, and loading plot as shown in Figs. 3, 8, 12 
and S4 in supplementary materials S6), we have concluded that: higher 
number of −CH2- groups (corresponding SssCH2 descriptor values not 
more than 40), number of secondary aromatic amines (corresponding 
descriptor values not more than 4), smaller ring size (size of the ring 
corresponding to ring index not more than order 8), branching in the 
cationic structure (one central atom is attached to three other non-hy-
drogen atoms) and number of aromatic ketone groups (not less than 2 
fragments) may be more favorable for the inhibitory activity against 
AChE enzyme. In case of the BuChE inhibitor model, a central carbon Ta
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atom (C) on an aromatic ring that has one carbon neighbor (R) and one 
heteroatom neighbor (X) on the same aromatic ring and the third 
neighbor outside this ring is a carbon (R), sum of topological distances 
between two nitrogen atoms, number of fragments containing C(sp2) 
atoms that are attached with two electronegative atoms (O, N, S, Se and 
halogens), i.e., one by a single bond and another by a double bond and 
the number of secondary aromatic amides may influence the inhibitory 
activity of BuChE enzyme inhibitors, whereas higher number of thia-
zole rings, CRX fragments and H atoms connected to C°(sp3) with 2X 
attached to next ‘C’ are detrimental to the BuChE enzyme inhibitory 
activity. The features obtained from selectivity based model suggests 

that the number of aromatic ethers, unsaturation content related to 
their molecular size and molecular shape may be more specific for the 
inhibition AChE enzyme in comparison to the BuChE enzyme, whereas 
the number of total quaternary carbons (sp3) may be more specific for 
BuChE inhibitory activity. The identified features are responsible for 
increasing brain permeability and an entropically more favorable 
binding to the receptor and intermolecular interactions by strong H- 
bonds for the improvement of the inhibitory activity of both enzymes 
(AChE and BuChE). Finally, molecular docking analysis has performed 
to identify the interactions between target proteins (AChE and BuChE 
enzyme) and inhibitors in this datasets., and the results showed the 

Fig. 15. Docking interactions of most active (Compound 15) and least active (Compound 123) compounds from dataset of AChE enzyme inhibitors.  

Fig. 16. Docking interactions of most active (Compound 547) and least active (Compound 624) compounds from dataset of BuChE enzyme inhibitors.  

Table 2 
Comparisons of proposed study with previous published studies against AChE and BuChE enzymes.           

Sources E. L. LV Model Training set Test set 

n r2 Q2 n Q2F1  

Against AChE (Present work) 15 6 PLS 798 0.662 0.645 199 0.661 
Against BuChE (Present work) 13 5 PLS 603 0.674 0.656 158 0.663 
Selectivity (Present work) 6 5 PLS 159 0.679 0.650 39 0.787 
Shrivastava et al. 2019a (Shrivastava et al., 2019) – – PLS 26 0.792 0.713 6 0.542 
Bukhari et al 2014 (Bukhari et al., 2014) 2 – GA-MLR 14 0.855 0.792 3 0.771 
De Souza et al. 2012 (De Souza et al., 2012) 2 – HQSAR 29 0.965 0.787 7 – 
De Souza et al. 2012 (De Souza et al., 2012) 2 – HQSAR 29 0.952 0.904 7 – 
Pang et al 2017 et al. (Pang et al., 2017) – – 3D-QSAR 35 0.925 – 10 0.850 
Pang et al 2017 et al. (Pang et al., 2017) – – 3D-QSAR 35 0.883 – 10 0.881 

Abbreviations: LV = Latent variables, E.L. = Equation length, PLS = Partial least square, GA-MLR = Genetic algorithm multiple linear regression, 3D- 
QSAR = Three dimensional quantitative structure activity relationship and HQSAR= Hologram QSAR.  
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active compounds (compounds 15 and 19 in case of AChE inhibitors 
and 13 and 547 in case of BuChE inhibitors), formed hydrogen bond 
and hydrophobic π interactions with amino acid residues that lead to 
identification of active binding site of target protein. Moreover, the 
information obtained from molecular docking analysis well supported 
the features obtained from the 2D-QSAR analysis results. The validated 
models might be supportive for estimation of the inhibitory activity of 
novel compounds against the AChE and BuChE enzymes, and the in-
formation obtained from the 2D-QSAR analysis and molecular docking 
studies can be useful for the development of new analogues. 
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A B S T R A C T   

Alzheimer’s disease (AD) is an age-related neurodegenerative disorder, which is the most common cause of 
dementia in elderly individuals. It is characterized by selective neuronal cell death that affects the brain area 
related to memory and learning. So far, various computational research targeting AD have been reported, but we 
are still far from finding a precise treatment strategy for AD. It appeared of interest to us to carry out a two- 
dimensional quantitative structure-activity relationship (2D-QSAR) analysis against multiple targets of AD 
using large datasets to determine the essential structural features which are responsible for the inhibition of the 
enzymes/targets. In the present research, we have implemented 2D-QSAR modeling against twelve major targets 
(AChE, BuChE, BACE1, β-amyloid, 5-HT6, CDK-5, Gamma-secretase, Glutaminyl Cyclase, GSK-3β, MAO-B, 
NMDA and Phosphodiester (PDE10A) enzymes) of AD for the identifications of novel multitarget inhibitors. 
The models were used to check the applicability domain of a pool of ~19 million compounds obtained from the 
four chemical drug-like databases (ZINC12, Asinex, NCI, and InterBioscreen databases) and provided prioritized 
compounds for experimental detection of their performance as anti-Alzheimer’s drug. Additionally, we have also 
developed the quantitative structure activity-activity relationship (QSAAR) and selectivity-based models to 
explore the most important features contributing to the dual inhibition against the respective targets. Further-
more, we have also performed chemical Read-Across predictions using the Read-Across-v3.1 tool (https://dtclab. 
webs.com/software-tools), the results for the external validation metrics were found to be better than the 2D- 
QSAR-derived predictions. Furthermore, molecular docking experiments have been performed to understand 
the molecular interactions between ligands and enzymes at the atomic level, and the observations are compared 
with the structural features acquired from QSAR models that justified the mechanistic aspect of binding phe-
nomena. The proposed models and read-across hypotheses could be used as potential tools to identify essential 
molecular features for designing suitable drug(s) for Alzheimer’s therapy using rational design of multi-target 
inhibitors.   

1. Introduction 

Alzheimer’s disease (AD) is a progressive neuropathological disor-
der, found in the most common form of dementia, which causes severe 
brain deterioration and cognitive function loss [1,2]. AD is a degener-
ative ailment that is thought to begin decades before symptoms appear. 

Clinicians are only able to identify even the first signs of AD after sig-
nificant damage has already been done to crucial biological components 
[2,3]. Despite the challenge of researchers to definitively identify the 
initial trigger that leads apart a series of harmful processes, a lot of 
studies have identified essential components in AD pathogenesis [1–3]. 
According to evidences from autosomal dominant and sporadic types of 
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AD, amyloid plaques and tau protein-based neurofibrillary tangles can 
develop for up to 20 years before the onset of clinical dementia [2,4]. 
The staging of AD pathological abnormalities during the preclinical 
stage of the disease is facilitated by the recent growth of imaging and 
fluid biomarkers for AD pathogenesis [2,4]. AD is a developing health-
care concern, with increased life expectancy as the primary risk factor 
[2,5]. Disease prevalence is expected to more than double over the next 
several decades in the absence of adequate prevention and treatment 
alternatives [3]. According to the World Alzheimer Report 2021, there 
were around 55 million people worldwide living with dementia and are 
expected to exceed 78 million in 2030 and 139 million in 2050 world-
wide [2]. Long-term care for affected individuals involves a significant 
economic burden in addition to its direct impact on human health and 
welfare [2,4]. About 200 clinical studies have been conducted to date to 
identify disease-modifying treatments for AD, but these efforts have 
generally failed, with many failures being attributable to ineffectiveness 
or excessive toxicity [6,7]. Every failed clinical study of a novel mo-
lecular entity (NME) takes a significant amount of time and money. 
Repurposing medications that have already been approved by the Food 
and Drug Administration (FDA) for a different indication, however, is 
less expensive, involves known potential toxicities, and has a greater 
success rate (30%) than developing an NME [6,7]. Significant effort has 
been devoted in recent years [4,8–12] to identify therapies that halt 
neurodegeneration in AD, but we are still far from finding exact treat-
ment techniques [7]. The early diagnosis and treatment of AD is now a 
fast-developing field of both scientific and clinical research because 
current treatments only help with the symptoms of the disease. There 
are now only five approved drugs for the treatment of cognitive symp-
toms of Alzheimer’s disease. Among them, four drugs are acetylcholin-
esterase enzyme (AChE) inhibitors (Tacrine, Rivastigmine, 
Galantamine, and Donepezil), and the remaining one drug is 
non-competitive glutamate (NMDA) receptor antagonist (Memantine 
“FDA approved”) [2,4,6]. Their use is only symptomatic, and no treat-
ment has been proven to slow or stop the progression of the disease [6]. 
The long-term effects of AChE inhibitors have recently been postulated 
to be due to these medications interfering with the metabolism of am-
yloid precursor protein (APP) [5]. The cause and progression of AD are 
still not well understood. The search for treatments in the field of 
neurodegenerative disorders is extremely active, yet there is still no cure 
for AD. Therefore, there is an urgent need for improving current treat-
ment strategies, for example by increasing the selectivity toward targets 
(e.g., dual binding site AChE inhibitors), exploring other targets for 
finding novel leads, and finding potential scaffolds acting on more than 
one target (multitarget strategy). In the past few decades, other than 
AChE and NMDA receptor, many more potential targets have been 
identified and investigated such as butyrylcholinesterase (BuChE) 
enzyme, beta-secretase 1 (BACE1) enzyme, β-amyloid aggregation, 
5-hydroxytryptamine 6 (5-HT6), Cyclin-Dependent Kinase 5 (CDK-5), 
gamma-secretase enzyme, Glutaminyl Cyclase enzyme (QC), glycogen 
synthase kinase-3β (GSK-3β) enzyme, monoamine oxidase B (MAO-B) 
enzyme and phosphodiesterase enzyme 10A (PDE 10A); therefore, the 
multi-target-directed (MTDs) is still the promising treatment method of 
AD [13,14]. In this paradigm, drug design and discovery have shifted 
from the molecular and cellular to the systems-biology level to reflect 
minor processes in biological networks that lead to disease. MTDs pro-
vide various advantages over single-target medications, such as 
increased efficacy due to synergistic or additive effects, improved target 
tissue distribution, accelerated therapeutic efficacy in terms of clinical 
onset and maximal effect, predictable pharmacokinetic profile and less 
drug-drug interactions, reduced risk of toxicity, improved bioavail-
ability, and acceptance, and lesser likelihood of target-based drug 
resistance due to modulation of a few targets. However, designing 
potent MTDs is not easy, with issues ranging from proper target selection 
to affinity balancing to avoiding affinity to related off-targets. 

In this regard, computational approaches such as quantitative 
structure-activity relationship (QSAR), chemical Read-Across, 

pharmacophore modeling, molecular docking, Molecular Dynamics 
(MD) Simulations, etc. are playing imperative roles in the design and 
discovery of new compounds with enhanced therapeutic activity [8–12]. 
For decades, chemoinformatics and molecular modeling approaches 
have been utilized to identify and optimize novel compounds with 
improved therapeutic potential in various fields [8–12]. Currently, in 
silico modeling is a part of the conventional drug discovery process, and 
such methods are usually employed in the search for novel drugs or the 
optimization of the therapeutic activity of a chemical series at the initial 
phases of drug development [8–12]. In the current research, we have 
developed 2D-QSAR models against twelve major targets namely, 
5-HT6, AChE enzyme, BuChE enzyme, BACE1 enzyme, β-amyloid ag-
gregation, CDK-5 protein, Gamma-secretase enzyme, Glutaminyl 
Cyclase (QCs) enzyme, GSK-3β enzyme, MAO-B enzyme, NMDA recep-
tor, and PDE 10A enzyme. Subsequently, the validated models were 
used to predict the multiple drugs like databases such as the Asinex 
database (338604 compounds) (available from https://www.asinex. 
com/screening-libraries-(all-libraries), InterBioscreen (IBS) database 
(552793 compounds) (available from https://www.ibscreen.com/), NCI 
Open Database (265242 compounds) (available from https://cactus.nci. 
nih.gov/download/nci/), and Zinc12 Database (17900742 compounds) 
(available from https://zinc12.docking.org/subsets/drug-like) for the 
search of novel inhibitors with multitarget inhibitory activity. Further-
more, we have developed the quantitative structure activity-activity 
relationship (QSAAR) and selectivity-based models to determine struc-
tural fragments/properties that are precisely necessary to inhibit a 
specific type of enzyme. Before developing the final models, a multi-
layered variable section technique was used to choose relevant de-
scriptors for bioactivity. For several internal and external validation 
metrics, the validated models showed acceptable results. Additionally, 
the models were developed following OECD (Organization for Economic 
Co-operation and Development) standards (https://www.oecd.org/e 
nv/ehs/risk-assessment/validationofqsarmodels.htm).The developed 
models emphasize the structural requirements or molecular properties 
essential for the invention of safer dual inhibitors. Moreover, we have 
also performed chemical Read-Across predictions using the 
Read-Across-v3.1 tool (https://dtclab.webs.com/software-tools). In 
addition, we also executed molecular docking analyses with the most 
and least active molecules from the datasets, attempting to explain the 
influences of different properties as seen in the 2D-QSAR models. The 
study identified structural features in small molecules, which provide 
dual enzyme inhibitory effects, as well as their relationship to 
ligand-receptor interactions, which will assist in the design of 
next-generation Alzheimer’s treatments. 

2. Materials and methods 

2.1. 2D-QSAR modeling 

2.1.1. Data collection, curation, and dataset preparation 
The activity data against twelve major targets of AD were collected 

from the BindingDB database [15] (available from www.bindingdb. 
org). Initially, 80 inhibitors against 5-hydroxytryptamine receptor 6 
(5-HT6) following cell-based Radio ligand binding assay, 1733 com-
pounds against acetylcholinesterase (AChE) enzyme following modified 
colorimetric Ellman assay, 2507 compounds against butyr-
ylcholinesterase (BuChE) enzyme following modified colorimetric Ell-
man assay, 905 inhibitors against beta-secretase 1 (BACE1) enzyme 
following FRET (fluorescence resonance energy transfer) assay, 262 
β-amyloid aggregation inhibitors following Thioflavin T-based fluoro-
metric assay, 225 compounds against Cyclin Dependent Kinase 5 
(CDK-5) protein following Scintillation proximity assay, 217 inhibitors 
against gamma-secretase enzyme following cell-based sandwich ELISA 
assay, 132 compounds against Glutaminyl Cyclase (QCs) enzyme 
following Continuous Spectrometric Assay, 159 inhibitors against 
glycogen synthase kinase-3 beta (GSK-3β) enzyme following Kinase-Glo 

V. Kumar et al.                                                                                                                                                                                                                                  

https://www.asinex.com/screening-libraries-(all-libraries)
https://www.asinex.com/screening-libraries-(all-libraries)
https://www.ibscreen.com/
https://cactus.nci.nih.gov/download/nci/
https://cactus.nci.nih.gov/download/nci/
https://zinc12.docking.org/subsets/drug-like
http://www.oecd.org/env/ehs/risk-assessment/validationofqsarmodels.htm
http://www.oecd.org/env/ehs/risk-assessment/validationofqsarmodels.htm
https://dtclab.webs.com/software-tools
http://www.bindingdb.org
http://www.bindingdb.org


Chemometrics and Intelligent Laboratory Systems 233 (2023) 104734

3

reagent based luminescence assay, 170 compounds against Monoamine 
oxidase B (MAO-B) enzyme following Fluorometric method, 356 com-
pounds against N-methyl-D-aspartate (NMDA) receptor following 
Fluorescence-based assay, 289 compounds against Phosphodiesterase 
10A (PDE 10A) enzyme following TR-FRET assay were collected from 
the BindingDB database [15] (available from www.bindingdb.org) (see 
supplementary information SI-1, sheet 1–12 sheet). The datasets 
comprise diverse classes of heterocyclic compounds, and the experi-
mental activity values are quantified in IC50 (nM). Before proceeding 
with the development of the regression models, we executed pre-
liminary dataset preparation and data curation (chemical and biolog-
ical) strategy using a KNIME workflow (available from https://dtclab. 
webs.com/software-tools) following the protocol as discussed by 
Kumar et al. [16]. The precision of the KNIME workflow was confirmed 
by Mariana et al., 2017 [17], Domenico et al., 2018 [18], and Fabian P 
et al., 2015 [19]. After dataset curation, screening of the activity data-
sets was performed to find the common compounds having dual inhib-
itory activity against the listed targets. Accordingly, we have found that 
the 43 compounds with dual inhibitory activities both against AChE and 
BACE1 enzymes, 83 compounds against AChE and β-amyloid, 113 
compounds against AChE and BuChE enzymes, 52 compounds against 
AChE and MAO-B enzymes, 20 compounds against BACE1 and GSK-3β 
enzymes, 51 compounds against BuChE and BACE1 enzymes, 23 com-
pounds against BuChE and β-amyloid, 48 compounds against BuChE and 
MAO-B enzymes, 21 compounds against AChE and GSK-3β enzymes and 
21 compounds against BuChE and GSK-3β enzymes were retained and 
used for the development of the respective QSAAR and selectively based 
models. Marvin Sketch software version 5.5.0.1 (available from 
https://chemaxon.com) was used to draw the chemical structures of all 
compounds, followed by the addition of explicit hydrogens in the 
structures. The activity end point values (IC50) were converted to the 
negative logarithmic scale, pIC50, as customary in QSAR modeling. 

2.1.2. Computation of the molecular descriptors and data pretreatment 
In this section, we have calculated only 2D descriptors using soft-

ware, namely the alvaDesc (v2.0.12) tool (available from https://www. 
alvascience.com/alvaDesc/) covering atom-type E-state indices, 2D 
Atom Pairs, 2D autocorrelations, 2D matrix-based descriptors, atom- 
centred fragments, 2D Autocorrelation, connectivity indices, constitu-
tional indices, ETA indices, functional group counts, information 
indices, MDE descriptors, molecular properties, P_VSA-like descriptors 
Rotatable Bonds Count Descriptor, Pharmacophore descriptors, Ring 
descriptors, Rule of Five Descriptor and Topological indices. After 
descriptor calculation, we have executed data pretreatment employing 
the tool Pretreatment V-WSP version 1.2 (available from http://dtclab. 
webs.com/software-tools) to remove the descriptors with missing or 
near constant values. 

2.1.3. Dataset division 
After data pretreatment, all the datasets were divided into training 

and test sets. In this work, the division of the data sets was implemented 
following three different dataset division methods, namely, activity- 
property, Euclidean distance based, and modified k-medoid clustering 
techniques using “Dataset Division GUI” version 1.2 and “Modified k- 
Medoid” version 1.3 software tools, respectively (Available at: http:// 
teqip.jdvu.ac.in/QSAR_Tools/). The training set was used for the 
development of models, and the test set compounds for the validation of 
the obtained models. The datasets containing less than 20 molecules in 
the whole dataset have been modeled by the application of the “small 
dataset modeler_beta version” (available from http://teqip.jdvu.ac.in/ 
QSAR_Tools/) without dividing the dataset into training and test sets. 
Instead of dividing the small dataset into training and test sets, the 
double cross-validation (DCV) technique is utilized here to model for 
small data sets [20–25]. Therefore, all potential combinations (k) of the 
validation set, which contains r compounds, and the calibration set, 
which contains n-r compounds, are calculated [20–25]. This is because 

the inner loop does not produce the “modeling set” (containing n com-
pounds) [20–25]. The software enables the user to define the number of 
compounds to be kept in the validation set (r) depending on how the 
calibration and validation sets are made [20–25]. Genetic 
algorithm-multiple linear regression (GA-MLR) models are generated 
using calibration set chemicals [20–25]. Several internal and external 
validation metrics are generated for each of the chosen models during 
the thorough double cross-validation process. Furthermore, for each 
MLR model, the software generates partial least squares (PLS) regression 
models. 

2.1.4. Multi-layered variable selection strategy and model development 
In the current investigation, we have adopted a multi-layered vari-

able selection strategy to extract the meaningful and important de-
scriptors before developing the final model. In this approach, initially, 
we have applied stepwise regression in successive iterations using the 
Minitab software [26] using with the whole pool of descriptors, followed 
by a genetic algorithm using the GeneticAlgorithm_v4.1 software 
(available from http://dtclab.webs.com/software-tools), with a reduced 
pool of descriptors. Finally, we have implemented the best subset se-
lection (available from http://dtclab.webs.com/software-tools) on the 
reduced pool of descriptors obtained from the genetic algorithm step. 
Finally, the acquired pool of descriptors was used to develop the final 
model. All of the final QSAR, selectivity and QSAAR models were 
developed using the partial least squares (PLS) regression method, 
except the QSAAR models (between β-amyloid and BuChE enzyme 
inhibitory activity, and BACE1 enzyme and BuChE enzyme inhibitory 
activity), and selectivity based models (between BACE1 and GSK-3β 
enzyme, BuChE and BACE1 enzyme, AChE and GSK-3β enzyme and 
BuChE and GSK-3β enzyme inhibitors), which were developed by using 
the multiple linear regression (MLR) technique. 

2.1.5. Statistical validation of the developed 2D-QSAR models 
To establish a model’s significance and reliability in terms of 

robustness and prediction accuracy, statistical validation is one of the 
most important steps in the model development process. In the current 
work, we have calculated different internal and external validation 
metrics to establish that the developed models are robust and predictive 
enough to satisfy the acceptability criteria. For statistical quality and 
internal validation, we have calculated metrics like determination co-
efficient (R2), leave-one-out cross-validated correlation coefficient 
(Q2

(LOO)), leave-many-out cross-validated correlation coefficient 
(Q2

(LMO)), Avg rm2
(LOO), and Δrm2

(LOO)) [27] using only training set com-
pounds. Higher values of the metrics R2, Q2

(LOO)), Avg rm2
(LOO), and lower 

Δrm2
(LOO)) indicate a better fit and robustness of the model [28–34]. 

Since the internal validation metrics are insufficient to assess the pre-
dictive accuracy and robustness of the developed model, comprehensive 
validation of test set compounds using various external validation 
metrics like Q2F1, Q2F2, rm

2 parameters, and concordance correlation 
coefficient (CCC) are required to guarantee the predictive nature of the 
developed models [28–34]. Furthermore, we have also performed the 
Y-randomization test [35], applicability domain criteria (DModX (dis-
tance to model) in the X-space), etc using Simca-P 10.0 software [36]. 

2.1.6. Database preparation and activity prediction using developed 2D- 
QSAR models 

To predict the inhibitory activity using developed models, we have 
used four chemical drug-like databases, namely, Asinex database 
(338604 compounds) (available from https://www.asinex. 
com/screening-libraries-(all-libraries), InterBioscreen (IBS) database 
(552793 compounds) (available from https://www.ibscreen.com/), NCI 
Open Database (265242 compounds) (available from https://cactus.nci. 
nih.gov/download/nci/), and Zinc12 Database (17900742 compounds) 
(available from https://zinc12.docking.org/subsets/drug-like). Before 
the prediction, we developed the alvaModel by establishing 2D QSAR 
model descriptors against each listed target and then converted the 

V. Kumar et al.                                                                                                                                                                                                                                  

http://www.bindingdb.org
https://dtclab.webs.com/software-tools
https://dtclab.webs.com/software-tools
https://chemaxon.com
https://www.alvascience.com/alvaDesc/
https://www.alvascience.com/alvaDesc/
http://dtclab.webs.com/software-tools
http://dtclab.webs.com/software-tools
http://teqip.jdvu.ac.in/QSAR_Tools/
http://teqip.jdvu.ac.in/QSAR_Tools/
http://teqip.jdvu.ac.in/QSAR_Tools/
http://teqip.jdvu.ac.in/QSAR_Tools/
http://dtclab.webs.com/software-tools
http://dtclab.webs.com/software-tools
https://www.asinex.com/screening-libraries-(all-libraries)
https://www.asinex.com/screening-libraries-(all-libraries)
https://www.ibscreen.com/
https://cactus.nci.nih.gov/download/nci/
https://cactus.nci.nih.gov/download/nci/
https://zinc12.docking.org/subsets/drug-like


Chemometrics and Intelligent Laboratory Systems 233 (2023) 104734

4

alvaModel into the alvaRunner project file using software, namely the 
alvaModel v2.0.4′ tool (available from https://www.alvascience.com/a 
lvaModel/). The established alvaRunner project files were individually 
used to compute the predicted values of the above databases’ com-
pounds; the validated models were capable of precisely predicting the 
inhibitory activity of the majority of the compounds, as suggested by 
‘alvaRunner version 2.0.4’ tool (https://www.alvascience.com/al 
varunner/) product of Alvascience solution. We have predicted the 
inhibitory activity of these compounds considering the applicability 
domain of our PLS-based 2D QSAR models against the respective targets. 

2.2. Similarity-based read-across prediction 

Read-across prediction is a similarity-based in silico technique that 
predicts the biological response of unknown compounds based on 
known activity values [37–40]. In this study, we employed the chemical 
read-across approach based on machine learning to estimate the activity 
of the test set chemicals using the modeled descriptors. For a successful 
prediction with Laplacian kernel similarity-based (LK), Gaussian kernel 
similarity-based (GK), and Euclidean distance-based (ED) estimations, 
we have optimized the hyperparameter sigma (σ) and gamma (γ) 
respectively using validation sets. For the optimization, the initial 
training set is randomly divided into sub-training and sub-test sets in 3:1 
proportion. The sub-training and sub-test sets were then subjected to 
‘Read-across v3.1’ (Available from https://sites.google.com/jadavpur 
university.in/dtc-lab-software/home) with different σ and γ values. 
During optimization, the other tool parameters, including the number of 
nearby training compounds, the distance threshold, and the similarity 
threshold were kept constant. The optimized setting has been selected 
by checking the external validation metrics (Q2F1 and Q2F2). Finally, the 
optimized setting was combined with the original training and test sets 
to get the final prediction. To obtain the best predictions, we gradually 
reduced the number of similar training compounds from 10 to 2. 

2.3. Molecular docking study 

In this investigation, we have performed the molecular docking 
study using the most and least active compounds from the initial data-
sets and also the top predicted compounds from the chemical databases 
to identify the interaction pattern with the respective targets. The crystal 
structure of the targets such as AChE enzyme (PDB ID: 4M0E), BACE1 
enzyme (PDB ID: 4ivt), β-amyloid aggregation (PDB ID: 1IYT), BuChE 
enzyme (PDB ID: 6EZ2), Cyclin-dependent kinase 5 (PDB ID: 3O0G), 
Gamma-secretase enzyme (PDB ID: 6IYC), Glutaminyl Cyclase (QC) 
enzyme (PDB ID: 3PBB), GSK-3β enzyme (PDB ID: 5F94), MAO-B 
enzyme (PDB ID: 2V5Z), NMDA receptor (PDB ID: 1PBQ), and PDE 
10A (PDB ID: 6MSA) were extracted from the protein databank (avail-
able from https://www.rcsb.org/). In the case of 5-HT6 protein, there 
are no experimental structures available in the protein data bank, so we 
have retrieved the predicted protein structure from the AlphaFold Pro-
tein Structure Database (Available from https://alphafold.ebi.ac.uk/ent 
ry/P50406) with the UniProt: P50406, Source organism: Homo sapiens 
(Human), and AlphaFold id: AF-P50406-F1-model_v2. To confirm the 
reliability of the predicted structure, we have validated the structure by 
Ramachandran plot server (Available from https://swift.cmbi.umcn. 
nl/servers/html/ramchk.html), which represents the good quality of 
the model (see Fig. S1 in the see Supporting Information SI-2). The 
molecular docking study was executed using the Biovia Discovery Studio 
client 4.1 [41] platform following the protocol discussed by Robertson 
et al. [42] and Kumar et al. [43]. Before molecular docking, the protein 
was prepared by checking for any missing residues, having explicit 
hydrogen added, and generating the active site. The active site was 
generated using the Biovia Discovery Studio client 4.1 [41] platform 
from the ligand binding domain of the bound ligand and generating the 
site ‘from the current selection’ program in the ‘receptor-ligand inter-
action module’ of the software. The bound ligand was taken out after 
active site generation for new molecule docking. In the case of 5-HT6 
protein, we have predicted the multiple active sites at the surface of 
the protein using the Biovia discovery studio 4.1 client [41] platform 

Fig. 1. The framework of the methodologies implemented in this investigation.  
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Table 1 
Individual 2D QSAR models and their statistical validation matrics were obtained from the models.  

Target Equation LV Training Set Test Set 

Train R2 Q2
(LOO) PQ Test Q2F1 Q2F2 PQ 

5-HT6 antagonist pIC50 (nM) = − 1.671+ 0.449× minssNH+ 0.155× F04[C − O] +

0.465× nCp+ 1.710× nArNH2 − 0.226× MaxTD+ 0.393× nBnz 
5 60 0.800 0.742 BAD 20 0.786 0.784 Moderate 

AChE inhibitors pIC50 (nM) = − 5.907+ 0.192× X2v+ 0.30397× DBI+
0.56431× B07[N − N] + 0.00419× D/Dtr05 − 0.01895×

NdsCH − 0.15889× C − 016 − 0.28519× F04[O − O] − 0.25533×

NsssN+ 0.89374× F04[N − Cl] − 0.01257× T(N..Cl)+ 1.44516×

B05[C − N] − 1.08240× B01[N − N] − 3.08774× nROCON −

0.56172× B09[N − O] + 0.04808× minssO − 1.06153×

totalcharge − 0.38974× CATS2D 02 AP − 0.57236× B02[N −

N] + 1.05258× B04[O − S] − 0.07341× CATS2D 08 AL+
1.42829× nR#CH/X − 0.41181× C − 008+ 0.26843×

CATS2D 08 AA − 1.01794× B06[O − S] + 1.95405×

CATS2D 01 DD+ 0.47598× CATS2D 06 AP − 1.58252×

B09[O − F] + 0.36591× nArCO 

7 1325 0.635 0.621 – 408 0.678 0.678 Moderate 

BACE1 inhibitors pIC50 (nM) = − 11.3326+ 0.2442× SAscore+ 0.2420× F08[N −

N] + 2.0777× Ui+ 0.4070× X5v − 0.1594× F04[O − O] +

0.0720× mindO+ 0.3921× nR#CH/X − 0.4098× B02[O − O] −

0.0706× SaaCH − 0.3112× F04[F − F] − 0.9326× minaaaC −

0.5385× O − 058 − 0.0108× D/Dtr04+ 0.5356× nR04+

0.1804× B06[O − O] + 0.1890× F09[C − Cl] + 0.9600× nN =

C − N < − 0.4325× B05[N − Cl]

9 680 0.669 0.650 – 225 0.675 0.674 Moderate 

β-amyloid 
inhibitors 

pIC50 (nM) = − 9.3579+ 0.1369× SssCH2 − 0.2513× F02[N −

N] − 0.1060× F05[C − O] + 20.6914× PW3 − 0.3449× MAXDN+

0.3534× F04[N − O]

4 197 0.729 0.705 Moderate 65 0.844 0.844 Good 

BuChE inhibitors pIC50 (nM) = − 0.64834+ 0.10456× C − 002+ 0.87920× N −

070 − 0.02751× nCs − 0.18997× nArNHR+ 0.55922×

MaxaaaC+ 1.07712× nArOCON − 0.60012× Psi e A −

0.08769× H − 051+ 0.00608× MDEC − 22+ 0.07105× F04[C −

N] − 0.10931× MAXDP+ 0.44817× B07[N − N] + 1.01229× N −

077+ 1.95654× nArC = N − 2.11509× C − 036 − 0.55208×

B03[N − N] + 1.64662× C − 035+ 3.47045× nN − N+

1.34851× BLI − 0.32650× F02[N − N] + 0.08134× SdsN+

0.02974× minsF+ 0.76341× C − 009+ 2.59201× nROCON −

1.20613× C − 037+ 0.24057× B04[O − O] − 0.23948× nR09 −

0.19739× nCsp 

8 1882 0.689 0.668 Moderate 625 0.702 0.702 Moderate 

CDK-5 inhibitors pIC50 (nM) = − 2.82109+ 0.52376× NaaaC − 0.33618× PBF −
0.01011× T(S..S) + 0.21105× SaasC − 0.02307× T(N..F) −
1.65453× S − 106 − 0.37066× F07[N − S]

4 169 0.675 0.652 – 56 0.790 0.790 Good 

Gamma-secretase 
inhibitors 

pIC50 (nM) = − 15.4364+ 0.0155× P VSA MR 7 − 1.1252×

nOHp − 0.6246× B05[N − N] − 0.9356× nRCOOH − 0.5702×

CATS2D 07 NL − 0.5050× F05[N − O] + 2.3424× ATS6s −
0.5725× B09[C − S] + 0.4953× F08[O − S] + 0.1089×

VE3sign D+ 0.4441× B10[O − F] + 0.1313× VE3sign D/Dt −
1.4220× B07[O − Cl] − 0.1858× F06[F − F] − 1.9204× nS( = O)

2+ 0.7022× C − 029 

7 172 0.773 0.720 – 45 0.734 0.734 Moderate 

Glutaminyl Cyclase 
inhibitors 

pIC50 (nM) = − 1.24512+ 1.87780× C − 034 − 6.43315×

ETA Shape Y − 0.21722× F05[C − S] − 0.43309× PBF+
0.46170× B09[C − O] − 0.24517× F02[N − N] + 0.02157×

T(N..S)

5 99 0.944 0.934 Good 33 0.956 0.956 Good 

GSK-3β inhibitors pIC50 (nM) = − 5.65151+ 0.98713× nThiazoles+ 0.09410×

SaasC+ 2.20185× PDI+ 0.08050× SaaaC − 0.14490×

mindsCH+ 0.57896× B03[O − Br] + 0.21992× F06[N − O] −

0.31342× B03[C − O] − 0.00636× nPyrroles+ 0.09118×

B05[N − O]

5 118 0.703 0.648 – 41 0.763 0.763 Moderate 

MAO-B inhibitors pIC50 (nM) = − 7.74797 − 0.48129× mindsCH+ 1.46202×

F02[O − O] + 0.09291× C%+ 0.63918× nRCN − 0.54786×

B06[O − Cl] − 0.10809× ALOGP − 0.34911× F05[C − N] −

1.36772× B01[C − O] + 0.71091× B03[N − N] − 0.39179×

minssCH2+ 1.04117× SAscore − 1.99700× ETA Eta B RC −

0.94480× nArNHR 

6 125 0.722 0.649 – 45 0.639 0.639 – 

NMDA receptor 
antagonist 

pIC50 (nM) = 0.81523 − 0.04386× SaaN − 0.87822× MDEN −

23 − 0.00678× TPSA(NO) − 1.66542× C − 043 − 0.04382×

ATSC2m+ 0.00139× ATSC1p − 0.81419× MATS4i+ 0.10333×

C − 028+ 0.00021× TPSA(Tot) − 0.12093× MDEC − 24 −

0.92317× GATS2m − 0.39657× GATS8v − 0.11764× F05[C −

O] + 0.19022× B10[C − O]

7 267 0.740 0.708 Good 89 0.640 0.639 Good 

Phosphodiester 
enzyme 

pIC50 (nM) = − 7.87353+ 1.09932× N − 070+ 0.00916×

AMR+ 0.99679× minsCH3 − 1.22178× MDEN − 23 − 0.06459×

MaxDD − 0.34705× nFuranes+ 7.19158× Eta epsi 2 − 1.74389×

B03[N − F] − 1.36496× F09[N − N] − 0.57580× nArNR2 −

0.82639× nRCOOR+ 1.07168× B09[N − N] − 1.49240× NNRS −
0.52332× mindssC − 1.39784× B06[O − F]

9 222 0.722 0.677 Moderate 67 0.739 0.730 Moderate  
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from the “define and edit binding site” using the module “generate 
active site from receptor cavities”, and docked the ligand in each site to 
identify the favorable binding site (identified most favorable active site 
coordinate X: 18.945, Y: 0.896, Z: 11.313, the radius of sphere 19.299). 
To prepare ligands, the selected compounds were run through the Dis-
covery Studio platform’s ‘small-molecule module’, where several ligand 
conformers were formed. Each of these generated conformers was sub-
sequently employed in the CDOCKER module for molecular docking 
using a CHARMm-based molecular dynamic scheme. The CDOCKER 
interaction energy parameter (kcal/mol) was examined for all 
receptor-ligand complexes, and the highest-scoring (more negative; 
hence favorable to binding) poses with only non-covalent interactions 
(ionic bonds, hydrophobic interactions, hydrogen bonds, etc.) were kept 
for future investigation. A graphic representation of the methodologies 
is shown in Fig. 1. 

3. Results and discussion 

The current research aimed at developing statistically significant 2D- 
QSAR models against 12 major targets with easily interpretable de-
scriptors and using them to check the applicability domain of four 
chemical drug-like databases (ZINC12, Asinex, NCI, and InterBioscreen 
databases) and providing prioritized set of compounds for experimental 
detection of their performance as anti-Alzheimer’s drugs. The in-
terpretations from the 2D-QSAR models were further confirmed by 
molecular docking strategies. The current work comprises five phases: 
(1) development of a well-validated 2D-QSAR model (individual, 
selectivity based, and QSAAR) against 12 major targets; (2) chemical 
Read-Across analysis; (3) prediction of inhibitory activity of four 
chemical compound databases against 12 major targets, using the 
developed 2D-QSAR models; (5) molecular docking of the most and least 
active compounds of the modeled datasets. 

3.1. 2D QSAR analysis 

In this analysis, we have developed PLS-based 2D-QSAR models 
against 12 major targets (AChE enzyme, BuChE enzyme, BACE1 
enzyme, β-amyloid aggregation, 5-HT6, CDK-5, Gamma-secretase 
enzyme, Glutaminyl Cyclase enzyme, GSK-3β enzyme, MAO-B enzyme, 
NMDA receptor and phosphodiesterase enzyme (PDE 10A)) to search for 
novel anti-Alzheimer’s agents and identify important structural features 
responsible for inhibiting the enzymes involved in AD. We have also 
developed the 10 Selectivity-based models (6-PLS based and 4-MLR 
based models) and 17 QSAAR-based models (15-PLS based and 2-MLR 
based models) for the identification of features with the dual inhibi-
tory activity (see supplementary information SI-1, sheet 1–31). The 
details about the models and their various validation metrics are given 
in Tables 1, 2, and 3. Additionally, we have also developed models using 
the whole sets and performed the leave-many-out cross-validated cor-
relation coefficient (Q2

(LMO)) at different folds in the case of the small 
datasets (see sheets 13–31 in supplementary information SI-1). The 
statistical results indicated that all the models were acceptable in terms 
of stability, predictive ability, and fitness. The obtained features define 
the structural and functional requirements for compounds to improve 
their inhibitory activity against the respective enzymes. The scatter plot 
(Figs. 2–8) describes the closeness of the observed and predicted values 
for the modeled enzyme inhibitors. In the loading plot (see Figs. S2–34 
in the Supporting Information SI-2), quantitative contributions of 
similar/dissimilar descriptors, as well as interrelationships among the X 
variables and the Y-response are illustrated. Moreover, we have also 
performed the Y-randomization test using the SIMCA-P 10.0 software 
[36] and MLRPlusValidation1.3 tool (available at http://dtclab.webs. 
com/software-tools) by randomly reshuffling (100 permutations) the 
dependent variable to ensure that the developed models were not ob-
tained by any chance. The R2 and Q2 values for the random models 

Table 2 
Selectivity-based models and their statistical validation matrics were obtained from the models.  

Target 
(Selectivity) 

Equation LV Training Set Test Set 

Train R2 Q2
(LOO) PQ Test Q2F1 Q2F2 PQ 

AChEI - 
BACE1 

Selectivity (AChEI-BACE1) = − 0.42092+ 1.61441× F08[N − O] −

1.82470× B05[N − O] + 0.45021× X2v − 0.56114× F10[O − O] +

0.90094× SsssCH − 0.10198× F05[C − C]

5 34 0.827 0.744 Good 9 0.627 0.624 Good 

AChEI 
-β-amyloid 

Selectivity (AChEI-β-Amyloid) = − 2.06170+ 0.70243× B07[C − N] −

1.34266× nArNH2+ 1.01867× F06[C − Cl] + 0.30819× SAscore −
1.12566× F10[C − Cl] + 1.04712× ETA Shape Y − 0.10865× PJI2 

6 62 0.787 0.679 Good 21 0.901 0.898 Good 

AChEI 
-BuChEI 

Selectivity (AChEI-BuChEI) = 3.15944+ 0.81697× F06[N − O] −

3.26082× B03[N − N] − 0.71013× B03[N − O] − 1.80289× nROR+

1.63240× nR12 − 0.22007× N% − 8.65969× GD − 1.24833×

B02[N − N] + 0.20227× nDB − 0.21524× ICR − 0.04797× PHI 

6 90 0.785 0.717 Good 23 0.732 0.709 Good 

AChEI - MAO- 
B 

Selectivity (AChEI-MAO-B) = 5.01821 − 1.81468× SsssCH − 0.53685×

O% − 0.23837× F10[C − C] − 0.47260× F10[C − N] + 0.17398×

F09[C − C] + 1.97941× MaxsCH3 − 2.36195× minsCH3 

6 42 0.778 0.651 – 10 0.725 0.723 Moderate 

BACE1 - GSK- 
3β 

Selectivity (BACE1-GSK3B) = 0.401+ 1.85× LipinskiFailures − 0.299×

nRotB − 2.83× AATSC1s 
– 15 0.889 0.766 Good 5 0.876 0.870 Good 

BuChEI - 
BACE1 

Selectivity (BuChEI-BACE1) = 0.260+ 0.877× nArCO − 3.90× nR =

Ct+ 0.176× NaasC+ 2.51× minaaaC − 0.0159× ALOGP2+

0.000332× ZM1Kup 

– 39 0.903 0.863 Good 12 0.866 0.828 Good 

BuChEI - 
β-amyloid 

Selectivity (BuChEI-β-amyloid) = 3.69262+ 0.83031× B04[N − N] +

0.00558× D/Dtr10 − 0.46510× B10[N − O] − 3.56920× B10[C − N] ×

3.24186× B08[C − N] + 0.48410× B10[C − O] − 0.62086× B08[O −

O] + 2.72960× ETA dEpsilon B − 0.30788× LOGP99 − 9.01720×

ETA Shape Y − 2.20437× PJI2 

7 93 0.821 0.763 Moderate 30 0.696 0.656 Moderate 

BuChEI - 
MAO-B 

Selectivity (BuChEI-MAO-B) = 2.92274 − 2.35759× SsssCH −

0.97195× B08[N − O] − 0.26699× NdssC+ 0.72489× B06[N − O] −

1.99605× minsCH3 − 0.01919× SAacc+ 0.94967× SsssN 

3 38 0.756 0.637 – 10 0.826 0.801 Moderate 

aAChEI – GSK- 
3β 

Selectivity (AChEI-GSK3B) = − 17.8 − 113× ETA BetaP ns d+ 10.7×

Psi i A − 0.143× F02[C − O]

– 18 0.766 0.664 Moderate 3a 0.784 0.765 G 

aBuChEI - 
GSK-3β 

Selectivity (BuChEI-GSK3B) = − 6.54 − 2.39× ETA Beta ns d+ 4.43×

Psi i A+ 0.867× nCL 
– 18 0.735 0.647 Moderate 3a 0.770 0.752 G  

a Models were developed by SmallDataModeler_betaVersion 
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(Y-axis) are plotted against the correlation coefficient between the 
original Y values and the permuted Y values (X-axis). The statistical 
results obtained from randomized models suggested that the developed 
models were not found by any chance, as shown in Figs. S35–67 (see 
supplementary information SI-2) and sheet 32–35 (see supplementary 
information SI-1). The variable importance plot (VIP) and regression 
coefficient plot, as depicted in Figs. S68–100 and Figs. S101–133 
respectively (see Supplementary Information SI-2), are used to deter-
mine the significance and contribution of the obtained features in the 
models toward the inhibitory activity. 

3.1.1. Mechanistic interpretation of the descriptors involved in the 
developed individual QSAR models 

The details about all variables that appeared in this model, their 

contribution, meaning of descriptors, examples of compounds, and their 
corresponding descriptors values are depicted in Table S1 (see Sup-
porting Information SI-2). 

3.1.1.1. 5-Hydroxytryptamine receptor 6 (5-HT6). The first most 
important descriptor in this model is minssNH, as we can see from 
Table S1 (see Supporting Information SI-2), the value of minssNH is 
2.844 for the most active compound 1 and 0 for the least active com-
pound 74. The positive regression coefficient of this descriptor indicates 
that the higher value of the descriptor leads to an improved inhibitory 
activity against the enzyme. The second most significant descriptor in 
this series is F04[C–O], as is shown in Table S1 (see Supporting Infor-
mation SI-2), the value of F04[C–O] descriptor is 6 for the most active 
compound 3 and 0 for the least active compound 74. The positive sign of 

Table 3 
QSAAR models and their statistical validation matrics were obtained from the models.  

Variable Equation LV Training Set Test Set 

Y X Train R2 Q2
(LOO) PQ Test Q2F1 Q2F2 PQ 

AChEI BACE1 pIC50 (nM)_AChEI = − 9.09333+ 0.41826× nCrs×
1.26840× MaxaasC+ 0.00358× log BACE1+ 9.75454×

PW3 

3 33 0.896 0.843 Good 10 0.746 0.744 Good 

BACE1 AChEI pIC50 (nM)_ BACE1 = − 3.37330+ 0.27402× X5v −
0.23660× C − 001 − 0.20158× nCconj − 0.55996× nArOH+

0.97466× B08[O − O] + 0.02858× log AChEI 

4 33 0.766 0.637 – 10 0.772 0.749 Moderate 

AChEI β-amyloid pIC50 (nM)_AChEI = − 3.32884+ 0.85551×

log Beta Amyloid+ 0.34000× nArCO+ 2.12019× B10[N −

Cl] + 6.27610× PW3+ 0.70658× B07[C − N]

3 63 0.962 0.949 Good 20 0.968 0.968 Good 

β-amyloid AChEI pIC50 (nM)_ β-amyloid = 3.16964+ 1.00643× log AChEI −
1.78556× ETA EtaP F L − 1.99421× B10[N − Cl] −
0.65971× B07[C − N] − 0.55678× SAscore 

4 63 0.947 0.924 Good 20 0.972 0.972 Good 

AChEI BuChEI pIC50 (nM)_AChEI = − 5.82692+ 0.71516× NssNH+

0.40986× nR10+ 1.23241× ICR+ 0.94089× B04[N − O] −

0.24740× F08[C − N] + 0.09780× log BuChEI+ 0.61060×

F06[N − O] − 1.26313× nROR+ 1.04963× B04[N − Cl] +
0.51418× nCrt 

5 89 0.867 0.808 Good 29 0.749 0.736 Good 

BuChEI AChEI pIC50 (nM)_ BuChEI = − 0.767384+ 0.126111× NaaCH −

0.753111× F06[N − O] − 0.883081× MaxsCH3+ 0.419744×

DECC+ 0.302945× log AChEI+ 0.756970× B10[N − O] −

0.293615× ETA EtaP F − 0.124508× nCrs − 0.126071×

Ram − 0.064782× nCb −

6 89 0.789 0.724 – 29 0.767 0.756 Moderate 

AChEI GSK-3β pIC50 (nM)_ AChEI = − 8.9587 − 0.6585× C − 026+

0.6051× log GSK3B+ 15.8263× ETA Epsilon 1 
2 14 0.847 0.761 – 4 0.837 0.824 Good 

GSK-3β AChEI pIC50 (nM)_ GSK-3β = − 4.25506+ 0.31626× log AChEI+
2.20735× MaxaasC 

1 14 0.891 0.858 – 4 0.943 0.939 Good 

AChEI MAO-B pIC50 (nM)_ AChEI = 37.6420+ 0.4495× F01[C − N] −

0.7457× N%+ 1.0504 MaxdssC − 27.2159× ETA Epsilon 5 −
4.0017× MaxaaCH+ 0.3758× B05[N − Cl] − 2.2041×

MAXDP+ 0.1345× log MAO − B 

6 42 0.793 0.677 – 10 0.755 0.638 Moderate 

BACE1 GSK-3β pIC50 (nM)_ BACE1 = − 3.10715+ 0.11713×

max conj path − 0.12209× minsOH+ 0.62254× C − 025+

0.81474× log GSK − 3β 

3 15 0.862 0.662 – 5 0.808 0.779 Good 

GSK-3β BACE1 pIC50 (nM)_ GSK-3β = − 2.50148 − 2.03802× MATS2e+
0.14716× log BACE1 − 0.02185× ZMIC4+ 0.10199×

MAXDN − 0.04842× AATS3s 

3 15 0.808 0.569 – 5 0.668 0.666 – 

BACE1 BuChEI pIC50 (nM)_ BACE1 = − 3.5140+ 0.58485× MaxsCH3 −

0.13063× F01[C − O] + 0.94806× nFuranes+ 0.06244×

log BuChEI+ 1.37864× B05[O − O] − 0.07915× nCIC 

5 39 0.943 0.882 Good 12 0.942 0.940 Good 

BuChEI BACE1 pIC50 (nM)_ BuChEI = − 3.12300 − 1.57604× nFuranes+
9.30594× RFD − 0.00055× F08[C − C] + 1.97203× nR09+

0.09518× log BACE1 − 2.62602× B04[O − O]

– 39 0.956 0.857 Good 12 0.942 0.941 Good 

β-amyloid BuChEI pIC50 (nM)_ β-amyloid = − 2.12671 − 4.83670×

ETA EtaP F+ 0.13649× log BuChEI+ 1.32042× minssCH2+

0.16273× SaasC+ 0.09384× F08[C − C] − 0.11038×

F06[C − C] + 1.01759× Uc 

4 93 0.805 0.771 Moderate 30 0.776 0.776 Moderate 

BuChEI β-amyloid pIC50 (nM)_BuChEI = − 2.17+ 0.00370× D/Dtr10 −

0.0654× nCp+ 1.45× nCrt+ 1.73× nRNHR+ 0.403×

log Beta Amyloid − 0.0696× nAB 

– 93 0.879 0.837 Good 30 0.910 0.910 Good 

GSK-3β BuChEI pIC50 (nM)_ GSK-3β = − 3.38300+ 0.22068× N%+

0.14374× log BuChEI+ 0.30867× minssCH2 
2 14 0.946 0.858 Moderate 4 0.922 0.922 Good 

MAO-B BuChEI pIC50 (nM)_ MAO-B = − 7.47908+ 1.04311× nCt+
2.00343× minsCH3+ 0.61755× B08[N − O] + 0.24486×

F06[C − O] + 0.06530× log BuChEI+ 1.33039× nROH+

2.42118× nRNHR − 0.67456× ETA Beta ns d 

6 39 0.758 0.638 – 12 0.771 0.771 –  
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the coefficient of this descriptor confirms that larger the value of the 
descriptor higher the inhibitory activity towards the enzyme. According 
to the discussion made above, the minssNH, and F04[C–O] of the most 
active compounds must be higher than those of the less active com-
pounds (see Fig. 10). 

3.1.1.2. Acetylcholinesterase (AChE) enzyme. In this model, the first 
most significant descriptor is X2v which belongs to the class of con-
nectivity index and is related to molecular branching and shape infor-
mation. The positive regression coefficient sign confirms that the AChE 
enzyme inhibitory activity may be increased by an increase in molecular 

Fig. 2. Scatter plots of observed vs predicted values for 5-HT6, AChE, BACE1, β-amyloid, BuChE, and CDK-5 models.  

Fig. 3. Scatter plots of observed vs predicted values for γ-secretase, Glutaminyl Cyclase, GSK-3β, MAO-B, NMDAR, and PDE 10A models.  
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Fig. 4. Scatter plots of observed vs predicted values for selectivity based (AChE-BACE1, AChE-β-Amyloid, AChE-BuChE, AChE-GSK-3β, AChE-MAO-B, and BACE1- 
GSK-3β) models. 

Fig. 5. Scatter plots of observed vs predicted values for selectivity-based (BuChE-BACE1, BuChE-β-Amyloid, BuChE-GSK-3β, and BuChE-MAO-B) models.  
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branching and shape (bond angles) in the compounds. For instance, we 
can see in Table S1 (see Supporting Information SI-2), the most active 
compound 1754 has a higher value leading to better inhibitory activity, 

while the least active compound 698 has the lowest value for this 
descriptor. Another positively correlated descriptor, DBI, represents the 
branching nature of the compound. With an increase in the branching 

Fig. 6. Scatter plots of observed vs predicted values for QSAAR (BACE1 (X)-AChE (Y), AChE (X)-BACE1 (Y), β-Amyloid (X)-AChE (Y), AChE (X)-β-Amyloid (Y), 
BuChE (X)-AChE (Y) and AChE (X)-BuChE (Y)) models. 

Fig. 7. Scatter plots of observed vs predicted values for QSAAR (GSK-3β (X)-AChE (Y), AChE (X)-GSK-3β (Y), BuChE (X)-BACE1 (Y), GSK-3β (X)-BACE1 (Y), BACE1 
(X)-GSK-3β (Y) and BACE1 (X)-BuChE (Y)) models. 
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index, the inhibitory activity will increase as observed in compound 3 
(most active). The next positively correlated descriptor, B07[N–N], 
leading to better inhibitory activity against the enzyme as the value of 
descriptor is 1 for the most active compound 842 and zero for the 
compound 725 Table S1 (see Supporting Information SI-2). The ring 
descriptor, D/Dtr05, having a positive regression coefficient suggests 
that a higher numerical value of this descriptor leads to an improved 
inhibitory activity as verified by the compound 841 (most active) and 
the compounds with no such fragment show lower AChE enzyme 
inhibitory activity as found in the compound 710 (least active) (see 
Fig. 9). 

3.1.1.3. Butyrylcholinesterase (BuChE) enzyme. Among the essential 
features enhancing BuChE enzyme inhibitory activity are nArOCON, N- 
070, MaxaaaC, C-002, F04[C–N], and MDEC-22. As lipophilicity is an 
important parameter for the AD drugs, it can be traced from variables 
nArOCON, C-002, MDEC-22 and MaxaaaC which contributed positively 
towards the inhibitory activity as evidenced by the compounds 593, 
416, and 415 (most active) respectively. The enhanced concentration of 
electronegative atom count in a molecule has a direct impact on the 
improved inhibitory activity. This hypothesis can be confirmed by the 
presence of variables N-070 and F04[C–N] which contributed positively 
as evidenced by the compounds 415 and 416 (most active) respectively. 
Again, variables nCs, nArNHR, H-051, and Psi_e_A contributed 

Fig. 8. Scatter plots of observed vs predicted values for QSAAR (BuChE (X)-β-Amyloid (Y), β-Amyloid (X)-BuChE (Y), MAO-B (X)-AChE (Y), BuChE (X)-GSK-3β (Y) 
and BuChE (X)-MAO-B (Y)) models. 

Fig. 9. Possible mechanistic interpretation of the most significant descriptors obtained from the models against AChE and BuChE enzymes.  
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Fig. 10. Mechanistic interpretation of the most significant descriptors obtained from the models against β-amyloid aggregation, 5-HT6, BACE1, γ-Secretase, and 
Glutaminyl Cyclase. 

Fig. 11. Contributions of the most significant descriptors obtained from the models against CDK-5, PDE 10A, NMDAR, GSK-3β, and MAO-B enzymes.  
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negatively which means that the presence of these features in the mol-
ecules leads to lower inhibitory activity as observed in the compounds 
2330, 402, 399, and 411 (least active) respectively(see Fig. 9). 

3.1.1.4. Beta-secretase 1 (BACE1) enzyme. The final equation comprises 
28 descriptors, among which five descriptors (SA score, F08[N–N], Ui, 
X5v, and F04[O–O]) contributed most against the enzyme as shown by 
the VIP statistic (VIP score >1). Among them, four variable showed 
positive contribution towards an inhibitory activity which include SA 
score, F08[N–N], Ui, and X5v, which means that the presence of these 
features in the molecules leads to better inhibitory activity as found in 
the compounds 455 and 463 (in case of X5v). The negative contribution 
of F04[O–O] denotes the frequency of two oxygen atoms at topological 
distance 4, suggesting that a higher number of electronegative atom 
count in a molecule has a direct impact on the inhibitory activity as 
observed in the compound 819 (least active) (see Fig. 10). 

3.1.1.5. β-Amyloid aggregation. The major group of positive contrib-
uting descriptors involved in the developed equation by PLS is sub-
groups like SssCH2, PW3, and F04[N–O]. The direct relationship of the 
descriptor SssCH2 suggested that the presence of the number of such 
–CH2- groups in the molecules leads to better β-amyloid aggregation 
inhibitory activity as longer chain compounds with a higher number 
–CH2- groups would be more lipophilic resulting in improved brain 
permeability. This assumption can be confirmed by compound 57 hav-
ing a higher number of –CH2- groups in their structure, showing higher 
descriptor values leading to their higher range of inhibitory activity. 
Descriptor, PW3 can be considered as a shape descriptor whose value 
increases with increased branching in the vertices. The descriptor F04 
[N–O] denotes the frequency of nitrogen and oxygen atoms at the to-
pological distance 4. These two contribute positively towards inhibitory 
activity as evident by the compound 59.Again, descriptors F05[C–O], 
F02[N–N],and MAXDN contributed negatively which means that the 
presence of these features in the molecules shows the lower inhibitory 
activity as observed in the compounds 149, 262 and 175 respectively 
(see Fig. 10). 

3.1.1.6. Cyclin Dependent Kinase 5 (CDK-5) protein. In this model, 
NaaaC is the most contributing descriptor toward inhibitory activity. It 
denotes the number of atoms of type aaaC (π), aromatic fused carbons. 
The fragment has a positive contribution toward inhibitory activity 
against protease. A compound like 195 shows higher inhibitory activity 
due to the presence of a high number of aaaC fragments. The next most 
important descriptor PBF denotes the Plane of best fit in the compounds 
having a negative coefficient towards the inhibitory activity. Therefore, 
for an improved activity, their values must be augmented as low as 
possible. This statement can be confirmed by compound 146 having a 
higher descriptors values, showing their lower range of inhibitory ac-
tivity (see Fig. 11). 

3.1.1.7. Gamma-secretase enzyme. As per the VIP plot, P_VSA_MR_7 is 
the most significant with a positive coefficient feature towards the 
inhibitory activity in this model. P_VSA_MR_7 belongs to P_VSA-like 
descriptors that are calculated from the amount of van der Waals sur-
face area (VSA), thus being related to the lipophilic feature. Compound 
209 with a high value of P_VSA_MR_7 showed strong inhibitory activity 
(see Fig. 10). The variables nOHp, B05[N–N], and nRCOOH, contributed 
negatively suggesting that the presence of these features in the com-
pounds will result in a lower inhibitory activity as observed in the 
compounds 41, 207, and 66 (least active) respectively(see Fig. 10). 

3.1.1.8. Glutaminyl Cyclase (QCs) enzyme. The developed QSAR model 
showed that the features C-034, ETA_Sh_Y, F05[C–S], and PBF are 
important for defining the inhibitory activity against the QCs enzyme. 
Lipophilicity is a significant parameter for AD drugs as can be noticed 

from the variable C-034 which contributed positively towards the 
inhibitory activity as evidenced by the compound 34 (most active). C- 
034 enhancing lipophilicity represents the feature R-CR..X, where R is 
any group linked through carbon; X is an electronegative atom (O, N, S, 
P, Se, halogens); ‘-’ is an aromatic bond as in benzene or delocalized 
bonds such as the N, O bond in a nitro group; .. denotes aromatic single 
bond). In this series, variables ETA_Sh_Y, F05[C–S], and PBF contributed 
negatively suggesting that the presence of these features in the com-
pounds will result in a lower inhibitory activity as evidenced by the 
molecules 33, 31, and 72 (least active) respectively (see Fig. 10). 

3.1.1.9. Glycogen synthase kinase-3β (GSK-3β) enzyme. The first most 
crucial feature important for the GSK-3β enzyme inhibitory activity was 
nThiazoles, which designates the number of thiazole rings present in the 
molecules. The lipophilicity accompanying molecular bulk was the next 
most significant feature responsible for enzyme inhibitory activity 
which appeared as SaaaC, SaasC, and PDI. SaaaC is an atom-type E-state 
index for carbons with three aromatic connections and SaasC is for ar-
omatic carbons with an attached substituent atom. The positive co-
efficients of SaaaC and SaasC in the model were considered to be a 
consequence of the importance of aromatic rings in controlling the 
inhibitory activity of the compounds, both in determining the com-
pound’s hydrophobicity and its π-π interactions with the target as wit-
nessed in the molecular docking study. The packing density index (PDI) 
is a molecular property descriptor. PDI is designated as the ratio be-
tween the McGowan volume and the total surface area [44]. The positive 
sign of the coefficient of these descriptors confirms that the larger the 
value of descriptors higher is the inhibitory activity towards the enzyme 
as witnessed by the compound 153 (most active). Again, the next sig-
nificant descriptor mindsCH designates the minimum atom-type E-State: 
=CH- contributed negatively means the presence of this feature in the 
compounds shows the lower inhibitory activity as observed in the 
compound 161 (least active) (see Fig. 11). 

3.1.1.10. Monoamine oxidase B (MAO-B) enzyme. As per the VIP score, 
mindsCH is the most significant descriptor that appeared in this equa-
tion which contributed negatively towards the inhibitory activity as 
observed in the compound 25 (least active). This feature also appeared 
in the previous model (GSK-3β) with a negative coefficient toward 
inhibitory activity. In this series next most significant descriptors are 
F02[O–O], C%, and nRCN. The positive regression coefficient sign 
confirms that the inhibitory activity increases with the presence of the 
above fragments which can be verified by the most active compounds 86 
(in case of F02[O–O] and C%) and 72 (in case of nRCN) in their structure 
(see Fig. 11). The other significant features were polar oxygen groups 
(B06[O–Cl], B01[C–O]), molecular branching (Eta_B), secondary aro-
matic amine (nArNHR), minssCH2, logP, and F05[C–N] contributed 
negatively suggesting that the presence of these features in the com-
pounds will result in lower inhibitory activity (see Table S1 in Sup-
porting Information SI-2). 

3.1.1.11. N-methyl-D-aspartate (NMDA) receptor. The higher concen-
tration of electronegative atom count in a compound has a direct impact 
on the lowering antagonistic activity against the target protein. This 
hypothesis can be confirmed from the presence of variables SaaN, TPSA 
(NO), C-043, ATSC2m, and MDEN-23 contributed negatively as evi-
denced by the compound 483 and 446 (least active). According to the 
VIP scores, SaaN is the most contributing descriptor in the model which 
encodes information about both the topological environment of the 
particular atom and the electronic interactions due to all other atoms in 
the molecule. SaaN is the sum of E-State values of all nitrogen atoms 
with two aromatic bonds found in the molecule (see Fig. 11). 

3.1.1.12. Phosphodiester 10A (PDE 10A) enzyme. The leading group of 
positive contributing descriptors involved in the developed model is 
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subgroups like N-070, and AMR. The direct association of the descriptor 
N-070 suggested that the presence of the number of N atoms in the Ar- 
NH-Al group with Al representing aliphatic groups in the compounds 
leads to better enzyme inhibitory activity. The hydrophobicity associ-
ated with molecular bulk was the next most significant feature respon-
sible for the inhibitory activity which appeared as AMR variables, as 
higher the features in the compounds higher would be the lipophilicity 

resulting in improved brain permeability. This concept can be confirmed 
from compound 226 (most active) (see Fig. 11). 

3.1.2. Mechanistic interpretation of the descriptors involved in the 
development of selectivity-based models 

The details about all variables that appeared in these models, their 
contribution, meaning of descriptors, examples of compounds, and their 

Fig. 12. Mechanistic interpretation of the most significant descriptors obtained from the selectivity-based (AChE-BACE1, AChE-β-Amyloid, AChE-BuChE, and AChE- 
MAO-B) models. 

Fig. 13. Probable mechanistic interpretation of the most significant descriptors obtained from the selectivity-based (BACE1-GSK-3β, BuChE-BACE1, BuChE-β-Am-
yloid, BuChE-GSK-3β, BuChE-MAO-B, and AChE-GSK-3β) models. 
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corresponding descriptors values are given in Table S2 (see Supporting 
Information SI-2). 

3.1.2.1. Selectivity of AChE and BACE1 enzyme inhibitors. According to 
the VIP score, F08 [N–O] is the most significant positively contributing 
descriptor in the model for more specific inhibition to AChE enzyme 
than BACE1 enzyme inhibitory activity. Thus, the higher number of this 
fragment leads to better AChE enzyme inhibitory activity as noticed in 
the case of compound 2. Again, the variable B05[N–O] contributed 
negatively is more specific to BACE1 enzyme inhibitory activity than 
AChE enzyme inhibitory activity. So, the higher number of this fragment 
correlates with lower AChE enzyme inhibitory activity as observed in 
the case of compound 28 (see Fig. 12). 

3.1.2.2. Selectivity of AChE enzyme and β-amyloid aggregation inhibitors. 
The important group of the positive contributing variables more specific 
to the AChE enzyme inhibitory activity involved in the developed model 
is subgroups like B07[C–N], F06[C–Cl], SAscore, and ETA_Shape_Y. In 
these features, ETA_Shape_Y signifies the measure of molecular shape. 
The straight connotation of these descriptors suggested that the presence 
of above groups in the compounds leads to better AChE enzyme inhib-
itory activity. This concept can be confirmed from compound 60 (most 
active). The next significant features of negative contributing more 
specific to β-amyloid aggregation inhibitory activity than AChE enzyme 
inhibitory activity appeared in the developed equation are subgroups 
like nArNH2, F10[C–Cl], and PJI2. In this series, variable nArNH2 sig-
nifies the presence of the number of primary aromatic amines in the 
compounds. The above specification can be confirmed from compounds 
3 (in the case of nArNH2) and 10 respectively (see Fig. 12). 

3.1.2.3. Selectivity of AChE and BuChE enzyme inhibitors. Among the 
crucial features improving AChE enzyme inhibitory activity are F06 
[N–O] and nR12, as lipophilicity is an important parameter for the AD 
drugs and can be outlined from variable nR12. Thus, the higher number 
of these fragments leads to better AChE enzyme inhibitory activity as 
noticed in the case of compound 81 (most active). Again, variables 
constituting electronegative atoms (B03[N–N], B03[N–O], nROR, N%, 
and GD) contributed negatively suggesting that the presence of these 
features in the compounds more specific to BuChE inhibitory activity as 
observed in the compounds 93, 92 and 94 respectively (see Fig. 12). 

3.1.2.4. Selectivity of AChE and MOA-B enzyme inhibitors. The most 
significant features enhancing lipophilicity (SsssCH, and F10[C–C]), and 
constituting electronegative and polar atoms (O%, F10[C–N], and 
minsCH3) contributed negatively suggesting that the presence of these 
features in the compounds are more favorable for MOA-B enzyme 
inhibitory activity as evidenced by the compounds 52, 44, 25 and 35. In 
this series, the next most significant descriptors that contributed posi-
tively are F09[C–C], and MaxsCH3, which are more specific to the AChE 
enzyme inhibitory activity than MOA-B enzyme inhibitory activity. 
Thus, the higher number of this fragment leads to better AChE enzyme 
inhibitory activity as observed in compounds 27 and 18 respectively 
(see Fig. 12). 

3.1.2.5. Selectivity of BACE1 and GSK-3β enzyme inhibitors. The signif-
icant descriptors in this series are nRotB and AATSC1s which contrib-
uted negatively toward the inhibitory activity against BACE1 enzyme; 
accordingly, these features are more specific to GSK-3β enzyme inhibi-
tory activity. Thus, the higher number of this fragment shows lower 
BACE1 enzyme inhibitory activity as seen in compounds 5 and 12 
respectively (see Fig. 13). 

3.1.2.6. Selectivity of BuChE and BACE1 enzyme inhibitors. In the MLR 
equation, variables NaasC, minaaaC, nArCO, and ZM1Kup contributing 
positively were the most significant descriptors toward the inhibitory 

activity against the BuChE enzyme, which means the presence of these 
features in the compounds are most specific to the BuChE enzyme 
inhibitory activity than BACE1 as observed in the molecules 7, 2, and 3 
respectively. While variables constituting lipophilicity (ALOGP2, and 
nR = Ct) contributed negatively suggesting that the presence of these 
features in the molecules is more specific to BACE1 inhibitory activity as 
observed in compound 8 (see Fig. 13). 

3.1.2.7. Selectivity of BuChE enzyme and β-amyloid aggregation inhib-
itors. The higher concentration of electronegative atom count and 
aromaticity in a compound has a direct impact on the better inhibitory 
activity against the BuChE enzyme. This premise can be confirmed from 
the presence of variables D/Dtr10 (aromatic ring count) and B04[N–N], 
B10[C–O], B08[C–N], ETA_dEpsilon_B (electronegative atom counts) 
contributed positively as evidenced by the compounds 35, 1 and 4 (most 
active) respectively. The other features B10[C–N], LOGP99, B10[N–O], 
PJI2, B08[O–O], and ETA_Shape_Y contributed negatively to the model 
are more specific to the β-amyloid aggregation inhibitory activity than 
BuChE enzyme inhibitory activity as observed in the compounds 124, 
118, 120, and 14 respectively(see Fig. 13). 

3.1.2.8. Selectivity of BuChE and MOA-B enzyme inhibitors. The mole-
cules constituting variables containing tertiary nitrogen atoms (SsssN) 
and nitrogen and oxygen atoms at the topological distance 6 (B06[N–O]) 
are more specific to the BuChE enzyme inhibitory activity than the 
MOA-B enzyme inhibitory activity as seen in the compound 23. The 
variables imparting lipophilicity (minsCH3, SsssCH, NdssC, and SAacc) 
and electronegativity (B08[N–O]) of the compound are more specific to 
the MOA-B enzyme inhibitory activity than the BuChE enzyme inhibi-
tory activity as observed in the compounds 4, 47, and 51(see Fig. 13). 

3.1.2.9. Selectivity of AChE and GSK-3β enzyme inhibitors. The variable 
Psi_i_A contributed positively suggesting that the presence of such 
fragment in the molecule is more specific to the AChE enzyme inhibitory 
activity than GSK-3β enzyme inhibitory activity as seen in the compound 
10. The negatively contributing descriptors ETA_BetaP_ns_d, and F02 
[C–O] are more specific to the GSK-3β enzyme inhibitory activity than 
the AChE enzyme inhibitory activity as observed in the compound 14 
(see Fig. 13). 

3.1.2.10. Selectivity of BuChE and GSK-3β enzyme inhibitors. As we can 
see in both selectivity-based models, we found similar features 
contributed accordingly to the inhibitory activity. The variables Psi_i_A 
and nCL suggested that the presence of such fragment in the compounds 
is more specific to the BuChE enzyme inhibitory activity as seen in 
compounds 13 and 7 respectively. As the previous model descriptor, 
ETA_Beta_ns_d contributed negatively, the same effect exerted in this 
equation also suggests that the presence of this feature in the molecule is 
more specific to the GSK-3β enzyme inhibitory activity than BuChE 
enzyme inhibitory activity as observed in the compound 12 (see Fig. 13). 

3.1.3. Mechanistic interpretation of the descriptors involved in the 
development of QSAAR-based models 

The QSAAR models are the in silico analysis of activity-activity cor-
relations that can be used to evaluate the dual inhibitory activity of a 
molecule. The QSAAR analysis usually comprises the use of activity 
values of one of the endpoint as the response variable (i.e., Y-variable), 
whereas the activity to the other endpoint is used as one of the predictor 
variables (i.e., X-variable). If the activity values of the identified mole-
cules for one endpoint correspond strongly to the values for another 
endpoint, the chemicals are likely to have a similar mode of action for 
both and vice versa. The importance of different descriptors (as specified 
by the VIP plots) is illustrated in Table 3 and provide a collection of 
equations for QSAAR models. The detailed description of modeled de-
scriptors that appeared in the QSAAR models is given in Table S3 (See 
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Supporting Information SI-2). This section provides a concise and more 
relevant description of the mechanistic interpretation of various QSAAR 
models. 

3.1.3.1. BACE1 enzyme inhibitory activity as a predictor (X) and AChE 
enzyme inhibitory activity as the response (Y) and vice versa. The activity 
to both targets is shown to be the most significant predictor variable, 
positively contributing to each other. Other important descriptors in the 
BACE1 (X)-AChE (Y) and AChE (X)-BACE1 (Y) models include nCrs, 
MaxaasC, PW3, X5v, B08[O–O] (having positive regression co-
efficients), C-001, nCconj and nArOH (having negative regression co-
efficients) respectively, as established by the VIP plots. The next most 
important inhibitory activity enhancing features identified were hy-
drophobicity, molecular bulk, and electronegativity. The descriptors 
proving this hypothesis were hydrophobicity variables (nCrs, and 
MaxaasC), molecular bulk (PW3), electronegativity (B08[O–O]), and 
size index (X5v). Thus, the presence of these features in the compounds 
leads to better inhibitory activity (see Fig. 14). 

3.1.3.2. AChE enzyme inhibitory activity as a predictor (X) and β-amyloid 
inhibitory activity as a response (Y) and vice versa. The activity terms 
(both contributing positively) are the highest contributing descriptors 
by the corresponding VIP and loading plots. In the β-amyloid (X)-AChE 
(Y) model, all the identified variables (nArCO, B10[N–Cl], PW3, and 
B07[C–N]) contributed positively toward inhibitory activity. The other 
recognized significant features were B10[N–Cl] and B07[C–N] having 
positive regression coefficients in the β-amyloid (X)-AChE (Y) model 
while negative regression coefficients in AChE (X)-β-amyloid (Y) model, 
as per the VIP plot. The remaining two descriptors of the AChE (X)- 
β-amyloid (Y) models are SAscore and ETA_EtaP_F_L inversely correlated 
to the response as shown by their negative regression coefficients (see 
Fig. 14). 

3.1.3.3. BuChE enzyme inhibitory activity as a predictor (X) and AChE 
enzyme inhibitory activity as the response (Y) and vice versa. The activities 
against both the targets are directly related (both having positive 
regression coefficients) and the most relevant predictor variables for the 
respective QSAAR models. In the BuChE (X)-AChE (Y) model, the 
essential features enhancing inhibitory activity were lipophilicity 
(nR10, and nCr), electronegative atoms (NssNH, B04[N–O], F06[N–O] 
and B04[N–Cl]) and other feature like ICR (radial centric information 
index). As per the regression coefficient plot, the presence of these 
features in the compounds leads to better inhibitory activity. The fea-
tures contributing negatively were F08[C–N], and nROR which indicate 
that the decrease in the values of these variables affects an increase in 
the inhibitory activity. In the AChE (X)-BuChE (Y) model, the variable 
constituting the lipophilicity (NaaCH), shape (DECC) and electronega-
tive atoms (B10[N–O]) are significant for the enhancing inhibitory ac-
tivity. Apart from the above descriptors, the other identified variables 
were F06[N–O], MaxsCH3, ETA_EtaP_F, nCrs, Ram, and nCb-inversely 
correlated to the response as suggested by their negative regression 
coefficients (see Fig. 14). 

3.1.3.4. GSK-3β enzyme inhibitory as a predictor (X) and AChE enzyme 
inhibitory activity as the response (Y) and vice versa. The responses 
against both the targets are shown to be the most significant predictor 
variables, contributing positively to each other. Other significant vari-
ables in the GSK-3β (X)-AChE(Y) and AChE (X)-GSK-3β (Y) models 
comprise C-026 (having negative regression coefficients), ETA_Epsilon_1 
and MaxaasC (having positive regression coefficients) respectively, as 
established by the VIP plots. C-026 inversely correlated to the response. 
Furthermore, variables constituting fragments imparting lipophilicity 
(MaxaasC) and electronegative atoms (ETA_Epsilon_1) in the molecules 
lead to an improved inhibitory activity (see Fig. 14). 

Fig. 14. Probable mechanistic interpretation of the most significant descriptors obtained from the QSAAR (AChE (X)-BACE1 (Y), BACE1 (X)-AChE (Y), β-Amyloid 
(X)-AChE (Y), AChE (X)-β-Amyloid (Y), BuChE (X)-AChE (Y) and AChE (X)-BuChE (Y), GSK-3β (X)-AChE (Y), and AChE (X)-GSK-3β (Y)) models. 
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Fig. 15. Probable mechanistic interpretation of the most significant descriptors obtained from the QSAAR (GSK-3β (X)-BACE1 (Y), BACE1 (X)-GSK-3β (Y), BuChE 
(X)-BACE1 (Y), BACE1 (X)-BuChE (Y), BuChE (X)-β-Amyloid (Y), β-Amyloid (X)-BuChE (Y) and MAO-B (X)-AChE (Y)) models. 

Fig. 16. Possible mechanistic interpretation of the most significant descriptors obtained from the QSAAR (BuChE (X)-GSK-3β (Y) and BuChE (X)-MAO-B (Y)) models.  
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3.1.3.5. MAO-B enzyme inhibitory as a predictor (X) and AChE enzyme 
inhibitory activity as the response (Y). The positive regression coefficient 
of the activity variable specifies that the MAO-B enzyme inhibitory value 
is proportionally related with the AChE enzyme inhibitory activity 
(response). In this series, the most significant variables (having positive 
regression coefficients) were F01[C–N], MaxdssC, and B05[N–Cl], 
enhancing the inhibitory activity. The other recognized significant fea-
tures were N%, MAXDP, ETA_Epsilon_5, and MaxaaCH inversely asso-
ciated with the response as suggested by their negative regression 
coefficients (see Fig. 15). 

3.1.3.6. GSK-3β enzyme inhibitory as a predictor (X) and BACE1 enzyme 
inhibitory activity as the response (Y) and vice versa. The activity end 
points of both targets (with positive regression coefficients) contributed 
the most to the development of the respective models. The QSAAR 
model for GSK-3β (X)-BACE1 (Y) includes max_conj_path and C-025, 
which contributed positively towards inhibitory activity. The last vari-
able in this model was minsOH having a negative regression coefficient 
towards the inhibitory activity. In the BACE1 (X)-GSK-3β (Y) model, the 
identified important features were MAXDN (having positive regression 
coefficient) signifying the maximal electrotopological negative variation 
in the compounds. The other recognized important variables were 
MATS2e, ZMIC4, and AATS3s inversely associated toward inhibitory 
activity (see Fig. 15). 

3.1.3.7. BuChE enzyme inhibitory as a predictor (X) and BACE1 enzyme 
inhibitory activity as the response (Y) and vice versa. Similar to the 
aforementioned QSAAR models delineated above, the activity end 
points of both targets (with positive regression coefficients) contributed 
the most to the development of the respective models. The significant 
variables in the BuChE(X)-BACE1(Y) model includes MaxsCH3, nFur-
anes, and B05[O–O], having positive regression coefficients, thus, the 
presence of these features in the compounds leads to better inhibitory 
activity. Again, the variables F01[C–O], and nCIC have negative 
regression coefficients, and inversely affect the inhibitory activity. In the 
BACE1(X)-BuChE (Y) model, the second most significant inhibitory ac-
tivity improving feature was identified as hydrophobicity. The variable 
evidencing this premise was hydrophobicity variables (RFD, F08[C–C], 
and nR09), thus, the presence of these fragments in the molecules leads 
to enhanced inhibitory activity (see Fig. 15). 

3.1.3.8. BuChE enzyme inhibitory as a predictor (X) and β-amyloid 
inhibitory activity as the response (Y) and vice versa. The inhibitory ac-
tivities against both the targets are shown to be the most important 
predictor variables, contributing positively to each other. Amongst the 
essential features enhancing inhibitory were hydrophobic moieties 
(SaasC, F08[C–C], Uc, and nCrt), size (D/Dtr10), constituting secondary 
aliphatic amines (nRNHR), and hybrid group (minssCH2), means the 
presence of these fragments in the molecules leads to improved inhibi-
tory activity. In contrast, fragments with inhibitory activity lowering 
potential against the enzyme were ETA_EtaP_F, F06[C–C], nCp, and nAB 
(see Fig. 15). 

3.1.3.9. BuChE enzyme inhibitory as predictor (X) and GSK-3β enzyme 
inhibitory activity as the response (Y). The positive regression coefficient 
of the activity variable indicates that the BuChE enzyme inhibitory value 
is proportionally related to the GSK-3 enzyme inhibitory activity (the 
endpoint). The other important variables in this model were N% and 
minssCH2, having positive regression coefficients towards the inhibitory 
activity (see Fig. 16). 

3.1.3.10. BuChE enzyme inhibitory as predictor (X) and MAO-B enzyme 
inhibitory activity as the response (Y). The positive regression coefficient 
of the activity variable suggests that the BuChE enzyme inhibitory value 
is consistently connected to the MAO-B enzyme inhibitory activity 

(endpoint). The essential features improving inhibitory activity were 
hydrophobic moiety (nCt), polar moieties (nROH, F06[C–O], and B08 
[N–O]), constituting secondary aliphatic amines (nRNHR) and hybrid 
group (minsCH3), which suggests that the presence of these features in 
the compounds leads to better inhibitory activity. On the other hand, 
fragments with inhibitory activity lowering potential against the 
enzyme is ETA_Beta_ns_d (see Fig. 16). 

3.1.4. Applicability domain (AD) study 
In the current investigation, we have applied the DModX approach 

[45,46] at the 99% confidence level using SIMCA-P version 10.0 soft-
ware to perform the AD evaluation of established PLS models, whereas 
the AD of the developed MLR models was estimated using the stan-
dardization approach [47] with the help of tool developed in our labo-
ratory (http://teqip.jdvu.ac.in/QSAR Tools/). 

3.1.4.1. Individual QSAR models. The DModX outcomes of the PLS 
models revealed that most of the models (against 5-HT6, β-amyloid 
aggregation, GSK-3β enzyme, and MAO-B enzyme) had no compound in 
the test set outside the AD (see Figs. S134, 137, 142 and 143 in the 
Supporting Information SI-2). However, in case of AChE enzyme model 
(see Fig. S135 in the Supporting Information SI-2), we found 48 com-
pounds (i.e. compounds 241, 300, 364, 412, 458, 520, 655, 720, 764, 
765, 776, 814, 839, 1077, 1115, 1135, 1138, 1141, 1212, 1216, 
1271, 1275, 1299, 1300, 1338, 1352, 1357, 1364, 1366, 1368, 1371, 
1379, 1398, 1399, 1411, 1463, 1651, 1652, 1656, 1673, 1679, 1680, 
1680, 1688, 1689, 1690, 1693, and 1695) in the test set are located 
outside the AD. In case of BuChE enzyme model (see Fig. S138 in the 
Supporting Information SI-2), we found 57 compounds (i.e. compounds 
186, 210, 255, 257, 281, 294, 419, 438, 451, 478, 580, 635, 637, 
641, 645, 651, 807, 879, 928, 933, 955, 966, 970, 972, 981, 1003, 
1006, 1012, 1015, 1016, 1405, 1580, 1582, 1617, 1733, 1793, 1797, 
1799, 1802, 1817, 1819, 1914, 1928, 2052, 2104, 2156, 2216, 2224, 
2237, 2242, 2249, 2256, 2257, 2354, 2374, 2386, and 2387) in the 
test set are placed outside the AD. In the case of the BACE1 enzyme 
model (see Fig. S136 in the Supporting Information SI-2), we found 16 
compounds (i.e. compounds 7, 23, 33, 147, 336, 409, 464, 574, 684, 
695, 788, 791, 820, 824, 830, and 857) in the test set are positioned 
outside the AD. In the case of the CDK-5 protein model (see Fig. S139 in 
the Supporting Information SI-2), we found only 3 compounds (i.e. 
compounds 32, 184, and 186) in the test set are situated outside the AD. 
In the case of the Gamma-secretase enzyme model (see Fig. S140 in the 
Supporting Information SI-2), we found only 2 compounds (i.e. com-
pounds 76 and 80) in the test set are positioned outside the AD. In the 
case of the Glutaminyl Cyclase (QCs) enzyme model (see Fig. S141in the 
Supporting Information SI-2), we found only 1 compound (i.e. com-
pound 3) in the test set is located outside the AD. In the case of the 
NMDA receptor model (see Fig. S144 in the Supporting Information SI- 
2), we found only 3 compounds (i.e. compounds 107, 338, and 434) in 
the test set are placed outside the AD. In the case of the PDE 10A enzyme 
model (see Fig. S145 in the Supporting Information SI-2), we found that 
5 compounds (i.e. compounds 58, 79, 182, 204, and 206) in the test set 
are located outside the AD. 

3.1.4.2. Selectivity-based QSAR models. The AD results of the models 
revealed that the majority of the models (BACE1-GSK-3β enzyme in-
hibitors, AChE-GSK-3β enzyme inhibitors, BuChE-GSK-3β enzyme in-
hibitors, AChE-BACE1 enzyme inhibitors, AChE enzyme-β-amyloid 
aggregation inhibitors, and AChE-MOA-B enzyme inhibitors) had no 
molecules in the test set outside the AD (see sheet 33 and Figs. S146, 
147, 149 respectively in the Supporting Information SI-1and 2). How-
ever, in the case of the AChE-BuChE enzyme inhibitors model (see 
Fig. S148 in the Supporting Information SI-2), we found only 2 com-
pounds (i.e. compounds 29 and 137) in the test set are positioned 
outside the AD. In the case of the BuChE-BACE1 enzyme inhibitors 
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Table 4 
List of identified top lead compounds from the databases with multitarget inhibitory activity using developed models.  

Compound ID Smiles Targets and their predicted inhibitory activity 
(IC50 nM) 

STOCK7S- 
62250 

CC(C1CCC(CC1)(C)c1cc2Cc3cc(c(cc3O)Cc3cc(O)c(cc3C3(C)CCC(CC3)C(C)C)Cc3cc(c(cc3O)Cc3cc(c(Cc4c(cc 
(Cc5c(cc(Cc6c(cc(Cc1cc2O)c(c6)C1(C)CCC(CC1)C(C)C)O)c(O)c5)C1(C)CCC(CC1)C(C)C)c(c4)C1(C)CCC(CC1)C 
(C)C)O)cc3C1(C)CCC(CC1)C(C)C)O)C1(C)CCC(CC1)C(C)C)C1(C)CCC(CC1)C(C)C)C 

AChE BACE1 CDK-5 GSI 
0.000474 2.663E- 

08 
0.00243 0.0282 

118199 O=CN(C)C(=S)S[Sb](SC(=S)N(C––O)C)SC(=S)Nc1ccc(cc1)S(=O)(=O)Nc1ccc(/N––N/c2ccccc2)cc1 AChE BACE1 GSI BuChE 
0.00157 2.794E- 

05 
0.0097 7.870 

118200 S(C(=S)NC(=O)OCC)[Sb](SC(=S)NC(=O)OCC)SC(=S)Nc1ccc(cc1)S(=O)(=O)Nc1ccc(/N––N/c2ccccc2)cc1 0.00108 0.00061 7.97E- 
05 

1.629  

BAS 01060168 c12c3c(C(c4c5c6c(cc4)c(ccc6c(n[nH]5)C)OC)c4ccccc4)ccc1c(ccc2c(n[nH]3)C)OC 5-HT6 BuChE CDK-5 
0.0119 1.875 0.059 

BAS 01060169 C(c1c2c3c(cc1)c(ccc3c(n[nH]2)C)OC)(c1c2c3c(cc1)c(ccc3c(n[nH]2)C)OC)c1ccc(cc1)OC 0.0087 1.954 0.046 
STOCK7S- 

67258 
CCCC[Sn](OC(=O)CCCC(N1C(=O)C(=C(C1=O)Cl)Cl)C(=O)O[Sn](CCCC)(CCCC)CCCC)(CCCC)CCCC AChE BACE1 GSI 

6.2906E- 
06 

6.96627E- 
07 

0.0948 

STOCK7S- 
70271 

CCCCCCC1c2cc3c4cc2OP(=S)(Oc2c1cc1c(c2)OP(=S)(Oc2c(C1CCCCCC)cc1C(c5cc(C3CCCCCC)c(OP(=S)(O4)N(C) 
C)cc5OP(=S)(Oc1c2)N(C)C)CCCCCC)N(C)C)N(C)C 

0.00986 0.000221 2.486E-05 

127500 S(C(=S)NC(=O)OCC)[Sb](SC(=S)NC(=O)OCC)Sc1nc2c(s1)cc(/N––N/c1ccc(cc1)NS(=O)(=O)c1ccc(cc1)NC(=O)C 
(N1CC1)(N1CC1)N1CC1)cc2 

8.182E-05 5.273E-06 0.001002 

381279 [Si](N([Si](C)(C)C)[Sn](C(Cl)(Cl)Cl)(Cl)N([Si](C)(C)C)[Si](C)(C)C)(C)(C)C 1.5761E- 
06 

1.0843E-25 0.062 

633331 P1([Fe+2](P(c2ccccc2)(c2ccccc2)C––C1)([I-])([C-]#[O+])([C-](C(F)(F)F)(C(F)(F)F)F)[C-]#[O+])(c1ccccc1) 
c1ccccc1 

2.878E-07 1.298E-23 0.1194 

633993 P1([Fe+2](P(CC1)(c1ccccc1)c1ccccc1)([C-]#[O+])([C-]#[O+])([I-])[C-](C(F)(F)F)(F)C(F)(F)F)(c1ccccc1)c1ccccc1 1.637E-07 2.149E-28 0.119 
635009 [Mn+]1([O-]C(=O)C(F)(F)F)([C-]#[O+])([C-]#[O+])([C-]#[O+])P(C––CP1(c1ccccc1)c1ccccc1)(c1ccccc1) 

c1ccccc1 
0.00635 1.429E-19 0.1122 

643862 [Sn](CCC)(O[Sn](CCC)(OC(=O)c1c(nccc1)SC)CCC)(OC(=O)c1cccnc1SC)CCC 0.00505 6.882E-13 0.0073 
677704 c1c2c(ccc1[N+](=O)[O-])[O-]1[Cu+2]3([N](=C2)[N-]C(=[S]3)NCC)[O-]2c3c(cc(cc3)[N+](=O)[O-])C = [N]3[N- 

]C(=[S][Cu+2]123)NCC 
0.00131 3.599E-09 0.0320 

677707 c1c2c(ccc1[N+](=O)[O-])[O-]1[Cu+2]3([N](=C2)[N-]C(=[S]3)N(CC)CC)[O-]2c3c(cc(cc3)[N+](=O)[O-])C = [N] 
3[N-]C(=[S][Cu+2]123)N(CC)CC 

0.00021 1.3122E-09 0.0182 

28796–39–6 O=CN(C)C(=S)S[Sb](SC(=S)N(C––O)C)Sc1nc2c(s1)cc(/N––N/c1ccc(cc1)NS(=O)(=O)c1ccc(cc1)NC(=O)C(N1CC1) 
(N1CC1)N1CC1)cc2 

0.00036 2.548E-07 0.112 

29878–72–6 [Sn](c1ccccc1)(c1ccccc1)([Sn](c1ccccc1)(c1ccccc1)OC(=O)CCl)OC(=O)CCl 4.6586E- 
07 

3.2537E-27 0.089 

69272–27–1 c1c(c(c(nc1C)S[Sn](Cl)(Cl)Sc1c(C(=O)OCC)c(cc(n1)C)C)C(=O)OCC)C 8.9729E- 
08 

0.00046 0.1039 

82475–53–4 ClCCN(P(=O)(O[Si](c1ccccc1)(C(C)(C)C)c1ccccc1)O[Si](c1ccccc1)(C(C)(C)C)c1ccccc1)CCCl 0.0034 1.1551E-06 0.026 
STOCK7S- 

64595 
CCCCC1(CCCC1)c1cc2Cc3cc(c(cc3O)Cc3cc(O)c(cc3C3(CCCC)CCCC3)Cc3cc(c(cc3O)Cc3cc(c(Cc4c(cc(Cc5c(cc(Cc6c 
(cc(Cc1cc2O)c(c6)C1(CCCC)CCCC1)O)c(O)c5)C1(CCCC)CCCC1)c(c4)C1(CCCC)CCCC1)O)cc3C1(CCCC)CCCC1)O) 
C1(CCCC)CCCC1)C1(CCCC)CCCC1 

BACE1 GSI CDK-5 
1.7698E- 
07 

0.024 0.00105 

STOCK7S- 
65432 

Oc1cc2Cc3cc(O)c(cc3C3(C)CCCC3)Cc3cc(c(cc3O)Cc3cc(O)c(cc3C3(C)CCCC3)Cc3cc(c(Cc4c(cc(Cc5c(cc(Cc6c(cc 
(Cc1cc2C1(C)CCCC1)c(O)c6)C1(C)CCCC1)c(c5)C1(C)CCCC1)O)c(O)c4)C1(C)CCCC1)cc3O)C1(C)CCCC1)C1(C) 
CCCC1 

6.2808E- 
05 

0.069 0.0028 

STOCK7S- 
67132 

NC(=O)COc1cc2Cc3cc(OCC(=O)N)c(cc3C3(C)CCCCC3)Cc3cc(c(cc3OCC(=O)N)Cc3cc(OCC(=O)N)c(cc3C3(C) 
CCCCC3)Cc3cc(c(Cc4c(cc(Cc5c(cc(Cc6c(cc(Cc1cc2C1(C)CCCCC1)c(OCC(=O)N)c6)C1(C)CCCCC1)c(c5)C1(C) 
CCCCC1)OCC(=O)N)c(OCC(=O)N)c4)C1(C)CCCCC1)cc3OCC(=O)N)C1(C)CCCCC1)C1(C)CCCCC1 

0.00012 0.0248 0.00244 

STOCK7S- 
67182 

Oc1cc2Cc3cc(O)c(cc3C3(C)CCCCC3)Cc3cc(cc(c3O)Cc3cc(c(Cc4c(cc(Cc5c(c(Cc1cc2C1(C)CCCCC1)cc(c5)C1(C) 
CCCCC1)O)c(O)c4)C1(C)CCCCC1)cc3O)C1(C)CCCCC1)C1(C)CCCCC1 

0.000313 0.1742 0.0732 

STOCK7S- 
67536 

Oc1cc2Cc3cc(O)c(cc3C3(C)CCCCC3)Cc3cc(c(cc3O)Cc3cc(O)c(cc3C3(C)CCCCC3)Cc3cc(c(Cc4c(cc(Cc5c(cc(Cc6c(cc 
(Cc1cc2C1(C)CCCCC1)c(O)c6)C1(C)CCCCC1)c(c5)C1(C)CCCCC1)O)c(O)c4)C1(C)CCCCC1)cc3O)C1(C)CCCCC1)C1 
(C)CCCCC1 

9.8853E- 
07 

0.0513 0.00241 

STOCK7S- 
70545 

CCCCCCCC1c2cc3c4cc2OP(Oc2c1cc1c(c2)OP(OCCCCCCCC)Oc2c(C1CCCCCCC)cc1C(c5cc(C3CCCCCCC)c(OP(O4) 
OCCCCCCCC)cc5OP(Oc1c2)OCCCCCCCC)CCCCCCC)OCCCCCCCC 

0.00174 0.1682 0.00034 

619178 n12ccc(c3c1c1n(ccc(c1cc3)c1ccccc1)[Co+3]132(n2ccc(c4c2c2n1ccc(c2cc4)c1ccccc1)c1ccccc1)n1ccc(c2c1c1n3ccc 
(c1cc2)c1ccccc1)c1ccccc1)c1ccccc1.O––C([O-])[C@@H]([O-])[C@@H]([O-])C(=O)[O-] 

6.6985E- 
05 

0.0053 0.043 

STOCK7S- 
65614 

CCCCOc1ccc(cc1)/C/1 = C/2\C––CC(=N2)/C(=c\2/cc/c(=C(/C3=N/C(=C(\c4[nH]c1cc4)/c1ccc(cc1)OCCCC)/ 
C––C3)\c1ccc(cc1)OCCCC)/[nH]2)/c1ccc(cc1)OCCCC 

GSI CDK-5 BuChE 
0.161 0.0044 1.819 

332889 O(C(=O)Nc1nc(c(c(c1)Cl)N––C(c1ccccc1)c1ccccc1)N)CC.O(C(=O)Nc1nc(c(c(c1)Cl)N––C(c1ccccc1)c1ccccc1)N) 
CCC 

5-HT6 AChE GSI 
0.00045 0.0062 2.848E-05 

618825 P(c1ccccc1)(c1ccccc1)(c1ccccc1)[Cu+](P(c1ccccc1)(c1ccccc1)c1ccccc1)(/[S] = c\1/cccc[nH]1)[Cl-] 5-HT6 AChE BACE1 
0.0079 0.000171 7.793E-17 

1262–78–8 [Sn](CC(c1ccccc1)(C)C)(CC(c1ccccc1)(C)C)(CC(c1ccccc1)(C)C)CC(c1ccccc1)(C)C 0.0082 0.0049 0.00045 
60042–87–7 c1c(cc2c(c1C(C)(C)C)O[Sb](N2)(c1ccccc1)(c1ccccc1)c1ccccc1)C(C)(C)C 9.0369E- 

06 
0.0081 0.0164 

60042–88–8 C(c1cc(c2c(c1)N[Sb](O2)(c1ccccc1)(c1ccccc1)c1ccccc1)C(C)(C)C)(c1ccccc1)(c1ccccc1)c1ccccc1 6.0399E- 
06 

0.00498 0.028 

81928–48–5 c1cc(c(cc1)[Sn](c1ccccc1C)(Cl)O[Sn](c1ccccc1C)(Cl)c1ccccc1C)C 0.0039 0.00059 3.674E-14 
5424–36–2 [Sn](c1cccc2ccccc12)(c1c2c(cccc2)ccc1)(c1cccc2ccccc12)c1c2ccccc2ccc1 5-HT6 BACE1 CDK-5 

0.0112 0.0056 0.00155 
26246 C12 = C3C4 = C5[C-]1[Fe+2]16782345C2 = C7[C-]8C6 = C12.II AChE BACE1 CDK-5 

0.00134 0.000212 0.0681 
176220 [C-]12C3 = C4C5 = C1[Fe+2]16782345[C-]2C1 = C6C7 = C82.II 0.00134 0.000212 0.0681 
118016 AChE CDK-5 GSI 

(continued on next page) 
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model (see sheet 32 in the Supporting Information SI-1), we found only 1 
compound (i.e. compound 1) in the test set is located outside the AD. In 
the case of the BuChE enzyme- β-amyloid aggregation inhibitors model 
(see Fig. S150 in the Supporting Information SI-2), we found only 2 
compounds (i.e. compounds 62 and 76) in the test set placed outside the 
AD. In the case of the BuChE -MOA-B enzyme inhibitors model (see 
Fig. S151 in the Supporting Information SI-2), we found only 1 com-
pound (i.e. compound 9) in the test set is situated outside the AD. 

3.1.4.3. QSAAR based models. AD plots of the QSAAR models revealed 
that except for the β-amyloid (X)-BuChE (Y) model which contained one 
test set molecule (molecule 14) and the AChE (X)-β-amyloid (Y) model 
which contain two test set compounds (i.e. compound 26 and 80) 
outside the AD (see sheet 34in the SI-1 and Fig. S155 in the Supporting 
Information SI-2), all of the developed QSAAR models exhibited 100% 
domain of applicability for all potential combinations (see 
Figs. S152–154, 156–166 and sheet 35 in the Supporting Information SI- 
2 and 1). 

3.1.5. Activity prediction using the developed 2D-QSAR models 
In the current work, well-validated QSAR models were individually 

used to predict the inhibitory activity of four chemical drug-like data-
bases, which had no reported quantitative experimental response values 
in their source file against the respective targets. Primarily, the estab-
lished models were utilized to compute the predicted values of database 
compounds; the validated models were capable of precisely predicting 
the inhibitory activity of the majority of the molecules, as suggested by 
the ‘alvaRunner version 2.0.4’ tool (https://www.alvascience.com/al 
varunner/). After prediction, we have arranged the compounds based 
on predicted values (highest to least active). In a detailed analysis of the 

predicted chemical databases, we have identified the top 56 lead com-
pounds with multitarget inhibitory activity, which are stated in Table 4. 
Additionally, we have also identified the compounds with dual target 
inhibitory activity as given in the supplementary information SI-4. The 
detailed analysis of the predicted databases using the developed models 
are given in Table S4. The detailed external set evaluations are stated in 
the supplementary information SI-3, sheet 1–12. In the supplementary 
information, we have only listed the compounds from the estimated 
databases showing higher potent inhibitory activity than the respective 
modeled dataset compounds due to large data and file size. 

3.2. Chemical read-across analysis 

In the present investigation, we have performed the similarity-based 
quantitative read-across predictions using the same training and test set 
combinations as used in 2D-QSAR modeling. The current approach 
employs three distinct similarity-based measures: Laplacian kernel 
similarity-based (LK) predictions, Gaussian kernel similarity-based 
(GK), and Euclidean distance-based (ED) estimations, and after hyper-
parameter optimization, we found that the external validation results 
obtained from a quantitative read-across algorithm using Gaussian 
Kernel Similarity-based functions (in case of 5-HT-6, CDK-5, PDE 10A 
models) and Laplacian kernel similarity-based function (in case of AChE 
and BACE1 enzyme models) were better compared to the results ob-
tained from the individual regression-based 2D-QSAR models. The de-
tails about the external validation results are given in sheets 36–40 (see 
supplementary information SI-1). 

Table 4 (continued ) 

n1c(c2[nH]cnc2nc1)S[Sn](c1ccccc1)(c1ccccc1)c1ccccc1.n1c(c2ncn(c2nc1)[Sn](c1ccccc1)(c1ccccc1)c1ccccc1)S 
[Sn](c1ccccc1)(c1ccccc1)c1ccccc1 

3.0972E- 
06 

0.0058 0.00041 

118017 n1c(c2[nH]cnc2nc1)S[Pb](c1ccccc1)(c1ccccc1)c1ccccc1.n1c(c2ncn(c2nc1)[Pb](c1ccccc1)(c1ccccc1)c1ccccc1)S 
[Pb](c1ccccc1)(c1ccccc1)c1ccccc1 

6.6093E- 
09 

0.0055 0.000409 

403635 c1ccc(cc1CCCCCCCCCCCCCCC)OC(=O)Nc1cccc2c1cccc2.c1ccc(cc1CCCCCCC/C––C/CCCCCC)OC(=O) 
Nc1cccc2c1cccc2.c1ccc(cc1CCCCCCC/C––C/C/C––C/CCC)OC(=O)Nc1cccc2c1cccc2.c1ccc(cc1CCCCCCC/C––C/C/ 
C––C/CC––C)OC(=O)Nc1cccc2c1cccc2 

0.00381 0.000211 0.00644 

700533 c12c(c(c3c(n1)c1c(CC3)ccc(c1)c1c3c(nc4c1cccc4)cccc3)c1ccc(cc1)OCc1cc(cc(c1)OCc1cc(cc(c1)C(C)(C)C)C(C)(C) 
C)OCc1cc(cc(c1)C(C)(C)C)C(C)(C)C)CCc1c2cc(cc1)c1c2c(nc3c1cccc3)cccc2 

0.00815 5.435E-08 0.085 

682371 [Pt+2]([Cl-])([Cl-])(n1ccc(cc1)/C/1 = c/2\cc/c(=C(\c3ccc(cc3)C)/C3=N/C(=C(\c4ccc(/C(=C\5/C––CC1=N5)/ 
c1ccc(cc1)C)[nH]4)/c1ccc(cc1)C)/C––C3)/[nH]2)[O] = S(C)C 

BACE1 CDK-5 QC 
0.00696 0.00593 2.973E-05 

1803–10–7 N(c1ccccc1)(c1ccccc1)C(=S)S[Sn](SC(=S)N(c1ccccc1)c1ccccc1)(c1ccccc1)c1ccccc1 AChE BACE1 BuChE 
0.00646 1.9209E-07 4.130 

118195 S(C(=S)NC(=O)OCC)[Sb](SC(=S)NC(=O)OCC)Sc1nc2c(s1)cc(cc2)/N––N/c1ccc(cc1)NS(=O)(=O)c1ccc(cc1)NC 
(=O)C(Cl)Cl 

BACE1 GSI BuChE 
1.4771E- 
05 

0.00182 4.130 

636592 c12c(c(c3c4c1c(=O)oc1c4c(c(=O)o3)c(c(c1O)O)c1c(c(O)c(O)cc1C(=O)OC[C@H]1[C@@H](OC(=O)c3c2c(c(O)c 
(O)c3)O)[C@H]2OC(=O)c3cc(O)c(O)c(O)c3c3c(C(=O)O[C@H]2[C@@H](O1)O)cc(O)c(O)c3O)O)O)O 

AChE GSI MAO-B 
0.00087 0.0297 3.672E-07 

676818 c12c3c(c(c(c1O)O)O)c1c(cc(c(c1O)O)O)C(=O)O[C@H]1[C@H]([C@@H]([C@H]4[C@@H](C5=C([C@H]2[C@] 
(C5=O)(C(=O)OCC)O)C(=O)O4)O)OC3=O)OC(=O)c2c(c(c(c(c2)O)O)O)c2c(c(c(cc2C(=O)OC1)O)O)O 

0.00124 0.0230 5.799E-06 

676822 c12c3c(c(c(c1O)O)O)c1c(cc(c(c1O)O)O)C(=O)O[C@H]1[C@H]([C@@H]([C@@H]4[C@H]5c6c7c(c(cc6O[C@]65 
[C@H](C2=C(C6=O)O)C(=O)O4)O)C[C@@H]([C@H](O7)c2cc(c(cc2)O)O)O)OC3=O)OC(=O)c2c(c(c(c(c2)O)O) 
O)c2c(c(c(cc2C(=O)OC1)O)O)O 

0.000485 0.0199 0.00028 

676825 [C@H]1([C@H](OC(=O)c2c(c3c(c(c(cc3C(=O)O1)O)O)O)c(c(c(c2)O)O)O)[C@H]1OC(=O)c2c(c(c(c(c2)O)O)O) 
c2c3c4c5c(c(=O)oc4c(c2O)O)c(c(c(c5oc3 = O)O)O)c2c(c(c(cc2C(=O)OC[C@@H]1O)O)O)O)C––O 

0.00378 0.01570 4.694E-06 

24312–00–3 c1(c(c2c3c(c1O)[C@@H]([C@H]([C@H]1OC(=O)c4c2c(c(c(c4c2c(c(c(cc2C(=O)O[C@H]2[C@H]1OC(=O)c1cc(c 
(c(c1c1c(c(c(cc1C(=O)OC2)O)O)O)O)O)O)O)O)O)O)O)O)OC3=O)O)O)O 

0.000905 0.0338 0.000144 

36001–47–5 c1c2c(c3c(cc(c(c3O)O)O)C(=O)O[C@H]3[C@H](COC2=O)OC(=O)c2cc(c(c(c2c2c4c(c5c6c(c(c(c5O)O)O) 
[C@@H]([C@H]([C@@H]3OC4 = O)OC6=O)O)c(c(c2O)O)O)O)O)O)c(c(c1O)O)O 

0.000905 0.0338 0.000144 

173121 [CH-]12[CH]3 = [CH]4[CH]5 = [CH]1[Co+]162345[CH]2 = [CH]1[S]6C2 AChE BACE1 β-amyloid 
0.00106 3.5773E-12 0.143 

633340 [C]123 = C[Rh+]456783([C]1(=C8)CC(=C)CC[C]5(=C7)[C]4(=C6)CC2)[Cl-] 7.4994E- 
06 

7.015E-16 0.528 

81741–72–2 [Ge]([Ge](N(CC)CC)(CC)CC)(CC)(CC)CC 7.948E-06 1.1578E-07 0.353 
81741–73–3 N(CC)(CC)[Ge](CC)(CC)[Ge](CC)(CC)N(CC)CC 1.0373E- 

05 
3.3865E-11 0.457 

993–62–4 [Ge](CC)(CC)(CC)[Ge](CC)(CC)CC 2.839E-06 0.00352 0.218 
993–63–5 [Sn]([Sn](CC)(CC)CC)(CC)(CC)CC 5.587E-11 5.527E-12 0.236 
847446–05–3 N(c1c(C)cc(C––CC#N)cc1C)c1nc(Nc2ccc(C#N)cc2)ncc1.C([C@H](OCP(=O)(O)O)C)n1c2c(nc1)c(N)ncn2.N(c1c2c 

(n(cn2)[C@@H]2C[C@H](CO)C––C2)nc(N)n1)C1CC1 
CDK-5 5-HT6 BACE1 
0.1225 0.00424 0.177  
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3.3. Molecular docking analysis 

In this exploration, we have performed molecular docking using the 
most and least active compounds from the initial datasets to explore the 
molecular interactions at the active pocket of the respective targets. The 
detailed description of molecular docking analysis and their corre-
sponding Figs. S167–187 are given in the Supporting Information SI-2, 
page number 85–103. The evidence of docking interactions, CDocker 
interaction energy, and their correlation with the features obtained from 
the developed 2D-QSAR models are demonstrated in Tables 5 and 6. 
Moreover, we have also performed the molecular docking analysis using 

the top predicted compounds from the databases at the active pocket of 
the respective targets. The details about the docking analysis are 
demonstrated in Table S5 and Figs. S188–199, page number 104–109 
(See supporting Information SI-2). 

3.4. Comparisons of the proposed QSAR models with our previous 
published studies 

In the present study, we have implemented a comparison of the best 
models of this study with our previously published models [4,16,48]. 
The details of different internal and external validation parameters 

Table 5 
Molecular docking results (5-HT6 antagonist, AChE, BACE1 enzyme, β-amyloid, BuChE enzyme, CDK-5 inhibitors) and correlation with 2D-QSAR models in this study.  

Compound -CDocker 
interaction energy 
(kcal/mol) 

Interacting residues Interactions Correlation with QSAR 
model 

5-hydroxytryptamine 6 (5-HT6) antagonist 
1 (most 

active) 
35.318 ALA A:266, LYS A:262, HIS A:259, SER A:61, TYR A:134, 

ASP A:123, LUE A:127 
Hydrogen Bond (conventional), Attractive 
charge, π-sulfur, Alkyl, π-Alkyl 

F04[C–O], minssNH, nCp, 
nArNH2, nBnz 

5 (most 
active) 

32.544 SER A:61, ASP A:123, TYR A:134, HIS A:259, LYS A:262, 
LUE A:127 

Hydrogen Bond (conventional and Carbon), 
Attractive charge, π-sulfur, π-Alkyl, π-π T- 
shaped 

F04[C–O], minssNH, nCp, 
nArNH2, nBnz 

70 (least 
active) 

19.878 ASN A:62, ASN A:59, LYS A:262, HIS A:259 Hydrogen Bond (conventional and Carbon) F04[C–O] 

71 (least 
active) 

17.953 LYS A:262, LEU A:127 Hydrogen Bond (Carbon), π-Alkyl nBnz 

Acetylcholinesterase (AChE) enzyme inhibitor 
841 (most 

active) 
67.407 TYR A:72, TRP A:286, SER A:293, TYR A:341, TRP A:86, 

TYR A:337, GLU A:202, HIS A:447 
Hydrogen Bond (conventional, Carbon and 
π-donor), π-π T-shaped, π-π stacked, π-Lone 
pair, Halogen (Cl, Br, I), π-Alkyl, π-Cation 

D/Dtr05, DBI, X2v, F04 
[N–Cl], B05[C–N] 

842 (most 
active) 

51.491 THR A:75, TRP A:286, SER A:293, TRP A:86, TYR A:337, 
TYR A:124, TYR A:341, 

Hydrogen Bond (conventional and Carbon), π-π 
T-shaped, π-π stacked 

X2v, DBI, B07[N–N], B05 
[C–N], minssO, nArCO 

714 (least 
active) 

38.559 PHE A:297, TRP A:286, TYR A:72 Hydrogen Bond (conventional), π-Alkyl minssO 

721 (least 
active) 

39.518 TYR A:341, TYR A:72 Hydrogen Bond (conventional), π-Alkyl minssO 

β-secretase 1 (BACE1) enzyme inhibitors 
458 (most 

active) 
56.095 ALA A:335, TYR A:14, THR A:232, GLY A:230, ASP A:228, 

GLN A:73, TYR A:198, GLY A:34, SER A:35, TYR A:71 
Hydrogen Bond (conventional, Carbon and 
π-donor), π-π T-shaped, π-Anion, π-Lone pair, 
Halogen (Fluorine), Alkyl, π-Alkyl 

F08[N–N], Ui, 

463 (most 
active) 

51.796 LEU A:30, SER A:229, THR A:231, TYR A:14, LYS A:9, VAL 
A:170, GLU A:339, GLY A:13, GLY A:11, ALA A:335, THR 
A:232, GLY A:230, TYR A:71, THR A:72, ASP A:228, ASP 
A:32 

Hydrogen Bond (conventional, Carbon), Salt 
bridge, Attractive charge, Sulfur-X, Halogen 
(Fluorine), Alkyl, π-Alkyl 

F08[N–N], Ui, X5v, mindO, 
nR#CH/X 

816 (least 
active) 

31.749 ARG A:128, TYR A:198, ASP A:228 Hydrogen Bond (conventional), Attractive 
charge, π-Anion 

B06[O–O] 

831 (least 
active) 

27.353 LYS A:107, GLY A:230, LEU A:30 Hydrogen Bond (conventional and carbon), 
π-Alkyl 

mindO 

β-amyloid inhibitors 
208 (most 

active) 
30.398 LEU A:17, LYS A:16, HIS A:13, ALA A:21, VAL A:18 Hydrogen Bond (conventional and carbon), 

π-Alkyl, Alkyl, π-π T-shaped 
SssCH2, PW3, F04[N–O] 

124 (least 
active) 

19.144 ALA A:21, LYS A:16 π-Alkyl, π-Cation PW3 

Butyrylcholinesterase (BuChE) enzyme inhibitors 
415 (most 

active) 
62.027 TRP A:82, ALA A:328, PRO A:285, HIS A:438, TRP A:231, 

PHE A:329, LEU A:286, SER A:287 
Hydrogen Bond (conventional, Carbon and 
π-donor), π-π T-shaped, π-π stacked, π-Cation, 
π-Alkyl 

C-002, N-070, MaxaaaC, 
MDEC-22, F04[C–N], B07 
[N–N], nN-N, BLI, 

420 (most 
active) 

64.064 ASP A:70, TYR A:332, GLU A:197, HIS A:438, TRP A:231, 
LEU A:286, ALA A:328, TRP A:430, TRP A:82 

Hydrogen Bond (conventional, Carbon), π-π T- 
shaped, Attractive charge, Alkyl, π-Alkyl 

C-002, N-070, MaxaaaC, 
MDEC-22, F04[C–N], B07 
[N–N], nN-N, BLI 

417 (least 
active) 

31.984 HIS A:438, ASP A:70 Hydrogen Bond (conventional, Carbon) C-002 

2353 (least 
active) 

38.996 GLU A:197, GLY A:115, ILE A:69 Hydrogen Bond (Carbon) MDEC-22 

Cyclin-dependent kinase 5 (CDK-5) inhibitors 
1 (most 

active) 
54.534 LYS A:89, ASP A:86, LEU A:133, ALA A:31, VAL A:18, GLY 

A:11, GLU A:12, ILE A:10 
Hydrogen Bond (conventional, Carbon), Salt 
bridge, π-Sigma, Alkyl, π-Cation, π-Alkyl 

NaaaC, SaasC 

2 (most 
active) 

58.694 LYS A:89, ASP A:86, ALA A:31, LEU A:133, PHE A:80, VAL 
A:18, VAL A:64, CYS A:83, ILE A:10, LYS A:9 

Hydrogen Bond (conventional, Carbon), π-π T- 
shaped, Attractive charge, Alkyl, π-Alkyl 

NaaaC, SaasC 

146 (least 
active) 

47.848 LYS A:33, LEU A:133, VAL A:18 Hydrogen Bond (Carbon), π-Alkyl SaasC 

194 (least 
active) 

30.142 LEU A:133, PHE A:82, ILE A:10, LYS A:89 Hydrogen Bond (Conventional), π-Alkyl, 
π-Sulfur 

SaasC  
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obtained from this study and those obtained from previous models are 
given in Table 7. 

4. Conclusion and prospects 

The present investigation includes the development of in silico-based 
predictive 2D-QSAR models against the twelve major targets of AD using 
a PLS regression approach for the exploration of the structural features 
responsible for the inhibitory activity toward respective targets using 
simple and easily interpretable 2D descriptors. We have also developed 
the 17 QSAAR and 10 selectivity-based models by screening the com-
mon inhibitors from the primary datasets. All models are extensively 

validated and found to be robust enough to satisfy the acceptance 
criteria. From the insights obtained from the models, it can be inferred 
that features contributing to hydrophobicity as the significant parameter 
for the AD drugs, molecular bulk, and electronegativity of the com-
pounds may enhance the inhibitory activity of the compounds. The 
identified features/properties are responsible for enhancing brain 
permeability and an entropically more favorable binding to the receptor 
and intermolecular interactions by strong H bonds for the improvement 
of the inhibitory activity against the targets. The developed individual 
models were used to check the applicability domain of the four chemical 
druglike databases (18,963,690 compounds) for the search for novel 
inhibitors with multitarget inhibitory activity. In a detailed analysis of 

Table 6 
Molecular docking results (γ-secretase, GSK-3β, MAO-B inhibitors, NMDA receptor antagonist, PDE 10A enzyme, Glutaminyl Cyclase (QC) inhibitors) and correlation 
with 2D-QSAR models in this study.  

Compound -CDocker 
interaction energy 
(kcal/mol) 

Interacting residues Interactions Correlation with QSAR 
model 

γ-secretase inhibitors 
180 (most 

active) 
126.087 PRO A:424, PRO A:141, TYR A:453, ARG A:281, GLU 

A:333, ASN A:142, TYR A:337 
Hydrogen Bond (Conventional and Carbon), 
Alkyl, π-Cation 

P_VSA_MR_7, ATS6s, 
VE3sign_D, VE3sign_D/ 
Dt 

208 (least 
active) 

52.566 HIS A:444, PRO A:424, ARG A:281, PRO A:141, TYR A:453, 
SER A:425 

Hydrogen Bond (Carbon), π-Alkyl, π-Cation, 
Alkyl 

P_VSA_MR_7, ATS6s 

GSK-3β inhibitors 
41 (most 

active) 
38.688 VAL A:70, ILE A:62, VAL A:135, ALA A:83, TYR A:134, LEU 

A:188, ASP A:133 
Hydrogen Bond (Conventional, Carbon), π-π 
stacked, π-Alkyl 

SaasC, PDI, SaaaC, F06 
[N–O], nPyrroles, B05 
[N–O] 

112 (least 
active) 

18.996 LEU A:188, ALA A:83 π-Alkyl SaaaC 

MAO-B inhibitors 
72 (most 

active) 
47.999 LYS A:296, TRP A:388, VAL A:294, GLY A:57, CYS A:397, 

TYR A:435, ILE A:14, SER A:15, GLY A:13, THR A:426, ARG 
A:42, ALA A:439 

Hydrogen Bond (Conventional, Carbon), Amide-π 
stacked, π-Alkyl, Alkyl 

F02[O–O], C% 

87 (most 
active) 

44.213 ILE A:14, SER A:15, GLY A:13, THR A:426, ALA A:439, TYR 
A:435, ARG A:42, CYS A:397, GLY A:57, GLY A:434 

Hydrogen Bond (Conventional, Carbon), Amide-π 
stacked, π-Alkyl, Alkyl, Halogen (Fluorine) 

F02[O–O], C% 

14 (least 
active) 

37.933 TYR A:398, CYS A:397, ARG A:42, ILE A:14, ALA A:439, 
THR A:426 

Hydrogen Bond (Carbon), π-Alkyl, Alkyl C% 

25 (least 
active) 

32.254 GLY A:58, GLY A:40, ARG A:42, MET A:436, TYR A:435, 
TYR A:398, GLN A:206 

Hydrogen Bond (Carbon), π-π T-shaped, π-Sigma, 
π-Alkyl, Alkyl, Halogen (Cl, Br, I) 

C% 

NMDA receptor antagonist 
485 (most 

active) 
32.035 TYR A:184, GLN A:144, LEU A:146, SER A:180, THR A:126, 

HOH A:1036, HOH A:1111, GLN A:13, TRP A:223, PRO 
A:15, VAL A:227, ALA A:226, PHE A:16, ASP A:224 

Hydrogen Bond (Conventional, Carbon and 
Water), π-π T-shaped, π-Lone pair, π-Sigma, 
π-Alkyl, Alkyl, Halogen (Fluorine) 

ATSC1p, C-028, TPSA 
(Tot), B10[C–O] 

486 (most 
active) 

32.578 PHE A:92, LEU A:125, THR A:126, PRO A:124, HOH 
A:1078, HOH A:1036, ASP A:224 

Hydrogen Bond (Conventional, Carbon and 
Water), π-Anion, π-Alkyl, Alkyl, 

ATSC1p, C-028, TPSA 
(Tot) 

398 (least 
active) 

27.011 GLN A:144, ASP A:224, PRO A:124, PHE A:92, THR A:126 Hydrogen Bond (Carbon), π-Lone pair, π-Alkyl, 
Halogen (Fluorine) 

C-028 

455 (least 
active) 

21.838 PHE A:92, PHE A:246, LEU A:146, TYR A:184 Hydrogen Bond (Carbon), π-π T-shaped, π-π 
stacked, π-Alkyl 

TPSA(Tot) 

Phosphodiester 10A (PDE 10A) enzyme inhibitors 
226 (most 

active) 
51.832 TYR A:524, ASP A:674, SER A:677, ILE A:692, LEU A:675, 

GLN A:726, PHE A:729, PHE A:696, LEU A:635, ALA A:636, 
SER A:571, ASN A:572, GLU A:592 

Hydrogen Bond (Conventional and Carbon), π-π 
T-shaped, π-π stacked, π-Alkyl 

N-070, AMR, minsCH3, 
Eta_epsi_2 

228 (most 
active) 

57.044 LEU A:675, SER A:677, PHE A:729, GLN A:726, ILE A:692, 
MET A:713, PHE A:696, PHE A:570, HIS A:525, GLU A:592, 
THR A:633, LEU A:635, ASP A:674 

Hydrogen Bond (Conventional and Carbon), Salt 
bridge, π-π T-shaped, π-π stacked, π-Sigma, Alkyl, 
π-Alkyl, π-Cation, Attractive charge 

N-070, AMR, minsCH3, 
Eta_epsi_2 

217 (least 
active) 

36.980 LEU A:635, HIS A:567, PHE A:696, PHE A:729, ILE A:692, 
GLN A:726 

Hydrogen Bond (Conventional and π-Donor), π-π 
T-shaped, π-π stacked, π-Alkyl 

Eta_epsi_2, AMR 

221 (least 
active) 

35.608 LEU A:675, ILE A:692, PHE A:729, TYR A:524, HIS A:525, 
ASP A:634, LEU A:635 

Hydrogen Bond (Carbon), π-π T-shaped, π-π 
stacked, π-Alkyl, π-Cation 

Eta_epsi_2, AMR 

Glutaminyl Cyclase (QC) inhibitors 
87 (most 

active) 
131.348 TRP A:329, LYS A:144, HIS A:330, ASP A:159, GLU A:202, 

GLU A:201, SER A:160, MET A:167, PRO A:163, CYS A:139, 
LEU A:137, LEU A:246, ALA A:138, LEU A:247, ASP A:248, 
ASP A:305 

Hydrogen Bond (Conventional, Carbon and 
π-Donor), Attractive charge, Alkyl, π-π T-shaped, 
π-Anion, π-Cation, π-Alkyl 

C-034, B09[C–O], T(N.. 
S) 

88 (most 
active) 

128.118 TRP A:329, TRP A:207, HIS A:330, ASP A:159, GLU A:201, 
SER A:160, MET A:167, PRO A:163, CYS A:139, LEU A:137, 
VAL A:245, LEU A:247, ASP A:248, ASP A:305 

Hydrogen Bond (Conventional and Carbon), 
Attractive charge, Alkyl, π-Sigma, π-Anion, 
π-Alkyl 

C-034, B09[C–O], T(N.. 
S) 

31 (least 
active) 

15.879 TRP A:329, TRP A:207, ILE A:303 Alkyl, π-Alkyl T(N..S) 

33 (least 
active) 

17.698 GLN A:304, TRP A:207 Hydrogen Bond (Conventional), π-Cation T(N..S)  
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the predicted chemical databases, we have identified the top 56 lead 
compounds with multitarget inhibitory activity that could act as in-
hibitors for the treatment of AD. Furthermore, we have also imple-
mented chemical Read-Across predictions using the Read-Across-v3.1 
tool (https://dtclab.webs.com/software-tools); the results for the 
external validation parameters were found to be better than the 2D- 
QSAR-derived predictions. Finally, molecular docking analysis has 
been implemented to identify the interactions between target proteins 
and inhibitors, and the results showed the active compounds formed 
hydrogen bonding and hydrophobic π interactions with active amino 
acid residues that lead to explaining the influences of different features 
which appeared in the 2D-QSAR models. Moreover, the evidences ob-
tained from molecular docking analysis well corroborated with the 
features obtained from the 2D-QSAR analysis. Lastly, we may conclude 
that the developed QSAR, QSAAR, and selectively based models might 
be enormously valuable as guides for investigators to predict the 
inhibitory activity of novel compounds against respective targets and 
the evidence obtained from the 2D-QSAR analysis and molecular 
docking studies can be useful for the design of next-generation Alz-
heimer’s treatments. 
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[20] A. Rácz, D. Bajusz, K. Héberger, Multi-level comparison of machine learning 
classifiers and their performance metrics, Molecules 24 (15) (2019) 2811, https:// 
doi.org/10.3390/molecules24152811. 
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