M.SC. INSTRUMENTATION 1ST YEAR 1ST SEMESTER - 2023

SUBJECT: ADVANCE MATHEMATICS AND COMPUTER PROGRAMMING

Time: 4 Hours Full Marks: 80

Part-I

Use separate answer scripts for each part; Answer any four questions

1. a) State Cauchy Riemann equations.

1+9

b) Solve the equation $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$, subject to the conditions:

(i)
$$u = 0$$
 when $x = 0$, $t > 0$ (ii) $u = 0$ when $t = 0$ (iii) $u(x.t)$ is bounded.
 $0, x \ge 1$

2. (a) Find the solution of the heat conduction equation

$$\frac{\partial^2 u}{\partial x^2} = h^2 \frac{\partial u}{\partial t},$$

for which u(0,t) = u(l,t) = 0 and $u(x,0) = \sin \frac{\pi x}{l}$ by the method of separation of variables.

- (b) Using the Cauchy Riemann equations, show that $f(z) = z^3$ is analytic in the entire z plane.
- (c) Show that the function u(x, y) = 4xy 3x + 2 is harmonic.

5+3+

- 3. (a) State the Dirichlet's conditions.
 - (b) Find the Fourier sine transform of $e^{-|x|}$. Hence evaluate $\int_0^\infty \frac{x \sin mx}{1+x^2} dx$. 2+4+4
- 4. (a) What are the required conditions for the convergence of the Fourier series of f(x) to f(x) at any value of x. 2+8
 - (b) Find the Fourier series of the function defined as

$$f(x) = \begin{cases} x + \pi & for & 0 \le x \le \pi \\ -x - \pi & for & -\pi \le x < 0 \end{cases}$$
 and
$$f(x + 2\pi) = f(x).$$

- 5. (a) Show that the Fourier transforms of the convolution of f(x) and g(x) is the product of their Fourier transforms, F[f(x) * g(x)] = F[f(x)] . F[g(x)].
 - (b) Prove that, $L\{f(at)\} = \frac{1}{a}F\left(\frac{s}{a}\right)$, where the symbols have their usual meaning.
 - (c) Prove that, $L\left[\frac{1}{t}f(t)\right] = \int_{s}^{\infty} F(s)ds$, the symbols have their usual meaning.
- 6. a) Test the analyticity of the function $w = \sin z$.
 - b) Find a Fourier series to represent $x x^2$ from $x = -\pi$ to π and show that

$$\frac{\pi^2}{12} = \frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \dots$$
 3+7

7. Express the following function in terms of unit step function and find its Laplace transform

$$0, \quad 0 < t < 1$$

$$f(t) = t - 1, 1 < t < 2$$

1,
$$2 < t$$

10

(Part-II)

Answer any four questions taking two from each Group.

 $4 \times 10 = 40$

Group-A

- 1. If a number be rounded to *n* correct significant figures, then show that the relative error is less than $\frac{1}{k \times 10^{n-1}}$, where *k* is the first significant figure in the number.
- b) Find the number of significant figures in $V_T = 1.5923$ when its relative error $E_r = 0.1 \times 10^{-3}$, where V_T is the true value of the number.

2.	a)

•	<u>u)</u>					
	\boldsymbol{x}	1	. 2	3	4	5
	f(x)	4 .	13	34	73	136

Considering the above data, construct the forward finite difference table. Hence find the polynomial f(x) which satisfy the above data and find the value of f(2.5).

- b) Show that $\Delta \cdot \nabla = \Delta \nabla$, where symbols have their usual meanings.
- 3. a) Find the expression for the Lagrange's interpolation formula.
 - b) Using Lagrange's interpolation formula compute f(2) from the table given below:

x	0	1	3	4
f(x)	5	6	50	105

4. a) Solve the following system of simultaneous linear equations using Gauss-elimination method correct upto two decimal places.

$$2x + 3y + z = 9$$

$$x + 2y + 3z = 6$$

$$3x + y + 2z = 8$$

Group - B

- 5. Write a general program in C-Language to solve the initial value problem $\frac{dy}{dx} = -y + x^2 + 1$ with y(0) = 1 at x = 2 with Euler method.
- 6. Write a general program in C-Language to take two matrices $A = \begin{pmatrix} 1 & 2 & 4 \\ 3 & -5 & 7 \\ 4 & 7 & 8 \end{pmatrix}$ and $\begin{pmatrix} 19 & -2 & 3 \\ \end{pmatrix}$

$$B = \begin{pmatrix} 19 & -2 & 3 \\ -1 & -2 & -3 \\ 41 & -7 & 15 \end{pmatrix}. \text{ Calculate } A + B \text{ and } A - B.$$

- 7. Write a general program in C-Language to perform the integration $\int_{1}^{7} 2x^{2} 5x + 2 \, dx$ by Simpson's 1/3 rule.
- 8. Write a general program in C-Language to find the root of the equation $x^3 + 2x^2 5 = 0$ between x = 0.5 to x = 2.[Any method can be used]