M. Sc. Physics Examination, 2023

(2nd Year, 1st Semester)

HIGH ENERGY PHYSICS

PAPER - Sc/PHY/PG/CBS/TH/202/2023

Time: Two hours

Full Marks: 40

Answer any four questions (4×10) .

- 1. Write down the Dirac equation in covariant form.
 - Then, transform the equation and express it in terms of an adjoint spinor $\bar{\psi} = \psi^{\dagger} \gamma^{0}$. Derive a continuity equation from this equation. Discuss the physical interpretation of this conserved current.
- 2. Define $\gamma_5 = i\gamma^0\gamma^1\gamma^2\gamma^3$. Show that $\gamma_5^2 = 1$ and $\{\gamma_5, \gamma^\mu\} = 0$. Show further that $P_{\pm} := \frac{1\pm\gamma_5}{2}$ define projection operators. Check further whether the chiral Dirac current $j_5^\mu = i\bar{\psi}\gamma^\mu\gamma_5\psi$ is a conserved current?
- 3. For a free scalar field, show how the field and the lagrangian transform under parity transformation. Requiring parity invariance show that intrinsic parity for the field is ±1. Show that for a free photon field, one cannot tell whether the intrinsic parity is positive or negative.
- 4. Write down the general expression for differential cross section for the process $AB \rightarrow CD$.

For a scattering process of the form $AB \to CD$ define Mandelstam variables. Show that sum of these variables is $m_A^2 + m_B^2 + m_C^2 + m_D^2$.

[Tuen over

- 5. Write down two examples of decay processes for i) electromagnetic, ii) strong and iii) weak interactions. Are parity, charge conjugation conserved in all three above interactions?
 - Draw the Feynman diagram for Moller scattering $e^-e^- \rightarrow e^-e^-$.
- 6. Write down invariant current-current form of the amplitude for β -decay proposed by Fermi. Then write down its correct amplitude. Draw the Feynman diagram for muon decay.
- 7. Write down how a Dirac field transforms under U(1) local and global transformation. Show that the Lagrangian $L=i\bar{\psi}\gamma^{\mu}\partial_{\mu}\psi-m\bar{\psi}\psi$ is invariant under global gauge transformation, but not under local gauge transformation.

 Now explain how a gauge field is introduced by demanding local phase invariance.
- 8. Write down the Lagrangian of Quantum Electrodynamics (QED). Show that addition of a mass term $\frac{1}{2}m^2A_{\mu}A^{\mu}$ is prohibited by gauge invariance and the gauge particle, the photon, must be massless.