Ex/SC/PHY/PG/CBS/TH/303/2023

M. Sc. Physics Examination, 2023

(2nd Year, 2nd Semester)

QUANTUM FIELD THEORY

PAPER - 303

Time : 2 hours

Full Marks : 40

Use separate answer script for each group.

Group – A

Answer any two questions.

- a) Using a linear superposition of space-dependent wave-functions with time-dependent coefficients in a general time-dependent Schrödinger equation, find the algebraic form of the time-dependence of these coefficients.
 - b) Show that the expectation value of the Hamiltonian evaluated with respect to a general time-dependent wave-function is independent of time.
- 2. Use the quantum evolution equation for an arbitrary operator to show that a bosonic as well as a fermionic operator both obey the same equation of motion. 10
- 3. a) Explain how the Pauli's exclusion principle follows from the anti-commutation rules obeyed by the fermionic operators.
 - b) By determining the eigenvalues of the operator $\hat{N}_k \hat{f}_k$ where \hat{N}_k represents the fermionic number [Turn over

operator and \hat{f}_k denotes an arbitrary ferionic operator, explain the action of the operator \hat{f}_k on a state given by $|n_1n_2...n_k...\rangle$. 5+5

Answer any *Four* questions. $4 \times 5 = 20$

1. Consider the Hamiltonian $H = H_0 + H_{int}$ and define interaction picture field

$$\phi_I(t, \vec{x}) = e^{iH_0(t-t_0)}\phi(t_0, \vec{x})e^{-iH_0(t-t_0)}$$
 when $H_{\text{int}} = 0$.

Now express the full field $\phi(t, \vec{x})$ in the form $U^{\dagger}(t,t_0)\phi_I(t,\vec{x})U(t,t_0)$ and find the explicit expression for $U(t,t_0)$. Then obtain a differential equation of $U(t,t_0)$ in terms of H_{int} and find the unique solution for $U(t,t_0)$ considering $U(t_0,t_0) = 1$.

- 2. Define S matrix. State Wick's theorem. Using Wicks's theorem evaluate the expression for $\langle 0|T\{\phi(x_1)\phi(x_2)\phi(x_3)\phi(x_4)\}|0\rangle$ and then express the result in terms of Feynman diagrams with detailed description.
- 3. Write down necessary mathematical descriptions that describe the quantization in quantum mechanics and then generalize this description to quantize a theory of fields.

Interpret what these following expressions are physically expressing: i) $\phi(\vec{x})|0>$, and ii) $<0|\phi(\vec{x})|0>$.

- 4. Prove that $\theta(x^0 y^0) \langle 0 | [\phi(x_1), \phi(x_2)] | 0 \rangle$ is a Green's function of the Klein-Gordon operator.
- 5. State Noether's theorem. Show that the conserved charge associated with time translations is the Hamiltonian.