M.Sc Examination, 2023

(2nd Year, 2nd Semester)

Physics

Nucleus Under Different Conditions

Paper: PG/SC/CBS/PHY/TH /402

Time: Two hours Full Marks: 40

Answer any four questions:

- 1. a) What do you mean by spin-orbit coupling in the context of Nuclear Shell Model? Show that splitting of energy levels due to this coupling increases with "l".
 - b) Find the average magnetic moment $<\mu_z>$ for ^{17}O nucleus using extreme single particle shell model. Deduce the required formula.
 - c) For 61 Ni₂₈ nucleus, extreme single particle model predicts spin-parity to be (5/2) whereas, observed value is (3/2). Explain. [(1+3)+4+2]
- 2. a) Discuss how one can assign an error to a single count in a nuclear counting experiment. What should be done to reduce the error to approximately its one fourth value?
 - b) Counts from two gamma sources are as follows;

Source 1: $N_1 = 625$ in 5s

Source 2: $N_2 = 900 \text{ in 5s}$

Back-ground Count = 100 in 10s

Find the ratio of activities of the two sources along with its error.

- c) What is Luminosity? Why is it important in a high energy experiment? On what factors does it depend in a collider experiment? [(2+2) + 3 + 3]
- 3. a) What do you mean by threshold energy in the context of relativistic collision?

- b) Particle A of energy E hits particle B at rest, producing particles C1, C2, ..., in the reaction A+B → C1 + C2 + + Cn.
 Calculate the threshold energy for this reaction in terms of various particle masses.
- c) A high energy proton strikes a proton at rest, creates a proton-antiproton pair in addition to the original particles. Determine the threshold energy for this reaction and comment on the velocity of projectile proton.
- d) What is rapidity variable? Show that it transforms as additive over Lorentz transformation.

[1+3+(2+2)+2]

- 1. a) Why collider experiment is advantageous over fixed target experiment?

 Compare the available CMS energy for fixed target and collider experiment in case of proton proton collision at 7 TeV. What are the challenges of collider experiment?
 - b) Name the main parts of LHC detectors and mention their primary goal and position with respect to collision point. Briefly discuss the working of anyone part.

[(1+3+1)+(3+2)]

- 5. a) What do you mean by de-confinement of quarks? Define the new state of matter produced after the de-confinement of quarks and mention its essential features.
 - b) Why do we need to study such new state of matter in laboratory?
 - c) What are the primary signals that indicate the presence of such new state of matter? Discuss about any two signals?

[(2+2)+1+(1+4)]

- 5. a) Define cross section for collider experiment and fixed target experiment, then explain its physical meaning.
 - b) Consider a scattering of an incoming wave by a central potential field V(r). Calculate the scattering amplitude and then angular differential cross section using partial wave analysis.
 - c) For low energy s-wave scattering calculate the total cross section.
 - d) Discuss the possible effects of spin dependent nature of **n-p** interaction in **n-p** scattering process.

[3+4+1.5+1.5]