Ref. No. SC/PHY/UG/CORE/TH/11/2023(S)

## Bachelor of Science (Physics) Special Supplementary Examinations 2023

(3rd Year, 1st Semester)

## Quantum Mechanics and Applications

Time: Two hours
Full Marks: 40

## Group - A ( 20 marks)

Answer any two questions ( $2 \times 10$ )

1. (i) What do you mean by the quantum mechanical tunnelling of a particle? (ii) How can you calculate the probability of tunnelling of a particle using the time-independent Schrodinger equation? Schematic diagram and derivation are required.
2. (a) Starting from the $\mathbf{L}=\mathbf{r} \times \mathbf{p}$ derive a generalized equation for $\left[\mathbf{L}_{i}, \mathbf{L}_{\mathbf{j}}\right]$. (b) Explain the quantization of the $z$-component of the orbital angular momentum for $l=3$. (c) Derive an expression for operator $\mathbf{L}_{\mathbf{z}}$ in spherical polar coordinate system.
3. (a) How do you define degenerate states? (b) Consider that a particle of mass $m$ subjected to $V=0$ is confined within a three dimensional box. Obtain an expression for the energy eigen value of the particle. Discuss how energy eigen value depends on the dimensions of the box. Derivation is required.
4. (a) Write down the Hamiltonian of a hydrogen atom. (b) How do you relate, $\mathbf{p}^{2}$ and the Laplacian operator where $\mathbf{p}$ is the momentum operator? (c) Write down the ground state eigen function, $\psi_{100}$ of the hydrogen atom. (d) How many quantum numbers are required to express the radial part, R, of the wave function of the hydrogen atom?

## Group B

( 20 Marks )

## Answer any two Questions.

1. (i) Show that the lowest order relativistic correction to Hydrogen Hamiltonian is $H_{r}^{\prime}=-\frac{\hat{p}^{4}}{8 m^{3} c^{2}}$, where $\hat{p}$ is the operator corresponding to the relativistic momentum. (ii) Further, show that the first order relativistic correction to the energy levels is $E_{r}^{1}=-\frac{E_{n}^{2}}{2 m c^{2}}\left[\frac{4 n}{l+1 / 2}-3\right]$. [5+5]
2.'(i) Show that, the contribution to the cnergy levels due to spin-orbit interaction is $E_{s o}^{1}=\frac{E_{n}^{2}}{m c^{2}}\left[\frac{n\{j(j+1)-l(l+1)-3 / 4\}}{l(l+1 / 2)(l+1)}\right]$. (ii) Show that the fine structure breaks the degeneracy of energy levels in $\ell$ in Hydrogen atom, where $\ell$ is the quantum number corresponding to the orbital angular momemntum.

$$
[5+5]
$$

3. (i) Discuss the importance of Landé g -factor. (ii) Calculate Landé g factor for the following states: $2^{2} D_{3 / 2}, 2^{2} D_{5 / 2}$ (iii) Show the splitting of energy levels of Hydrogen atoms in a weak magnetic field is not uniformormly separated in energy.
$[2+3+5]$
