Ex/SC/PHY/UG/CORE/TH/13/2023
B. Sc. Physics (Hons.) Examination, 2023
(3rd Year, 2nd Semester)
Electromagnetic Theory
Paper - CORE 13
Time : 2 hours
Full Marks : 40
Answer any four questions. $\quad 4 \times 10=40$
Symbols used have their usual meanings.

1. a) Discuss about the importance of Maxwell's modification to Ampere's law.
b) For a monochromatic plane wave traveling in the z direction and linearly polarized in the x direction, find all elements of the Maxwell stress tensor. Discuss whether the obtained result has any physical significance.
c) Write down the Poynting's theorem. $3+(3+2)+2$
2. a) For electromagnetic wave propagation through a conducting medium, show that the magnetic field lags behind the electric field. Is the wave transverse in nature? Explain.
b) How the skin depth in a good conductor depends on the wavelength of electromagnetic wave? (5+2)+3
3. a) What are s-polarised and p-polarised waves? Write down the boundary conditions of the electric and magnetic field vectors in case of p-polarised waves
and hence establish the Fresnel reflection and transmission coefficients.
b) An unpolarised wave is polarised after reflection if the angle of incidence takes a particular value depending on the medium. Explain this phenomenon using Fresnel coefficients.
$(2+3+3)+2$
4. a) Show that, in case of total internal reflection, the phase change is given by

$$
2 \phi=2 \tan ^{-1}\left[\left(\frac{n_{1}}{n_{2}}\right)^{2} \frac{\left(\sin ^{2} \theta_{i}-\sin ^{2} \theta_{c}\right)^{\frac{1}{2}}}{\cos \theta_{i}}\right]
$$

where $n_{1}>n_{2}$.
b) What are positive and negative crystals? Within an anisotropic crystal, \vec{E} and \vec{D} are not parallel. Establish it mathematically to show that $\vec{D}=\frac{n_{\omega}^{2}}{c^{2} \mu_{0}}[\vec{E}-(\hat{k} \cdot \vec{E}) \hat{k}]$.
5. a) The x and y components of the electric field are given by $E_{x}=E_{0} \sin (k z-\omega t+\pi / 3)$ and $E_{y}=E_{0} \sin (k z-\omega t-\pi / 6)$. Determine the state of polarization and show it in a schematic diagram.
b) Prove that, for a half wave plate, the thickness of the crystal may be given by $d=(2 m+1) \frac{\lambda}{2\left(n_{0}-n_{e}\right)}$.
c) A left circularly polarized light $(\lambda=5893 \AA)$ falls on a calcite crystal (with its optic axis lying parallel to the surface) of thickness 0.005141 mm . Show that the emerging beam is right circularly polarised. Given: $n_{0}=1.65836, n_{e}=1.48641 . \quad 3+4+3$
6. a) Prove that TM_{10} mode of electromagnetic wave cannot propagate in a rectangular wave guide. Then find out the lowest cut-off value of frequency for propagation of TM mode. Will the cut-off frequency change if the wave guide is filled with a dielectric medium with dielectric constant ϵ_{r} ?
b) Find the ratio of the lowest TM mode cutoff frequency to the lowest TE mode cutoff frequency, for a given wave guide.
$(5+1+2)+2$

