B. Sc. Physics (Hons.) Examination, 2023

(2nd Year, 2nd Semester)

MATHEMATICAL PHYSICS III

PAPER - UG/Sc./Core /Phy/ Th/08

Time: 2 hours Full Marks: 40

Use separate answer script for each group

GROUP A

$\underline{\text{Answer any TWO}} (10 \times 2 = 20)$

- 1. (a) If $i^{x+iy} = x + iy$ prove that that $x^2 + y^2 = e^{-(4n+1)\pi y}$. (3)
 - (b) Explain single valued and multivalued function of complex variable taking at least **one** example of each. (3)
 - (c) Show that $e^x(x\cos y y\sin y)$ is a harmonic function. Find the analytic function f(z) for which $e^x(x\cos y y\sin y)$ is the imaginary part by finding out the conjugate function. (4)

[CO 1]

- (a) State the Laurent's series expansion of a function f(z) of complex variable about an isolated singularity z₀ and hence calculate the coefficient of negative power of z in that expansion.
 - (b) What is $Res[f(z), z_0]$? State its usefulness. (1+1)
 - (c) Using Cauchy's Residue theorem evaluate the following integral $\int_0^{2\pi} \frac{1}{1 2p \sin \theta + p^2} d\theta \qquad (0$

[CO 1]

- 3.(a) Expand $f(z) = \frac{z^2}{(z+1)(z+5)(z+10)}$ about z = -2 in the region (i) |z+2| < 1. (4)
- (b) Using contour integration and Jordan's Lemma evaluate $\int_{-\infty}^{\infty} \frac{\sin mx}{x} dx$. (6)

[CO 1]

- (a). Consider the 3 following vectors in \mathbb{R}^3 ,: $v_1 = (1, 1, 1)$, $v_2 = (1, 1, 0)$ & $v_3 = (1, 0, 1)$. Check whether they are linearly independent. Use the Gram-Schmidt procedure to construct an orthornormal basis from these three vectors
- (b) It is well known that the Carbon atom (C_4) has the shape of a regular tetrahedron embedded in \mathbb{R}^3 . Using elementary vector analysis, establish that the C-C valence bond angle is 109° 28" (approx.).

[4 + 6]

(a) Three radioactive nuclei (N_1, N_2, N_3) decay successively in series, so that the numbers $N_j(t)$ of the three types at any time obey the equations:

$$\frac{dN_1}{dt} = -\lambda_1 N_1$$

$$\frac{dN_2}{dt} = \lambda_1 N_1 - \lambda_2 N_2$$

$$\frac{dN_3}{dt} = \lambda_2 N_2 - \lambda_3 N_3$$

If initially $N_1(0) = N_0$, $N_2(0) = 0$ & $N_3(0) = n$, find $N_3(t)$.

- (b) Find the Laplace transform of the function: $f = e^{-\alpha t}$. [8 + 2]
- (a) Let \mathbb{V} be the space of real polynomials (of a single variable x), *i.e.* $\mathbb{V} = \{p(x) : \deg p(x) \leq 2\}$. Define an inner product on \mathbb{V} by:

$$\langle p,q \rangle = \int_0^1 p(x)q(x)dx$$

Using the Gram-Schmidt process on the standard basis $(1, x, x^2)$ to obtain an orthnormal basis for \mathbb{V} .

(b). Given the 2×2 matrix A, find the expression for the matrix A^4 , where the matrix A is given by:

$$\begin{pmatrix} 1 & 2 \\ 3 & 1 \end{pmatrix}$$

[7 + 3]

- (a). Define a Hermitian matrix. If A is a Hermitian matrix and C and D are Unitary matrices, then show that:
- (i) $C^{-1}AC$ is Hermitian,
- (ii) $C^{-1}DC$ is Unitary.
- (b). Suppose $\{\vec{X_1}, \vec{X_2}, \vec{X_3}, \dots \vec{X_k}\}$ is a set of vectors in \mathbb{R}^N . Find the necessary condition for these vectors to be *linearly independent*.
 - (c). If M is the matrix given by:

$$\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

then find e^M .

[5 + 2 + 3]