Ex/SC/PHY/UG/CORE/TH/10/2023

## B. Sc. Physics (Hons.) Examination, 2023

(2nd Year, 2nd Semester )

## Analog Systems and Applications <br> Paper - CORE 10

## Time : 2 hours

Full Marks : 40

1. a) Define Fermi Energy. Draw the f(E) vs. E curves for $\mathrm{T}=0 \mathrm{~K}$ and $\mathrm{T}>0 \mathrm{~K}$.
b) How does the temperature affect drift and diffusion current in a semiconductor?
c) Is there any advantage of Bridge Rectifier?
d) A crystal diode having internal resistance $\mathrm{r}_{\mathrm{in}}=20 \Omega$ is used for half wave rectification. If the applied voltage $v=50 \sin \omega t$ and load resistance $\mathrm{R}_{\mathrm{L}}=800 \Omega$, find (i) $I_{\text {max }}, I_{d c}$, $I_{\text {rms }}$ (ii) a.c. power input and d.c. power output (iii) d.c. output voltage. $3+2+2+3$
2. a) How the fill factor and efficiency can be calculated from the current-voltage characteristics of a solar cell?
b) A $6.8 \mathrm{~V}, 300 \mathrm{~mW}$ Zener diode is used as a voltage regulator with load resistance $R_{L}=1 \mathrm{k} \Omega$ and a series resistance $R_{S}=220 \Omega$. Find the minimum and maximum values of input voltage for which the output will be maintained constant at 6.8 V .
c) Draw the emitter bias circuit. Explain how the introduction of emitter resistance improves the stability of biasing in emitter bias circuit compared to fixed bias circuit.
$3+3+4$
3. a) For the transistor shown below, assume $V_{i n}=5 \mathrm{~V}, V_{B E}$ $=0.7 \mathrm{~V}$ and $\beta_{\mathrm{dc}}=100$. Find $V_{\text {out }}$.

b) In a CE amplifier, the load impedance consists of a resistance and inductance in series. What should be the phase difference between input and output signals? Give explanation.
c) Draw and explain the frequency response graph of a RC coupled amplier.
d) In Oscillator although there is no supply of continuous ac signal in the input, how will we get ac signal in the output?
iii) Draw the output waveform if $\mathrm{V}_{1}=5 \sin 100 \pi \mathrm{t} \mathrm{V}$.

4. a) Find $V_{0}$ in circuit provided in figure below. 4

b) In circuit given below $\mathrm{V}_{\text {ref }}=4 \mathrm{~V}$, output saturation voltages are $\pm 15 V$ and $\mathrm{V}_{1}$ is an adjustable dc voltage source.
i) Calculate the values of upper and lower threshold voltages,
ii) In an experiment the $V_{1}$ has been gradually increased from 0 to 8 V and then decreased from 8 to 0 V . Draw the $\mathrm{V}_{0}$ versus $\mathrm{V}_{1}$ curve.
5. a) Draw circuit diagram of a differential amplifier working in double ended differential mode configuration. Draw suitable equivalent $\mathrm{r}_{\mathrm{e}}$ model of this circuit and determine the expression for its gain.

$$
2+2+4
$$

b) Write down the characteristic features of an operational amplifier (op-amp).

2
5. a) Find $V_{0}$ in circuit shown in figure below.

b) Find $\mathrm{V}_{0}$ in circuit shown in figure below. $5+5$

[ Turn over

