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                                                                                               ABSTRACT 

 

Laminated composite shells constitute a large percentage of structures including 

aerospace, marine and automotive structural components. Structural engineers have already 

picked up laminated composite hypar shells (hyperbolic paraboloid bounded by straight edges) 

as roofing units. Hypar shells are used in civil engineering industry to cover large column free 

areas such as in stadiums, airports and shopping malls. Being a doubly curved and doubly ruled 

surface, it satisfies aesthetic as well as ease of casting requirements of the industry. Moreover, 

hypar shell allows entry of daylight and natural air which is preferred in food processing and 

medicine units. Cutout is sometimes necessary in roof structure to allow entry of light, to provide 

accessibility of other parts of the structure, for venting and at times to alter the resonant 

frequency. Shell structure that are normally thin walled, when provided with cutout, exhibits 

improved performances with stiffeners. To use these doubly curved, doubly ruled surfaces 

efficiently, the behavior of these forms under bending are required to be understood 

comprehensively. The use of laminated composites to fabricate shells is preferred to civil 

engineers from second half of the last century. The reasons are high strength/stiffness to weight 

ratio, low cost of fabrication and better durability. Moreover, the stiffness of laminated 

composites can be altered by varying the fiber orientations and lamina thicknesses which gives 

designer flexibility. As a result, laminated shells are found more cost effective compared to the 

isotropic ones as application of laminated composites to fabricate shells reduces their mass 

induced seismic forces and foundation costs.Shells with cutout, stiffened along the margin are an 

efficient way to enhance the stiffness of the structure without adding much mass. These 

stiffeners slightly increase the overall weight of the structure but have positive effect on 

structural strength and stability. So to apprehend the laminated composite stiffened hypar shells 

with cutout and to use this shell form efficiently, its characteristics under bending and vibration 

need to be explored comprehensively. 

The vibration frequencies of laminated panels depend on laminations, edge conditions, 

shell dimensions (thickness, length) and cutout (size and position). Therefore, for cutout borne 

stiffened hypar shells with various material system and geometric shape, obtaining an 

appropriate combination of lamination angle, thickness, cutout position and end conditions for 
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maximization of the fundamental frequency becomes an interesting problem. This is more so 

because fundamental frequency needs to be higher to skip any resonance effect occurring from 

ground vibrations and other natural disturbances. However, there has not been much of an 

activity in this respect perhaps due to the complexities involving so many shell parameters and 

complicated algorithm flow as well. The present study thus also emphasizes on the maximization 

of fundamental frequency of cutout borne hypar shells based on Design of Experiments 

technique. 

Realizing the importance of cutout bornestiffened composite hypar shell, the scope of 

present study is outlined and laminated composite graphite epoxy skewed hypar shells with 

cutout and stiffeners are taken up for bending and vibration studies. A finite element formulation 

has been established by combining eight noded isoparametric shell element and a three-noded 

beam element for the stiffeners. The formulation is validated through some benchmark 

problemsfrom literature. The entire numerical study is divided into three parts- first part deals 

with static behavior of laminated stiffened hypar shell with cutout, second part deals with free 

vibration criteria and mode frequency analysis of laminated stiffened hypar shell with cutout, and 

third part deals with Design of Experiment analysis and optimization of fundamental frequency 

of laminated composite stiffened hypar shells with cut-out using Taguchi Methodology. The 

effects of different parametric variations are studied on the shell actions including deflection, 

force and moments and also on fundamental frequencies and mode shapes. The boundary 

conditions along the four edges are varied for the stiffened shell with cut-outs. The position of 

cut-out is also varied for the study of fundamental frequencies and modes of laminated stiffened 

hypar shell. The thesis ends with an overall conclusion of present work and future scope of 

research is also mentioned. 

It is believed that the outcome of the present study will be of both academic interest and 

practical/industrial importance to structural engineers and designers dealing with such laminated 

composite shell structures. 
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                                                                                                    Chapter 1 

INTRODUCTION 

 

 

 

1.1  GENERAL 

A shell is a curved structural surface which resist any externally superimposed load by 

combined in-plane thrusts and bending of the surface. This coupling of in-plane force and bending 

moments provide high strength and stiffness. Thus, a shell gains its strength through its form more 

than its mass. The doubly curved surface is a specialized structural element which is efficient in 

terms of strength and aesthetics. Hence the idea of constructing stiffened structures such as steel 

chimneys, pipes and conduits, bridge, aircrafts, ship and off-shore structures has gained 

momentum. The idea that structures can be made of thin plate and shells can be strengthened by 

integrating them with row of ribs which is an innovative idea and economically acceptable without 

compromising strength or stability. 

Usually, composites are defined as combination of two or more materials to achieve 

specific properties. From Engineering point of view composite may be defined as combination of 

materials which differ in composition or form on macroscopic level and remain chemically 

inactive with respect to each other to form a useful material. Commonly composites are two types: 

a) Particulate composites b) Fibre reinforced composites. Particulate composites are those in which 

particles of various shapes and size are dispersed within matrix in random manner. As the particles 

are of different shapes and size and particles are in randomly dispersed within matrix, they are 

treated as quasi-homogenous and quasi-isotropic. Both particle and matrix may be metallic or non-

metallic. Fibre reinforced composites consists of fibres of significant strength and stiffness 

embedded in a matrix with distinct boundaries between them. Both fibres and matrix contain their 

own physical and chemical identities, their combination performs better which cannot be done 

singly. Fibrous composites consist of large number of strong, stiff, continuous or chopped fibres 
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embedded in matrix having large length to diameter ratio (100 or more) to ensure a reinforcing 

action. They are either in-organic (glass, carbon, boron) or organic (aramid, Kevlar) materials. The 

matrix also can be metallic (Aluminum) or non-metallic (polyester, epoxy, phenolic, resin and 

ceramics). 

A widely used geometry for continuous fibre composites is termed as Laminate. Laminates 

are made of plies, in which all fibres are often have the same direction. The fibres are usually 

stronger and stiffer than matrix so a ply is also stiffer and stronger in fibre direction. Lamina is 

formed when an array of fibres is given a resin bath and hardened. The matrix transfers the loads 

to fibres. A number of laminae or plies are bonded together in different orientation to form a 

laminate. Laminae are homogeneous and anisotropic in larger view scale and laminate is 

orthotropic. These are used in beams, plates, shells stiffened plates, stiffened shells etc. The lower 

cost of assembly, easy to repair, high specific stiffness and strength, excellent damage protection 

and higher fatigue response criteria increased the use of laminated components in important 

engineering fields. 

1.2  METHOD OF ANALYSIS 

The exact analysis of stiffened plate or shells based on theory of elasticity is rarely carried 

out for its difficult computational methods in evaluating deflection and stresses. Analysis of 

stiffened shells has been approached from three different angles. In the first approach, the elastic 

properties of stiffeners are distributed uniformly along the orthogonal directions and stiffened plate 

or shell is replaced by an equivalent orthotropic plate or shell of constant thickness. The orthotropic 

plate or shell theory demands equal and closely spaced stiffeners. Also, the stiffeners can be 

changed into an 'equivalent plate or shell'. In this method the evaluation of stresses in the plate and 

stiffeners separately becomes difficult. So, it may restrict the application of this technique into 

engineering field.  

In the second approach, the stiffened plate or shell can be treated as grillage, which is a 

plane structure of intersecting beams and carry lateral load through the beam bending action. There 

are basically two drawbacks in this method. Firstly, the centroidal plane of beam in different 

direction are assumed to be coincident which affect the accuracy of stresses calculated. Secondly, 

the beam properties are derived based on effective width of plate or shell remain inconclusive. 

Therefore, this method has also got restriction in usage. 
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The third method of modeling is most idealistic and accurate. In this approach the plate or 

shell sheet and the array of beams are treated as separate existence initially. The stiffness of 

stiffeners is derived by adding the individual stiffness to maintain the compatibility of the 

deformation at the interfaces. this method makes the analysis sufficiently involved and complex, 

but it gives a better significance in structural applications. However, the invention of high-speed 

digital computers and parallel development of numerical techniques in structure make the analysis 

simpler and accurate. There are various numerical methods in which plate or shell and stiffeners 

are considered as separate entities. These include: i) Finite Difference Method, ii) Energy Methods, 

such as Rayleigh's method, Rayleigh-Ritz method, Galerkin method etc., iii) Dynamic relaxation 

method, iv) Finite element method. 

Out of all these methods, Finite element method is considered as versatile due to its ability 

to incorporate geometry, loading and boundary conditions. Accordingly, researchers from all over 

the world adopted the analysis of composite stiffened plates and shells using finite element 

approach. The present approach also concentrates on the static and dynamic behavior of laminated 

composite stiffened hypar shell with cut-out using finite element method. 

1.3  IMPORTANCE OF PRESENT STUDY 

Laminated composite shells now constitute a large percentage of structures including 

aerospace, marine and automotive structural components. Structural engineers have already picked 

up laminated composite hypar shells (hyperbolic paraboloid bounded by straight edges) as roofing 

units. Hypar shells are used in civil engineering industry to cover large column free areas such as 

in stadiums, airports and shopping malls. Being a doubly curved and doubly ruled surface, it 

satisfies aesthetic as well as ease of casting requirements of the industry. Moreover, hypar shell 

allows entry of daylight and natural air which is preferred in food processing and medicine units. 

Cutout is sometimes necessary in roof structure to allow entry of light, to provide accessibility of 

other parts of the structure, for venting and at times to alter the resonant frequency. Shell structure 

that are normally thin walled, when provided with cutout, exhibits improved performances with 

stiffeners. To use these doubly curved, doubly ruled surfaces efficiently, the behavior of these 

forms under bending are required to be understood comprehensively. The use of laminated 

composites to fabricate shells is preferred to civil engineers from second half of the last century. 

The reasons are high strength/stiffness to weight ratio, low cost of fabrication and better durability. 

Moreover, the stiffness of laminated composites can be altered by varying the fiber orientations 
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and lamina thicknesses which gives designer flexibility. As a result, laminated shells are found 

more cost effective compared to the isotropic ones as application of laminated composites to 

fabricate shells reduces their mass induced seismic forces and foundation costs. Shells with cutout, 

stiffened along the margin are an efficient way to enhance the stiffness of the structure without 

adding much mass. These stiffeners slightly increase the overall weight of the structure but have 

positive effect on structural strength and stability. So to apprehend the laminated composite 

stiffened hypar shells with cutout and to use this shell form efficiently, its characteristics under 

bending and vibration need to be explored comprehensively. 

The vibration frequencies of laminated panels depend on laminations, edge conditions, 

shell dimensions (thickness, length) and cutout (size and position). Therefore, for cutout borne 

stiffened hypar shells with various material system and geometric shape, obtaining an appropriate 

combination of lamination angle, thickness, cutout position and end conditions for maximization 

of the fundamental frequency becomes an interesting problem. This is more so because 

fundamental frequency needs to be higher to skip any resonance effect occurring from ground 

vibrations and other natural disturbances. However, there has not been much of an activity in this 

respect perhaps due to the complexities involving so many shell parameters and complicated 

algorithm flow as well. The present study thus also emphasizes on the maximization of 

fundamental frequency of cutout borne hypar shells based on Design of Experiments technique. 

1.4 PRESENT THESIS 

Bending and vibration characteristics of laminated composite stiffened hypar (hyperbolic 

paraboloid shell bounded by straight edges) with cut-out are analyzed. A finite element code is 

developed for the purpose by combining an eight noded curved shell element with a three noded 

curved beam element for stiffener. Finite element formulation is based on first order shear 

deformation theory and includes the effect of cross curvature. The isoparametric shell element 

used in the present model consists of eight nodes with five degrees of freedom per node while 

beam element has four degrees of freedom per node. The code is validated by solving benchmark 

problems available in the literature and comparing the results. The generalized Eigen value 

solution is chosen for the un-damped free vibration analysis.  

Performances of antisymmetric angle-ply laminated composite stiffened hypar shells in 

terms of displacements and stress resultants are studied under static loading. A number of 
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additional problems of antisymmetric angle-ply laminated composite stiffened hypar shells are 

solved for various fibre orientations, number of layers and boundary conditions. Results are 

interpreted from practical application standpoints and findings important for a designer to decide 

on the shell combination among a number of possible options are highlighted. 

The first five modes of natural frequency are considered here. The numerical studies are 

conducted to determine the effects of width to thickness ratio (b/h), degree of orthotropy (E11/E22) 

and fibre orientation angle (θ) on the non-dimensional natural frequency. The results furnished 

here may be readily used by practicing engineers dealing with stiffened composite hypars with 

cut-outs. 

A numerical study of free vibration response of composite stiffened hypar shells with 

cutout using finite element procedure and optimization of different parametric combinations based 

on Taguchi approach is also considered. Numerical investigations are carried out following L27 

Taguchi design with four design factors, viz., fiber orientation, width/thickness factor of shell, 

degree of orthotropy and position of the cutout for different edge constraints. The optimum 

parametric combination for maximum fundamental frequency of cutout borne stiffened hypar shell 

is obtained from the analysis. 

 The present thesis is organized into 8 chapters. Chapter 1 introduces the present study 

including the organization of the thesis. Chapter 2 is devoted to the brief review of existing 

literature in the related area. Chapter 3 describes the scope of the present study. Chapter 4 details 

the mathematical formulation needed for the present analysis. Chapter 5 incorporates the study of 

bending behavior of stiffened hypar shell with cutout. Chapter 6 illustrates the vibration behavior 

of the shell with cutout. Chapter 7 describes the optimization of fundamental frequency of stiffened 

shell with cutout. Finally, chapter 8 includes the overall conclusions from the present study and 

future scope of research. 
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                                                                                                    Chapter 2 

REVIEW OF LITERATURE 

 

 

2.1  GENERAL 

The application of shell structures and related research have a long history and the volume 

of literature accumulated in this area is large. In this chapter, a brief review of recent literature is 

presented to give a brief description on development of shell research in particular context to cutout 

borne shells carried out in last two decades. 

2.2  STATE OF ART REVIEW 

While the theory of shell structures was being simplified and improved from time to time 

by many researchers, investigators started developing exotic materials with high strength and 

stiffness properties. This resulted in the use of laminated composite materials to fabricate shell 

forms. As a result, bending and vibration analysis of laminated composite shells emerged as a new 

field. Ruotolo [2001] studied on the comparison of thin shell theories used for dynamic analysis 

of isotropic and laminated composite stiffened cylinders. Prusty and Satsangi [2001a, b] 

investigated transient dynamic response of stiffened composite plates and shells using an eight 

noded isoparametric shell element and three noded curved isoparametric stiffener element. 

Different aspects of laminated composite stiffened shell behavior were studied by Nayak and 

Bandyopadhyay [2002a, b], Rikards et al. [2001]. Sai Ram and Babu [2001a] explained bending 

behavior of fibre reinforced plastic laminated shells without cut-out using finite element method 

based on higher order shear deformation theory. The higher order shear deformation theory was 

derived assuming transverse displacement constant throughout the thickness of shell considering 

eight-noded degenerated shell element having nine degrees of freedom. They also extended their 

study to bending behavior of fibre reinforced plastic laminated shells with cut-out using same 

formulation. Lee et al. [2002] studied free vibration of joined cylindrical-spherical shell structures 
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at various boundary conditions. The Fl𝑢̈gge shell theory and Rayleigh's energy method were 

applied in order to analyze free vibration characteristics of the joined shell structures and individual 

shell components. Nayak and Bandyopadhyay [2002b] studied the free vibration of stiffened 

shallow shells using finite element method. The stiffened shell element was obtained by 

appropriate combination of eight/nine noded doubly curved isoparametric thin shallow shell 

element with three noded curved isoparametric beam element. Numerical results were presented 

to study the effects of various parameters of shells and stiffeners. 

Free-vibration behavior of partially liquid-filled and sub-merged and horizontal cylindrical 

shell were studied by Ergin and Temarel [2002]. Qatu [2002a, b] reviewed in details on shell 

dynamics for both isotropic and composite materials for cylindrical and spherical shell. A three-

dimensional analysis was presented by Kang and Leissa [2005] for determining the free vibration 

frequencies and mode shapes of thick conical shells of revolution. Sahoo and Chakravorty [2005] 

investigated the vibration characteristics of composite hypar shallow shells with various edge 

supports using finite element method. Numerical experiments were carried out for different 

parametric variations including boundary conditions and stacking sequences to obtain fundamental 

frequencies and mode shapes. Nayak and Bandyopadhyay [2005] studied the free vibration 

behavior of laminated composite anticlastic doubly curved stiffened shell using finite element 

method. An efficient tool for free vibration analysis of rotating truncated conical shells were 

presented by Civalek [2006]. A discrete singular convolution method was described for the 

analysis. Frequency parameters for various boundary conditions were described. Free vibration 

analysis of skewed open circular cylindrical shells was studied by Kandasamy and Singh [2006]. 

First order shear deformation theory was presented including rotary inertia so that thin to 

moderately thick shells can be analyzed. Rayleigh-Ritz method was used to calculate frequency 

and mode shapes. The higher order shear deformation theory was presented to solve static and free 

vibration analysis of composite shells by Ferreira et al. [2006]. Reddy shell theory allowed at the 

top and bottom surface of shells.  

Sahoo and Chakraborty [2006a] developed a finite element code to analyze stiffened 

composite hypar shell having eight noded shell element and three noded beam element. 

Benchmark problems are solved to validate the approach and free vibration response has been 

studied for fundamental frequency and mode shapes by varying the number and depth of stiffeners, 

laminations and boundary conditions. Hota and Chakravorty [2007] developed a finite element 
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code for analyzing free vibration characteristics of a stiffened conoidal shell by combining an eight 

noded curved shell element with a three noded curved beam element. The effect of various 

parameters on fundamental frequencies were studied and discussed in details. The non-linear free 

vibration characteristics of composite cylindrical shell panels with cut-out was investigated by 

Nanda and Bandyopadhyay [2007]. Parametric variations were carried out at varying aspect ratio, 

lamination schemes and material properties of shell at simply supported boundary conditions. Free 

vibration analysis of skewed cylindrical shell panel was analyzed by Halder [2008] using finite 

element method. First order shear deformation theory was used incorporating transverse 

displacement and bending rotation as independent field variables. Numerical results were obtained 

at various parametric variation of shallow shells and compared with the published results. To 

investigate large amplitude free flexural vibration of doubly curved shallow shell in presence of 

cut-out, Nanda and Bandyopadhyay [2008] employed finite element model. Nonlinear strains of 

von Karman type are incorporated into the first-order shear deformation theory in this approach. 

Static and dynamic analysis of smart cylindrical shell was studied by Kumar et al. [2008]. A finite 

element formulation has been used to show static and dynamic response of laminated composite 

shells containing piezoelectric sensors and actuators subjected to electrical, mechanical and 

thermal loadings. The influence of stacking sequence and positions of sensors/actuators on the 

response of laminated cylindrical shell was evaluated. Study on free vibration analysis of circular 

cylindrical shells using wave propagation method was studied by Xuebin [2008]. The validity and 

accuracy of the wave approach was studied in detail including aspects of frequencies, vibration 

shapes and wavenumbers.  An exact solution for free vibration analysis was explained. at various 

boundary conditions.  

A four noded quadrilateral shell element with smoothed membrane-bending based on 

Mindlin-Reissner theory has been proposed by Nguyen-Thanh et al. [2008]. This type of element 

is a combination of plate bending and membrane element which is based on mixed interpolation 

where bending and membrane stiffness matrices are calculated on the boundaries of smoothing 

cells while the shear terms are approximated by independent interpolation functions in natural 

coordinates. The proposed element is robust, computationally inexpensive and free of locking. The 

bending behavior of delaminated composite shallow cylindrical shells subjected to uniformly 

distributed load with corner point supported, simply supported and clamped boundary conditions 

was studied by Acharyya et al. [2008]. Lamination, curvature and extent of delamination area were 
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varied to compare the performances of delaminated cylindrical shells against those with no 

damage. Bending characteristics of laminated composite conoidal shell on damage due to 

manufacturing defects and over-loading were studied by Kumari and Chakravorty [2010]. A finite 

element method using isoparametric shell element was presented incorporating multipoint 

constraint algorithm to take care of compatibility of deformation and equilibrium of forces and 

moments at the delamination crack front.  

Qatu et al. [2010] reviewed most of the research done during 2000–2009 on the dynamic 

behavior (including vibration) of composite shells. This review was conducted with emphasis on 

the type of testing or analysis performed (free vibration, impact, transient, shock, etc.) at the 

various shell geometries subjected to dynamic research. A nine noded isoparametric plate bending 

element has been used for bending analysis of isotropic skewed cylindrical shell panels were 

studied by Halder et al. [2010]. First order shear deformation theory has been incorporated. The 

results have been checked at different type of loads, shell thickness, length to curvature ratio, 

skewed angle and various boundary conditions. A survey on bending analysis of symmetrically 

cross-ply laminated plates was done by Mokhtar et al. [2010]. 

A review on recent literature on static analysis of composite shells was presented by Qatu 

et al. [2012]. This paper reviews most of the research done during 2000-2010 on the static and 

buckling behavior (including post buckling) of composite shells. This review was conducted with 

emphasis on the type of testing or analysis performed (static, buckling, post-buckling, and others.) 

at the various shell geometries. Shadmehri et al. [2014] studied the effect of displacement field on 

bending, buckling and vibration of cross-ply cylindrical shells using first-order shear deformation 

theory. The effect of various boundary conditions (clamped, simply supported and free edge), 

radius-thickness ratio and radius-length ratio on the displacement of mid-surface were 

investigated.  

Das and Chakravorty [2011] studied the bending behavior of stiffened composite conoidal 

shell roofs through finite element application. An eight noded shell element with three noded beam 

element has been considered to analyze the stiffened composite conoidal shell roofs subjected to 

concentrated load at center. Reddy et al. [2012] investigated bending of laminated composite plate 

subjected to uniformly distributed load. The effect of transverse shear deformation on deflection 

and stresses were studied for various parameters. Kumar et al. [2012] analyzed laminated 

composite skew shells using higher order shear deformation theory. Static analysis of skew 
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composite shell was done using a C0 finite element model based on higher order shear deformation 

theory. Results were presented considering different geometry, boundary conditions, ply 

orientation, loadings and skew angles. Bending analysis of paraboloid of revolution shell was 

studied by Tamboli and Kulkarni [2014] using finite element method. Vlasov bending theory was 

used to solve the problem theoretically. Ashwinkumar et al. [2015] presented a parametric study 

of thin cylindrical shells.  

Non-linear bending response of laminated composite spherical shell panels subjected to 

hygro-thermo mechanical loading was studied by Lal et al. [2011]. System properties such as 

material properties, thermal expansion co-efficient, hygro contraction co-efficient, load intensity 

and lamina plate thickness were common random variables. The higher order shear deformation 

theory and von-Karman non-linear kinematics were used for basic formulation. The influence of 

system properties on laminated spherical shell panels were studied in detail. Bending and free 

vibration analysis of isotropic and multilayered plates and shells by using a new accurate higher 

order shear deformation theory were investigated by Mantari et al. [2012]. The governing 

equations and boundary conditions were derived by employing principle of virtual work. These 

equations were solved by Navier type, closed form solutions. Bending and dynamic results were 

presented for cylindrical and spherical shells and plates for simply supported boundary conditions. 

The results were compared with exact three dimensional elasticity theory and several well-known 

HSDT theories of previous investigations. Free vibration characteristics of laminated composite 

hypar shell roofs with cut-out using finite element method was studied by Sahoo [2011]. Kumar 

et al. [2013a] studied finite element analysis of laminated composite and sandwich shells using 

higher order zigzag theory. Free vibration response of laminated composite and sandwich shell 

was studied by Kumar et al. [2013b] using an efficient 2D finite element model based on higher 

order zigzag theory (HOZT). Kumar et al. [2015] again developed accurate dynamic response 

criteria of laminated composite and sandwich shells using higher order zigzag theory. They 

explained forced vibration response of laminated composite and sandwich shells using 2D finite 

element based on higher order zigzag theory. 

Chen et al. [2013] studied free vibration of circular cylindrical shell with non-uniform 

elastic boundary constraints. The exact solution for the problem was obtained using improved 

Fourier series method. Sahoo [2013] presented dynamic characteristics of stiffened composite 

conoidal shell roofs with cut-outs in terms of natural frequency and mode shapes. The effect of 
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various parametric variations on fundamental frequencies and mode shapes were considered in 

details for laminated composite conoids. A unified and exact solution method was developed for 

the free vibration analysis of composite laminated shallow shells with general elastic boundary 

conditions by Ye et al. [2013, 2014a, b]. A general Fourier solution for the vibration analysis of 

composite laminated structural elements with general elastic constraints were developed by Jin et 

al. [2014]. Regardless of boundary conditions, each displacement and rotation component of the 

structures was invariantly expressed as the superposition of a Fourier cosine series and two 

supplementary functions were introduced to remove any potential discontinuous of the original 

displacements and their derivatives. On the basis of energy functional of structure elements, the 

exact series solutions were obtained using the Rayleigh–Ritz formulation. 

Naghsh and Azhari [2015] presented non-linear free vibration analysis of point supported 

laminated composite skew plates. The element -free Galerkin method was employed to analyze 

the composite skew plates. Assuming a periodic solution and applying the weighted residual 

method, non-linear governing equation was used and the problem was solved by direct iteration 

technique. Thermal bending analysis of doubly curved composite laminated shell panels with 

general boundary condition and lamination was investigated by Maghami et al. [2015]. A semi 

analytical method based on multi-term extended Kantorovich method was developed to analyze 

thermal bending of laminated shell panels with general boundary conditions and laminations. The 

principle of minimum potential energy was used to derive the governing equations within a 

framework of general and highly accurate first order shell theory. Simply supported spherical and 

cylindrical shell panels were studied and results were compared with those obtained by analytical 

method. Vibration analysis of circular cylindrical double shell structures under general coupling 

and end boundary conditions was studied by Zhang et al. [2016]. Free and forced vibration analysis 

under arbitrary boundary condition was presented. This was achieved by employing improved 

Fourier series based on Hamilton's principle. The natural frequencies and mode shapes of the 

structures as well as frequency responses under forced vibration were obtained with the Rayleigh-

Ritz procedure. The convergence of the method was validated by comparing the results with those 

obtained by finite element method. To show the accuracy of the current method various numerical 

results including natural frequencies and mode shapes were studied. 

A considerable volume of literature is found regarding the effect of an opening in thin 

cylindrical shells under different loading. Among these, quite a few of the references are directly 

https://www.sciencedirect.com/topics/engineering/free-vibration-analysis
https://www.sciencedirect.com/topics/engineering/fourier-cosine-series
https://www.sciencedirect.com/topics/engineering/cylindrical-shell
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related to the cutouts along the length of the shells in the form of entrance doors. Sahoo [2014a] 

solved the free vibration problems of laminated composite stiffened saddle shells with cutouts 

employing eight-noded curved quadratic isoparametric element for shell with a three noded beam 

element for stiffener formulation. Stochastic free vibration analysis of composite shallow doubly 

curved shell with Kriging model approach was presented by Dey et al. [2014]. A finite element 

formulation was carried out considering rotary inertia and transverse shear deformation based on 

Mindlin's theory. Sahoo [2014b] analyzed laminated composite stiffened shallow spherical panels 

with cut-out to consider different size and position of cut-outs at different edge constraints. The 

results were further analyzed for optimum size and position of cut-out at different practical 

constraints. Sahoo [2015a, b] investigated free vibration of laminated composite stiffened elliptical 

paraboloid shell and cylindrical shell panel with cut-out respectively. A deep doubly curved shell 

element was developed for the free vibration analysis of general shells of revolution was explained 

by Naghsh et al. [2015]. Lagrange polynomials were used to interpolate the displacement 

variables. Free vibration analysis of a circular cylindrical shell using Rayleigh-Ritz method was 

presented by Lee and Kwak [2015]. To determine mass and stiffness matrices a computer 

simulation under different shell theories and boundary condition was implemented.  

An experimental investigation was presented by Biswal et al. [2015] on free vibration 

behavior of woven fibre glass/ epoxy laminated composite shells subjected to hygrothermal 

environments. First order shear deformation theory was considered for free vibration analysis of 

shells subjected to elevated temperatures and moisture concentrations. Parametric study was 

carried out for varying curvature ratios, number of layers and laminates. Numerical and 

experimental results showed reduction of natural frequencies with increase of temperature and 

moisture concentration. Free vibration analysis of conical shells reinforced with agglomerated 

carbon nanotubes was explained by Kamarian et al. [2016]. The equation of motion was derived 

by first order shear deformation theory. To obtain natural frequencies of the structure the 

generalized differential method was implemented. A parametric study was developed to 

investigate the influence of some characteristic parameters on vibrational behavior of conical shell. 

Sahoo [2016] evaluated the performance of free vibration of laminated composite stiffened 

hyperbolic paraboloid shell panel with cut-out. Finite element analysis of laminated composite 

skew hypar shell under oblique impact was studied by Neogi et al. [2017]. Time dependent 

equations were solved using Newmark's Time integration algorithm. Monge et al. [2018] studied 
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static analysis of laminated composite doubly curved shells using kinematic model with 

polynomial and non-polynomial functions. Halder et al. [2019] studied bending analysis of 

composite skew cylindrical shell panel. An experimental study of unstiffened graphite-epoxy 

cylindrical shells with cut-outs subjected to bending load was presented by Labans et al. [2019]. 

Nwoji et al. [2021] studied static bending of isotropic circular cylindrical shells based on higher 

order shear deformation theory. 

 

2.3  CRITICAL DISCUSSION 

A thorough scrutiny of available literature on the bending behavior of laminated composite 

hypar shells with a cutout reveals that no study has been reported so far on this aspect. Sanders Jr. 

[1970] and Ghosh and Bandyopadhyay [1994] have considered the bending of isotropic shells with 

a cutout. The static behavior of a cylindrical composite panel in presence of cutouts has been 

reported using a geometrically non-linear theory [Dennis and Palazotto, 1990] while the free 

vibration of cylindrical panel with square cutout has been studied based on finite element method 

[Sivasubramanian et al., 1997]. The axisymmetric free vibration of isotropic shallow spherical 

shell with circular cutout has also been analyzed [Hwang and Foster Jr., 1992]. Madenci and Barut 

[1994] studied buckling of composite panels in presence of cutouts. Non-linear post-buckling 

analysis of composite cylindrical panels with central circular cutouts but having no stiffeners was 

studied by Noor et al. [1996] to consider the effect of edge shortening as well as uniform 

temperature change. Later Sai Ram and Babu [2001a, b] investigated the bending behavior of 

axisymmetric composite spherical shell both punctured and un-punctured using the finite element 

method based on a higher order theory. Qatu et al [2012] reviewed the recent research studies on 

the static and buckling / post-buckling behavior of composite shells. Qatu et al. [2010] reviewed 

the work done on the vibration aspects of composite shells between 2000-2009 and observed that 

most of the researchers dealt with closed cylindrical shells. Other shell geometries are also 

receiving considerable attention. Recently, Kumar et al. [2013a, b, c, 2014] considered finite 

element formulation for shell analysis using higher order zigzag theory. Vibration analysis of 

spherical shells and panels both shallow and deep has also been reported for different boundary 

conditions [Ye et al., 2013, 2014a, b]. A complete and general view on mathematical modeling of 

laminated composite shells using higher order formulations has been provided in recent literature 

[Tornabene et al., 2014a, b, 2013]. However, the bending behavior of antisymmetric angle-ply 
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laminated composite stiffened hypar shell with cutout for various boundary conditions is scanty in 

the literature. 

Some of the earlier information regarding the behavior of doubly curved composite shells 

[Narita and Leissa, 1984; Reddy and Chandrashekhara, 1985] considered the practical boundary 

condition like corner point support and presented the frequency and mode shapes of spherical, 

circular cylindrical and hyperbolic paraboloidal (bounded by parabolas) shells. Liew et al. [1993] 

analyzed plates and shells for bending, buckling and vibration behavior using a super element. 

Point supported boundary conditions were also considered [Schwarte, 1994; Chakravorty et al., 

1995]. Qatu and Leissa [1991a, b] studied the free vibration behavior of doubly curved laminated 

composite shallow shells. Qatu and Leissa [1991c], and Sivasubramonian et al. [1997] studied the 

free vibration characteristics of doubly curved panels considering combinations of different 

boundary conditions. Liew and his colleagues [1994a-e, 1995a-d, 1996] carried out extensive 

research work on the vibrations of different types of shell surfaces. The developments in the 

vibration of shallow shells reviewed in an excellent paper by Liew et al. [1997]. The fundamental 

frequencies of hypar shells with different boundary conditions were also reported [Chakravorty et 

al., 1998; Sahoo and Chakravorty, 2005]. Pradyumna and Bandyopadhyay [2008] reported the 

vibration characteristics of composite hypar shells based on HSDT but they did not consider higher 

modes, hence further improvement in these results have to be sought. 

In this field of shell research, large number of research articles [Richards et al., 2001; 

Nayak and Bandyopadhyay, 2002a, b; 2005, 2006, Sahoo and Chakravorty, 2005, 2006; Kumar et 

al., 2012, 2013, 2015; GulshanTaj and Chakraborty, 2013; Tornabene et al., 2015; Dey et al., 2015; 

Zhang et al., 2016] is available. Free vibration aspects of stiffened shell panels with cut-out for six 

shell forms, viz., cylindrical, elliptic paraboloid, hyperbolic paraboloid, hypar, conoid and 

spherical shells have been studied using finite element method [Sahoo, 2012, 2013, 2014a, b, 

2015a, b; 2016]. But analysis of stiffened shell with cut-out for modes of vibration other than 

fundamental mode are scanty in the literature. Though Topal [2006], Srinivasa et al. [2014] 

presented the mode frequency analysis of laminated spherical shell but they did not consider hypar 

shells. Despite the engineering importance of cut-outs involved in composite panels, the number 

of research articles and reports in the subject topic are found to be limited. Some recent studies 

have addressed advanced aspects such as stochastic natural frequencies [Dey et al., 2016]. 
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However, it is observed that there is no literature available on free vibration analysis of composite 

stiffened hypar shells with cut-out for other natural modes. 

Design of stacking sequence for optimization of vibration frequency of laminated 

structures is a common approach [Narita and Nitta, 1998; Hufenbach et al., 2002; Narita and 

Robinson, 2006]. Discrete material optimization [Stegmann and Lund, 2005] using finite element 

approach has also been attempted for optimization of fiber angle and material. Genetic algorithm 

is employed for optimization of composite structures with respect to vibration and buckling [Narita 

et al, 1996; Narita and Zaho, 1998; Roy and Chakraborty, 2009]. Modified feasible direction 

technique was utilized [Topal, 2009; 2012] to maximize the fundamental frequency for varying 

thickness ratios and aspect ratios of shells. Other modern advanced heuristic algorithms [Aymerich 

and Serra, 2008; Sebaey et al., 2013; Erdal and Sonmez, 2005; Almeida, 2016; Rao and Arvind, 

2005; Gholami et al, 2021; Barroso et al, 2017; Kaveh et al., 2018; Vo-Duy et al., 2017] were also 

utilized for stacking sequence design of composites. However, features of most heuristic 

algorithms are random in the search process. Accordingly, local optimum or pre-convergence may 

occur if initial parameters are unsuitable. Reliable optimization results depend only on designers’ 

experience. Also, computational cost of heuristic algorithms is relatively high. Thus, researchers 

are on the search of alternative ways of optimization. Shahgholian-Ghahfarokhi and Rahimi [2020] 

recently used Taguchi approach [Taguchi, 1990] to consider a sensitivity study of vibration of 

composite sandwich cylindrical shells having grid cores. Dynamic behavior of plates and shells 

made of different types of materials has been analysed [Duc, 2014]. Galerkin method coupled with 

higher order shear deformation theory has been used for analyzing stability and vibration behavior 

of such structure under different types of loadings. 
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                                                                                                    Chapter 3 

SCOPE OF PRESENT STUDY 

 

 

 

3.1  GENERAL 

Literature review presented in the last chapter explained developments on shell research in 

recent past two decades. It has been found that skewed hypar shell configuration has received 

significant attention from researchers due to its relevance to practical applications. But the 

behavior of cutout borne shell in terms static and dynamics response has received relatively less 

attention. Maximization of fundamental frequencies of hypar shell based on parametric variations 

is yet to receive proper attention from researchers. To avoid the resonance due to ground vibration 

and natural disturbances, fundamental frequency needs to be maximized depending on various 

shell parameter. Accordingly, finite element method is used to determine bending characteristics 

and vibration frequencies of cutout borne stiffened laminated composite hypar shells. Design of 

experiments approach is utilized to obtain the optimum fundamental frequency of the shell. 

 

3.2  PRESENT SCOPE 

A mathematical formulation in terms of finite element method is presented in Chapter 4. 

An eight noded curved isoparametric shell bending element is combined with three noded curved 

isoparametric beam element to develop finite element code for analyzing bending and free 

vibration characteristics of stiffened skewed hypar shells with cutout. The review of literature 

presented in the previous chapter reveals that static analysis of laminated composite cylindrical, 

spherical, elliptical and paraboloid shells have received quite large attention. But the investigations 

on static and dynamic behavior of laminated composite stiffened hypar shell with cut-out at 

different parametric variations have not received much attention.  
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Static behavior of laminated composite stiffened hypar shell with cut-out at various ply 

orientations, different boundary conditions and cut-out positions has been discussed in Chapter 5. 

Benchmark problems have been solved and results are compared with the present approach. 

Numerical problems have been solved to obtain force, moment and deflection values subjected to 

static loading at different ply orientation and different boundary conditions for stiffened composite 

hypar shell with cut-out. The results are discussed in details and significant conclusions are 

identified. Dynamic analysis of laminated composite stiffened hypar shell with cut -out has been 

studied in Chapter 6. This study deals with vibration analysis of a hypar shell stiffened along the 

margin of cut outs with different boundary conditions and antisymmetric angle ply lamination. 

The formulation is based on first order shear deformation theory. The numerical studies are 

conducted to determine the effects of degree of orthotropy (E11/ E22), fibre orientation (θ) and 

width to thickness ratio (b/h) on the non-dimensional fundamental frequency. The results are given 

in graphical form and tabular charts as necessary. Mode frequency analysis of antisymmetric angle 

ply laminated stiffened hypar shell with cut-out at various boundary conditions and ply orientation 

has also been studied in Chapter 6. First five modes of natural frequencies are presented. 

Extensive scrutiny of literature reveals paucity of reports on optimization of the fiber 

orientation, dimension, thickness, material orthotropy and position of the cutout for different edge 

constraints leading to maximum fundamental frequency of laminated shells. This issue is taken 

care of in Chapter 7. This study of stiffened hypar shells considers the application of the Taguchi 

method along with an efficient finite element formulation to determine the suitable combination 

of multi-parametric design optimization to yield maximum frequency of cutout borne shell. 

Taguchi orthogonal design is applied with four design factors namely, fiber orientation, width-to-

thickness, level of orthotropy of the composite and position of the cutout as independent variables. 

Taguchi analysis is performed to obtain the suitable combination of factors that results maximum 

fundamental frequency. 

The different conclusions that are arrived at Chapters 5 to 7 are included in the respective 

chapters only. Chapter 8 presents abroad conclusion of overall study and indicates some future 

scope of research. 
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                                                                                                Chapter 4 

MATHEMATICAL FORMULATION 

 

 

 

 

4.1  GENERAL 

This chapter deals with mathematical formulation and solution methods for bending and 

vibration characteristics of laminated composite unstiffened and stiffened hypar shells. In the finite 

element analysis, the structure has to be discretized into a number of elements connected at the 

nodal points. In present analysis, the surface of stiffened shells is discretized into number of 

elements. Each element is further combined of shell element and beam element. The stiffeners 

placed along X- direction are known as x stiffener and those placed along Y- direction are known 

as y stiffener. The overall element matrices of the stiffened shell element are obtained by 

combinations of element matrices of shell element and beam elements at shell nodal points. The 

mathematical formulation of shell and beam element are presented in section 4.2. The 

implementation of boundary conditions and the solution procedure is detailed in section 4.3. 

Modeling of the cutout is discussed in section 4.4. The suitable information about the computer 

program and input parameters is included in section 4.5. 

 

4.2  FINITE ELEMENT FORMULATION 

  A laminated composite hypar shell with cutout is shown in Fig.4.1. Differentiating the 

surface equation of shell in the form z = f(x, y) yields the radius of cross curvature Rxy and for 

shallow shells considered in the present study the same is expressed as 
dxdy

zd

Rxy

21
 . An eight noded-

curved quadratic isoparametric element (Fig. 4.2) is used for the analysis of hypar shell. 
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Fig. 4.1 Surface of a skewed hypar shell with cutout 

 

Fig.4.2 (a) Eight noded shell element with isoparametric co-ordinates (b) Three noded stiffener 

elements (i) x-stiffener (ii) y-stiffener 
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The five degrees of freedom taken into consideration at each node are u, v, w, , . The relations 

between the displacement at any point with respect to the co-ordinates  and  and the nodal 

degrees of freedom are expressed as: 






8

1i

iiuNu    




8

1i

iivNv  




8

1i

ii wNw  




8

1i

iiN   




8

1i

iiN     (4.1) 

In the isoparametric formulation the element geometry is also defined by the same shape functions, 

i.e., 




n

i

ii xNx

1

 




n

i

ii yNy

1

.        (4.2) 

Here the shape functions are derived from a cubic interpolation polynomial and are given as: 

    4/111  iiiiiN   for i=1, 2, 3, 4 

   2/11 2  iiN    for i=5,7 

   2/11 2  iiN    for i=6,8      (4.3) 

The cubical shape functions [N] adopted in the present study is same as those reported elsewhere 

[Sahoo and Chakravorty, 2006]. 

The constitutive equations for the shell are given by (a list of notations is provided separately): 

F=D           (4.4) 

where   yxxyyxxyyx QQMMMNNNF 
  
 (as shown in Fig. 4.3) 

and    T

yzxzxyyxxyyx kkk 00000  
 

 
Fig. 4.3 Generalized force and moment resultants 
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The laminate constitutive matrix D and the finite element formulation for stiffeners used in the 

present study are adopted from Sahoo and Chakravorty [2006].  

The strain vector is related to the nodal values of element degree of freedoms by the strain 

displacement matrix [B]. The strain displacement matrix [B] is also adopted from Sahoo and 

Chakravorty [2006]. 

The strain-displacement relation is given by 

    edB ,           (4.5) 

where    T

e wvuwvud 8888811111 .....  , 
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Improved first order approximation theory for thin shell is used to establish the strain-displacement 

relations and the same are given as: 

     T

yzxzxyyx

T

yzxzxyyx

T

yzxzxyyx kkkkkz 00000   (4.6) 

Where, 
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In the above expression, the first vector denotes the mid-surface strain for a hypar shell and the 

second vector denotes the curvature. 

The element stiffness matrix is  

      dxdyBDBK
T

she           (4.7) 
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The two-dimensional integral is then converted to isoparametric coordinates and is evaluated by 

2x2 Gauss-quadrature. This is because the shape functions are derived from a cubic interpolation 

polynomial and a polynomial of degree 2n-1 is integrated exactly by n point Gauss quadrature. 

 

4.2.1 Finite Element Formulation for Stiffener of the Shell 

  The stiffeners are modeled using three noded curved isoparametric beam elements which 

are considered to run only along the boundaries of the shell elements. The shape functions of these 

beam elements for x and y directional stiffeners (shown in Fig. 4.2) are as follows: 

For x-stiffeners: 

 iiiN   1  for i=1,3, 

 21  iN   for i=2.        (4.8) 

For y-stiffeners: 

 iiiN   1  for i=1,3, 

 21  iN   for i=2.        (4.9) 

In the stiffener element, each node has four degrees of freedom i.e. usx, wsx, sx and sx for x-

stiffener and usy, wsy, sy and sy for y-stiffener. The displacement field at any point can be 

expressed in terms of nodal displacements as follows: 

for x-stiffener:      sxiisx N     

for y-stiffener:      
syiisy N          (4.10) 

where,     Tsxsxsxsxsxsxsxsxsxi wuwu 33331111 ...   , 

   Tsysysysysysysysysyi wvwv 33331111 ...   . 

The generalized force-displacement relation of stiffeners can be expressed as: 

for x-stiffener:          sxisxsxsxsxsx BDDF    

for y-stiffener:          syisysysysysy BDDF        (4.11) 

where,    Tsxxzsxxsxxsxxsx QTMNF    

      Txsxsxxsxxsxxsxsx wu ....    

and    Tsyyzsyysyysyysy QTMNF   
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      Tysysyysyysyysysy wv ....    

Elasticity matrices are as follows: 
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where, ijijijij AeeBDD 2/ 2   

  ijijij eABB /
          (4.12) 

ijijij DBA ,,  and ijS  are the stiffness coefficients. Here the shear correction factor is taken as 5/6. 

The sectional parameters are calculated with respect to the mid-surface of the shell by which the 

effects of eccentricity of the x-stiffener, esx and y-stiffener, esy are automatically included. 

The element stiffness matrix: 

 for x-stiffener:        dxBDBK sxsx

T

sxxe  

for y-stiffener:         dyBDBK sysy

T

syye       (4.13) 

The integrals are then converted to isoparametric coordinates and are evaluated by 2 point 

Gaussian quadrature. 

Finally, appropriate matching of the nodes of the stiffener and shell elements through the 

connectivity matrix yields the element stiffness matrix of the stiffened shell and the same is given 

as: 

           yexeshee KKKK  .      (4.14) 

The element stiffness matrices are assembled to get the global matrices.  
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4.2.2 Element Mass Matrices 

The element mass matrix for shell is obtained from the integral 

      dxdyNPNM
T

e  ,          (4.15) 

where, 
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Element mass matrix for stiffener element 

        dxNPNM
T

sx    for X stiffener  

and        dyNPNM
T

sy    for Y stiffener       (4.17) 

Here,   N  is a 3x3 diagonal matrix. 
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for Y stiffener 
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The mass matrix of the stiffened shell element is the sum of the matrices of the shell and the 

stiffeners matched at the appropriate nodes.  

       yexeshee MMMM  .         (4.18) 

The element mass matrices are assembled to get the global matrices. 

 

4.3  IMPOSITION OF BOUNDARY CONDITIONS AND SOLUTION PROCEDURE 

Imposing boundary conditions mean the presence or absence of generalized displacements 

u, v, w,𝛼, 𝛽 in different nodes of the discretized structures. The zero displacement boundary 

conditions are incorporated by removing the corresponding terms from the global matrices and 

vector. A 2x2 Gauss quadrature is used to integrate to stiffness, mass and load matrices of the shell 

element because shape functions are derived from cubic interpolation polynomial. In a similar way 

2-point Gauss quadrature is used to integrate stiffness and mass matrices of beam element. 

The static and free vibration analysis are only special cases of general dynamic problem 

and the solution techniques are elaborated in the following sub-sections. 

4.3.1  Formulation of General Dynamic Problem 

Hamilton's principle, when applied to undamped dynamic analysis of an elastic body, 

provides the equation as given by 

 [𝑀]{𝑑̈} + [𝐾]{𝑑} = {𝑃}                                                                                                          (4.19) 

where [𝑀] and [𝐾] are the global mass and stiffness matrices, and {𝑃} and {𝑑} are the global load 

and displacement vectors. 

4.3.2  Formulating Static Problem 

If the inertia force term of equation (4.19) is dropped and the displacement and load vectors 

are assumed to be time independent the following equation of static equilibrium is obtained, 

     [𝐾]{𝑑} = {𝑃}                                                                                                                       (4.20) 

After imposing the boundary conditions, the Gauss elimination technique is used to solve the above 

equation that yields the global nodal displacement vector d. Hence the element displacement 

vectors de are known. Using de in equation (4.5) the strains can be evaluated at the Gauss 
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points, which when used in equation (4.4) the generalized force and moment resultants are 

obtained at the Gauss points. Extrapolation of these values yields the nodal values. 

4.3.3  Formulating Free Vibration Problem 

If the load vector of equation (4.19) is dropped, the equation of free vibration is obtained 

as 

   [𝑀]{𝑑̈} + [𝐾]{𝑑} = 0                                                                                                          (4.21) 

In this equation (4.21) the displacement {𝑑} is a function of space and time. To solve free vibration 

problem separation of space and time coordinates is done by following substitution 

   {𝑑(𝑥, 𝑦, 𝑧, 𝑡)} = 𝑎𝑒𝑖𝜔𝑡{𝜑(𝑥, 𝑦)}                             

 or  {𝑑} = 𝑎𝑒𝑖𝜔𝑡{𝜑}                                                                                                                (4.22) 

therefore, {𝑑̈} = −𝑎𝜔2𝑒𝑖𝜔𝑡{𝜑}                                                                                              (4.23) 

Substituting equations (4.22) and (4.23) into equation (4.21) obtain 

    𝑎𝑒𝑖𝜔𝑡(−𝜔2[𝑀]{𝜑} + [𝐾]{𝜑}) = 0                                                                                   (4.24) 

As 𝑎𝑒𝑖𝜔𝑡 ≠ 0 in equation (4.22) is an assumed solution, therefore, 

      𝜔2[𝑀]{𝜑} = [𝐾]{𝜑}                                                                                                       (4.25) 

where 𝜔 and {𝜑} represent natural frequencies the corresponding eigenvectors of the generalized 

eigen value problem. The problem is solved by the subspace iteration algorithm. 

 

4.4 MODELING OF CUTOUT 

In regards to modeling of the cutout, the code developed can take the position and size of 

cutout as input. The program is capable of generating non uniform finite element mesh all over the 

shell surface. So the element size is gradually decreased near the cutout margins. One such typical 

mesh arrangement is shown in Fig.4.4. Such finite element mesh is redefined in steps and a 

particular grid is chosen to obtain the fundamental frequency when the result does not improve by 

more than one percent on further refining. Convergence of results is ensured in all the problems 

taken up here. 
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Fig.4.4 Typical 10x10 non-uniform mesh arrangement drawn to scale 

 

4.5  COMPUTER PROGRAM AND INPUT PARAMETERS 

To execute the mathematical formulation described in preceding sections, computer code 

is developed in Fortran language to solve problems of static bending and free vibration response 

of laminated composite hypar shells with cutout. The program can incorporate various boundary 

conditions among corner point supported, simply supported and clamped edges. The program can 

generate uniform and non-uniform meshes once the number of divisions along two directions and 

length of each division as a fraction of total plan dimension along the respective direction are 

provided. The program can include the size and position of cut-out along x and y direction as input. 

The basic input data for the program include a) the geometric dimension of the shell, b) stiffener 

positions and dimensions, c) cut-out position, d) material properties, e) the load, f) the mesh 

division, g) the stacking sequences, h) boundary conditions, i) number of frequencies to be 

evaluated, j) static shell actions to be evaluated. The details of the numerical problems and the 

results obtained are presented and discussed in the next chapters. 
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                                                                                                 Chapter 5 

BENDING BEHAVIOR  

 

 

5.1  GENERAL 

    The mathematical formulation given in previous chapter is applicable for static and 

dynamic analysis of laminated composite unstiffened / stiffened hypar shell with or without cut-

out. In this chapter bending behavior of stiffened hypar shell with cut-out has been investigated. 

Some benchmark problems have been identified in section 5.2 as obtained from available 

literature, which are close to the scope of present study. Those problems are solved using the 

present formulation and the results are compared with the previous ones to check the correctness 

of the present formulation. In section 5.3 some additional examples of laminated composite 

stiffened hypar shells with cut-out are considered with different parametric variations. The results 

are analyzed critically from different angles of variations and discussed accurately to show their 

engineering applications. Results having maximum practical implications are analyzed for the sake 

of brevity.  

5.2  BENCHMARK PROBLEMS  

To establish the correctness of the static formulations of the finite element code proposed 

here, for the analysis of stiffened shells with cutout are compared with pre-established results 

reported by Rossow and Ibrahimkhail [1978] using constrained method of finite element analysis, 

by Chang [1973] using conventional method of analysis, by Sinha et al. [1992] and also by using 

structural packages NASTRAN, STRUDL. Static displacements of simply supported plates are 

evaluated using the present formulation and a comparison of central displacements obtained by 

different methods is presented in Table 5.1. The material and geometric properties of the plates are 

presented with the table as footnote. In order to solve a plate problem with the present formulation, 

the corner rise of the hypar (c) is made zero. Present composite shell formulation is used for the 

isotropic material by making the elastic and shear moduli equal in all directions. 
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 To validate the cutout formulation of the present code, additional problem is solved as 

benchmark. The second problem was solved earlier by Chakravorty et al. [1998] and deals with 

free vibration of hypar shell with cutouts having simply supported and clamped boundary 

conditions. The relevant parameters are furnished with Table 5.2 showing the correctness of the 

cutout formulation. The finite element mesh is refined in steps and a particular grid is chosen to 

obtain the fundamental frequency when the result does not improve by more than one percent on 

further refining. Convergence of results is ensured in all the problems taken up here. 

Table 5.1 Central deflection of rectangular stiffened plate in inches (x103). 

Source Concentrated Load Distributed Load 

Eccentric Concentric Eccentric Concentric 

Rossow and 

Ibrahimkhail [1978] 

1.270 3.464 8.850 24.075 

Chang [1973] 1.246 3.464 8.996 24.077 

NASTRAN 1.240 - 8.714 - 

STRUDL - 3.463 - 24.120 

Sinha et al.[1992] 1.284 3.464 9.322 24.075 

Present method 1.313 3.492 8.905 24.011 

E=30x106 psi; =0.3; a=30 in; b=60 in; h=0.25 in; x-stiffener 0.5x5.0 in2; y-stiffener 0.5x3.0 in2. 

Table 5.2: Non-dimensional fundamental frequencies ( ) for hypar shells (lamination (0/90)4) with 

concentric cutouts. 

 

a//a 

Chakravorty et al. [1998] Present finite element model 

Simply 

supported 

clamped Simply supported clamped 

8x8 10x10 12x12 8x8 10x10 12x12 

0.0 50.829 111.600 50.573 50.821 50.825 111.445 111.592 111.612 

0.1 50.769 110.166 50.679 50.758 50.779 109.987 110.057 110.233 

0.2 50.434 105.464 50.323 50.421 50.400 105.265 105.444 105.443 

0.3 49.165 101.350 49.045 49.157 49.178 101.110 101.340 101.490 

0.4 47.244 97.987 47.132 47.242 47.141 97.670 97.985 97.991 

a/b=1, a/h=100, 
/ /a b =1, c/a=0.2; E11/E22 = 25, G23 = 0.2E22, G13 = G12 = 0.5E22, 12 =21 =0.25. 
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Table 5.1 and Table 5.2 show very good agreement of the present results with the 

established ones and this validate the static formulation of stiffened hypar shell with cutout. Table 

5.2 also shows the convergence of fundamental frequencies with increasingly finer mesh and a 

10×10 division is taken up for further study since the values do not improve by more than 1% on 

further refining. Close agreement of present results with benchmark ones establish the fact that the 

finite element model proposed here is capable of analyzing static problems of stiffened skewed 

hypar composite shells with cutout.  

5.3  BENDING CHARACTERISTICS OF SHELLS WITH CUTOUT 

5.3.1  Relative performance of antisymmetric angle-ply shells  

Non-dimensional static displacements and stress resultants of composite stiffened hypar 

shells with cutouts are presented in Table 5.3 to Table 5.15 for different antisymmetric angle ply 

stacking sequences of graphite-epoxy composite with six different boundary conditions (Fig. 5.1). 

Orthotropic shells (00, 900) are also included to study the variation of deflection and stress 

resultants with change in lamination angle. The boundary conditions are designated as: C for 

clamped, S for simply supported and F for free edges. The four edges are considered in an 

anticlockwise order from the edge x = 0. For example, a shell with CSCS boundary is clamped 

along x = 0, simply supported along y = 0 and clamped along x = a and simply supported along y 

= b. Governing static force and moment resultants (including the deflection, in-plane forces and 

bending moments which govern the shell thickness) are presented. Performances of the shell 

combinations in terms of their stress resultants are ranked from 1 to 6. For ranking, only the 

antisymmetric angle ply stacking sequences are considered. The first rank is given to the shell 

combination showing least static stress resultant value. Such ranks are very helpful to understand 

the relative behavior of shell options comprehensively. 
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Fig. 5.1 Arrangement of boundary conditions 

 

5.3.1.1 Effect of boundary conditions on relative performance of composite stiffened hypar 

shells with cutouts 

Close observation in terms of static deflections from Table 5.3 reveal that Group III shells 

show lower values when compared to Group I shells for any given lamination. This is quite obvious 

as in Group I boundary condition, increased number of boundary restraints restrict its possible 

movements along the boundaries and makes the shell stiffer compared to Group II ones which in 

turn exhibit lesser deflections than Group III shell, where more number of support degrees of 

freedom are released. But it is further noted from Table 5.3 that when a free edge is introduced 

into a shell maximum deflection occurs along the free edges otherwise maximum deflection occur 

along the periphery of the cutout.  
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It is further noted from Table 5.3 that deflection increases significantly when a Group IA 

shell is replaced by a Group IIA shell. However, if a Group IIA shell is replaced by a Group IIIA 

shell the deflection increases marginally and at times by an insignificant amount. The same trend 

is noticeable for Group IB, Group IIB and Group IIB shell as well. If Group IB shell is replaced 

by a Group IIB shell, deflection significantly increases but when a Group IIB shell is replaced by 

a Group IIIB shell the increase in deflection is not so significant.  

A close observation of the results for Group I boundary conditions reveals that the CSSC 

shells are superior in performance showing lesser deflections than CSCS shells for the 

antisymmetric angle ply laminates having lamination angle upto 450. But reverse is the case for 

lamination angles greater than 450 where CSCS edge shows higher static stiffness than CSSC edge. 

Thus CSCS shells are better choices than CSSC ones for higher lamination angles. 

It is further noted that shells of Group I having CSSC and CSCS boundaries have 

comparable maximum deflection. But in case of Group II and Group III shells a change in the 

arrangement of boundary constraints has huge impact on static stiffness. When two opposite free 

edges are introduced in a shell, it is far stiffer than a shell for which two adjacent edges are free. 

As a result, FCFC and FSFS shells show less deflection than FCCF and FSSF shells. This is true 

for all laminations except 450 lamination angle, where reverse trend is observed. Thus while 

keeping the number of support constraints fixed, a change of arrangement of the conditions of 

individual edges involving free edges markedly influences the maximum deflection.  

 Comparative study of governing static stress resultants shows that performance of Group I 

shells is not at all comparable with other groups (Group II and Group III) for in-plane forces and 

in-plane shear. Only for a few cases in-plane force and in-plane shear shows comparable values. 

But for sagging, hogging and twisting moment resultants, although Group I shells show lower 

value than Group II and Group III shells, again a very few exception is there. These findings 

reinforce the fact that in composite shells, lamination angle plays a very important role along with 

the support condition to determine resultant stiffness. It is also evident that relative performance 

study of shells in terms of their deflections cannot be taken as the only basis of comparing their 

overall performance. A closed scrutiny of the results also reveals that, Group I shells exhibit 

maximum static stress resultants around the cutout but Group II and Group III shells show towards 

the free edges. 
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5.3.1.2 Relative performance of shells for different lamination angles 

 In civil engineering applications among two shell forms the one which exhibits lower 

deflection is accepted as a better option from serviceability point of view. It is evident from Table 

5.3 that, for a given number of boundary constraints, (+45/-45)5 antisymmetric laminate is the best 

choice. Also number of lamina plays an important role in static deflection consideration. In all the 

cases considered here, 10 layer antisymmetric laminates are convincingly better than four layer 

and two-layer angle ply ones. It is interesting to note from Tables 5.4-5.15, that for all the boundary 

conditions for any two laminations the one which performs better in terms of deflection is not 

better in terms of other static stress resultants. For static stress resultants like xxx MNN  ,,  

lower lamination angle and for yyy MNN  ,,  higher lamination angle is better choices but for 

other shell actions however, such unified behavior is not found to hold good.  

  Results of Table 5.3 to Table 5.15 show that in general 10 layer laminates exhibit better 

performance compared to two and four layered ones in terms of static deflections and static stress 

resultants with a few exceptions where 4 layer laminates are better than 10 layer laminates.  

 

5.3.1.3 Performances of Different Boundary Conditions with respect to different Shell Actions 

  Now an attempt is made in the present study of antisymmetric angle ply laminates to 

compare the relative performance of boundary conditions. For each shell action, the best two 

combinations of lamination and edge condition are selected from each of three groups of boundary 

conditions. Thus total six combinations are selected from three Groups. These have been furnished 

in Table 5.16 and Table 5.17 for positive and negative values of shell actions in ascending order 

of magnitude. For example, the CSCS/(30/-30) shell is the best choice for both positive and 

negative xN  while CSCS (75/-75) shell is the best choice for both positive and negative yN . This 

rank wise arrangement of the shells in terms of lamination along with boundary condition 

corresponding to the different shell actions will help a design engineer to make a choice among a 

number of options when it is known that which shell action is critical for a particular situation. It 

is noteworthy to mention here that superiority of a particular shell combination expressed in terms 

of lamination and boundary conditions for one particular shell action cannot be used as the 

guideline of predicting the relative performances for other shell actions. 
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  Based on the results available in Tables 5.3-5.15, it is possible to develop a relative 

performance matrix of the shells so as to help a design engineer to conclusively decide upon the 

selection among two different combinations of laminations and boundary conditions. The relative 

performance matrix of the shells may be developed in the following way. Among two choices of 

lamination and edge condition, the superior combination is assigned a value of 1 while the inferior 

combination is assigned 0 with respect to different shell actions. If two combinations show almost 

equal values of a particular shell action, the number 1 may be assigned to both of them. One such 

typical performance matrix is shown in Table 5.18 comparing CSCS/(15/-15)2 and CSCS/(45/-

45)2 shells. A design engineer can now take a conclusive decision for choice between two shells 

applying appropriate weightage factors to the different shell actions if such relative performance 

matrix is made available.  

 

Table 5.3: Values of maximum non-dimensional downward deflections (- w ) x104 for different 

antisymmetric angle ply lamination and boundary conditions of stiffened composite hypar shell 

with cutout. 

Laminati

on 

(Degree) 

 

Boundary conditions 

           Group-I             Group-II                 Group-III 

    A       B         A        B            A         B 

    CSSC              CSCS       FCCF      FCFC         FSSF       FSFS 

     0 -1.3281 

(0.55,0.4) 

-1.4671 

(0.5,0.6) 

-5.3354 

(0.5,1.0) 

-1.983 

(0.0,0.5) 

-5.8823 

(0.3,1.0) 

-2.0482 

(0.0,0.5) 

(15/-15) -0.51441 

(0.5,0.4) 

-0.57554 

(0.5,0.4) 

-5.7156 

(0.7,1.0) 

-1.0488 

(0.0,0.5)* 

-6.2017 

(0.3,1.0) 

-1.2776 

(0.0,0.5) 

(15/-15)2 -0.4655 

(0.5,0.4) 

-0.52171 

(0.5,0.4) 

-4.432 

(0.5,1.0) 

-1.0504 

(0.0,0.5) 

-4.6521 

(0.5,1.0) 

-1.1396 

(0.0,0.5) 

(15/-15)5 -0.4495 

(0.6,0.45) 

-0.50187 

(0.5,0.4) 

-4.1361 

(0.5,1.0) 

-1.0614 

(0.0,0.5) 

-4.2423 

(0.5,1.0) 

-1.1062 

(1.0,0.5)* 

(30/-30) -0.27818 

(0.6,0.5) 

-0.2863 

(0.5,0.6) 

-4.1111 

(0.7,1.0) 

-1.3301 

(1.0,0.5) 

-4.3846 

(0.3,1.0) 

-1.4903 

(1.0,0.5) 
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(30/-30)2 -0.2363 

(0.6,0.5) 

-0.24699 

(0.5,0.6) 

-3.2274 

(0.5,1.0) 

-1.2836 

(0.0,0.5)* 

-3.3642 

(0.5,1.0) 

-1.3477 

(1.0,0.5) 

(30/30)5 -0.22063 

(0.6,0.5) 

-0.2314 

(0.5,0.4) 

-3.0679 

(0.5,1.0) 

-1.2895 

(0.0,0.5) 

-3.1243 

(0.5,1.0) 

-1.3188 

(1.0,0.5)* 

 (45/-45) -0.24886 

(0.6,0.5) 

-0.21628 

(0.5,0.6) 

-2.4562 

(0.0,0.7) 

-2.5173 

(1.0,0.7) 

-3.0157 

(0.0,0.7) 

-2.6592 

(1.0,0.5) 

 (45/-45)2 -0.20478 

(0.6,0.5) 

-0.19012 

(0.5,0.6) 

-2.0948 

(0.0,0.5) 

-2.2666 

(1.0,0.5) 

-2.3205 

(0.0,0.55) 

-2.3752 

(1.0,0.5) 

(45/-45)5 -0.18956 

(0.6,0.5) 

-0.17932 

(0.5,0.6)* 

-2.0522 

(0.0,0.5) 

-2.222 

(0.0,0.5) 

-2.216 

(0.0,0.5) 

-2.3097 

(1.0,0.5) 

(60/-60) -0.28683 

(0.6,0.5) 

-0.24931 

(0.4,0.5) 

-4.2754 

(0.0,0.3) 

-3.9971 

(0.0,0.3) 

-4.5769 

(0.0,0.7) 

-4.122 

(1.0,0.3) 

(60/-60)2 -0.24535 

(0.6,0.5) 

-0.22869 

(0.5,0.4) 

-3.3999 

(0.0,0.5) 

-3.196 

(0.0,0.3) 

-3.5752 

(0.0,0.5) 

-3.5268 

(0.0,0.5) 

(60/-60)5 -0.23117 

(0.6,0.5) 

-0.2197 

(0.5,0.6)* 

-3.2451 

(0.0,0.5) 

-3.0483 

(0.0,0.5) 

-3.3441 

(0.0,0.5) 

3.3852 

(1.0,0.5) 

(75/-75)     -0.53 

(0.6,0.5) 

    -0.49 

  (0.6,0.5) 

   -5.72 

(0.0,0.3) 

   -5.21 

 (1.0,0.3) 

   -6.20 

 (0.0,0.7) 

   -5.54 

(1.0,0.3) 

(75/-75)2    -0.48 

(0.6,0.5) 

   -0.47 

(0.5,0.6) 

  -4.54 

(0.0,0.5) 

-4.04 

(0.0,0.3) 

-4.79 

(0.0,0.5) 

   -4.64 

(1.0,0.5) 

(75/-75)5    -0.47 

(0.6,0.5) 

  -0.46 

(0.5,0.6) 

  -4.24 

(0.0,0.5) 

  -3.70 

(1.0,0.3) 

-4.39 

(0.0,0.5) 

-4.39 

(1.0,0.5) 

  90 -1.361 

(0.6,0.45) 

-1.2916 

(0.5,0.6) 

-5.3926 

(0.0,0.5) 

-4.6674 

(0.0,0.7) 

-5.9227 

(0.0,0.65) 

-5.4571 

(0.0,0.5) 

a/b=1, a/h=100, 
/ /a b =1, c/a=0.2; E11/E22 = 25, G23 = 0.2E22, G13 = G12 = 0.5E22, 12 =21 =0.25. 

Values in the parenthesis indicates the location ( yx, ) of maximum downward deflection in each case. 

Asterisk denotes the lowest values of shell actions in each group. 
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Table 5.4: Values of maximum non-dimensional tensile in-plane forces (+ xN ) for different 

antisymmetric angle ply lamination and boundary conditions of stiffened composite hypar shell 

with cutout 

 

Lamination 

(Degree) 

 

Boundary conditions 

           Group-I             Group-II                 Group-III 

    A       B         A        B            A         B 

    CSSC              CSCS       FCCF      FCFC         FSSF       FSFS 

     0 0.31957 

(0.0,0.8) 

0.23068 

 (0.6,0.6) 

7.6766 

 (0.0,1.0) 

0.072831 

 (0.3,0.3) 

9.7331 

  (0.0,1.0) 

0.42598 

 (0.0,0.9) 

(15/-15) 0.33909 

(0.0,0.9) 

0.21061 

(1.0,0.1) 

8.4345 

(0.0,1.0) 

0.40015 

(0.0,1.0)* 

9.2218 

 (0.0,1.0) 

1.0713 

(0.0,1.0)* 

(15/-15)2 0.28265 

(0.0,0.9) 

0.19707 

(0.6,0.6)* 

8.2291 

(0.0,1.0) 

0.4439 

(1.0,0.0) 

9.2332 

   (0.0,1.0) 

1.0882 

(1.0,0.0) 

(15/-15)5 0.25797 

 (0.0,0.9) 

0.20857 

(0.4,0.4) 

8.1402 

(0.0,1.0) 

0.46501 

(0.0,1.0) 

9.2351 

  (0.0,1.0) 

1.1021 

(0.0,1.0) 

(30/-30) 0.34845 

(0.0,0.9) 

0.19052 

(0.6,0.6)* 

9.1489 

(0.0,1.0) 

1.9587 

(0.0,1.0) 

9.3434 

  (0.0,1.0) 

4.1624 

(0.0,1.0) * 

(30/-30)2 0.32936 

(0.0,0.9) 

0.21 

(0.6,0.6) 

8.9634 

 (0.0,1.0) 

1.9095 

 (0.0,1.0) 

9.3717 

  (0.0,1.0) 

4.2145 

 (0.0,1.0) 

(30/30)5 0.32108 

(0.0,0.9) 

0.21675 

 (0.6,0.6) 

8.9018 

 (0.0,1.0) 

1.9193 

 (0.0,1.0) 

9.3868 

 (0.0,1.0) 

4.2466 

 (0.0,1.0) 

   (45/-45) 0.62534 

(1.0,0.0) 

0.32589 

(0.4,0.4) 

10.702 

(0.0,1.0) 

5.2897 

(1.0,0.0) 

 10.908 

(0.0,1.0) 

9.6308 

(1.0,0.0) 

  (45/-45)2 0.45906 

(0.0,0.9) 

0.31976 

(0.6,0.6) 

10.498 

(0.0,1.0) 

4.8639 

(0.0,1.0) 

10.922 

(0.0,1.0) 

9.9459 

(0.0,1.0) 

  (45/-45)5 0.45662 

(0.0,0.9) 

0.31743 

(0.6,0,.6) 

10.431 

(0.0,1.0) 

4.7968 

(0.0,1.0) 

  10.94 

(0.0,1.0) 

10.058 

(0.0,1.0) 

(60/-60) 0.73981 

(0.0,0.9) 

0.5485 

(0.6,0.6) 

12.519 

 (0.0,1.0) 

  6.9077 

(0.0,1.0) 

    13.657 

  (0.0,1.0) 

15.74 

 (0.0,1.0) 
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(60/-60)2 0.74688 

 (0.0,0.9) 

0.52605 

 (0.6,0.6) 

11.802 

 (0.0,1.0) 

   5.956 

 (0.0,1.0) 

   13.333 

 (0.0,1.0) 

16.843 

  (0.0,1.0) 

(60/-60)5 0.74834 

 (0.0,0.9) 

0.5145 

(0.6,0.6) 

11.641 

(0.0,1.0) 

  5.7328 

(0.0,1.0) 

   13.298 

  (0.0,1.0) 

17.207 

  (0.0,1.0) 

(75/-75)    1.0767 

(0.0,0.9) 

0.86053 

(0.6,0.6) 

10.221 

(0.0,1.0) 

 2.5636 

(1.0,0.0) 

  13.999   

(0.0,1.0) 

 4.9594 

(0.0,1.0) 

(75/-75)2   1.0893 

(0.0,0.9) 

0.81437 

(0.6,0.6) 

 9.312 

(0.0,1.0) 

1.9671 

(0.0,1.0) 

    13.2 

 (0.0,1.0) 

 4.4089 

(0.0,1.0) 

(75/-75)5   1.1045 

(0.0,0.9) 

0.79251 

(0.6,0.6) 

9.1627 

(0.0,1.0) 

  1.7865 

(0.0,1.0)* 

   13.117 

(0.0,1.0) 

4.3593 

(0.0,1.0) 

  90 1.5768 

 (0.0,0.0) 

1.3692 

 (1.0,1.0) 

5.5273 

 (0.0,1.0) 

1.2854 

(0.35,0.4) 

16.167 

 (0.0,0.0) 

15.315 

 (0.0,0.0) 

a/b=1, a/h=100, 
/ /a b =1, c/a=0.2; E11/E22 = 25, G23 = 0.2E22, G13 = G12 = 0.5E22, 12 =21 =0.25. 

Values in the parenthesis indicates the location ( yx, ) of maximum tensile in-plane force in each case. 

Asterisk denotes the lowest values of shell actions in each group. 
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Table 5.5: Values of maximum non-dimensional compressive in-plane forces (- xN ) for different 

antisymmetric angle ply lamination and boundary conditions of stiffened composite hypar shell 

with cutout 

Lamination 

(Degree) 

 

Boundary conditions 

           Group-I             Group-II                 Group-III 

    A       B         A        B            A         B 

    CSSC              CSCS       FCCF      FCFC         FSSF       FSFS 

     0 -0.2261 

(0.6,0.4) 

-0.23069 

(0.6,0.4) 

-3.8372 

(1.0,1.0) 

-0.072828 

 (0.7,0.3) 

-10.141 

  (1.0,1.0) 

-0.42598 

 (1.0,0.9) 

(15/-15) -0.22064 

 (0.0,0.1) 

-0.21061 

  (0.0,0.1) 

-4.5277 

 (1.0,1.0) 

-0.40016 

 (0.0,0.0)* 

-9.5148 

  (1.0,1.0) 

-1.0713 

  (0.0,0.0)* 

(15/-15)2 -0.20812 

  (0.6,0.4) 

-0.19707 

(0.4,0.6)* 

-4.0991 

 (1.0,1.0) 

-0.4439 

 (0.0,0.0) 

-9.4173 

  (1.0,1.0) 

-1.0881 

 (1.0,1.0) 

(15/-15)5 -0.21149 

 (0.6,0.4) 

-0.20856 

 (0.6,0.4) 

-3.9392 

  (1.0,1.0) 

-0.465 

  (0.0,0.0) 

-9.4069 

  (1.0,1.0) 

-1.1021 

  (0.0,0.0) 

(30/-30) -0.22079 

 (0.6,0.4) 

-0.19052 

(0.6,0.4)* 

-5.8179 

 (1.0,1.0) 

-1.9587 

 (0.0,0.0) 

-9.5995 

 (1.0,1.0) 

-4.1624 

 (1.0,1.0) 

(30/-30)2 -0.22306 

(0.6,0.4) 

-0.21 

(0.4,0.6) 

-5.2345 

 (1.0,1.0) 

-1.9095 

 (0.0,0.0)* 

-9.5102 

 (1.0,1.0) 

-4.2146 

 (1.0,1.0) 

(30/30)5 -0.22126 

 (0.6,0.4) 

-0.21675 

 (0.6,0.4) 

-5.0736 

 (1.0,1.0) 

-1.9192 

 (0.0,0.0) 

-9.494 

  (1.0,1.0) 

-4.2466 

 (0.0,0.0) 

(45/-45) -0.32889 

(0.4,0.6) 

-0.32589 

 (0.6,0.4) 

-6.4547 

(1.0,1.0) 

-5.2902 

(1.0,1.0) 

 -9.8869 

(1.0,1.0) 

-9.6311 

(1.0,1.0) 

(45/-45)2 -0.32174 

(0.6,0.4) 

-0.31976 

(0.6,0.4) 

-5.9539 

(1.0,1.0) 

-4.864 

(0.0,0.0) 

  -9.6236 

(1.0,1.0) 

-9.9462 

(0.0,0.0) 

(45/-45)5 -0.31743 

(0.6,0.4) 

-0.31743 

(0.4,0.6) 

-5.8547 

(1.0,1.0) 

-4.7967 

(1.0,1.0) 

  -9.568 

(1.0,1.0) 

-10.058 

(0.0,0.0) 

(60/-60) -0.54396 

 (0.6,0.4) 

-0.5485 

 (0.4,0.6) 

-7.4091 

(0.0,0.0) 

-6.9079 

(0.0,0.0) 

-15.804 

 (0.0,0.0) 

-15.74 

 (1.0,1.0) 
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(60/-60)2 0.52662 

(0.6,0.4) 

-0.52605 

(0.6,0.4) 

-6.4334 

 (0.0,0.0) 

-5.9561 

  (1.0,1.0) 

-16.804 

 (0.0,0.0) 

-16.843 

 (0.0,0.0) 

(60/-60)5 -0.51857 

(0.6,0.4) 

-0.51451 

(0.6,0.4) 

-6.2067 

 (0.0,0.0) 

-5.733 

(1.0,1.0) 

-17.2 

(0.0,0.0) 

-17.207 

(0.0,0.0) 

(75/-75) -0.89441 

(0.4,0.6) 

-0.86053 

(0.4,0.6) 

  -6.08 

(1.0,1.0) 

-2.5635 

(1.0,1.0) 

-9.8503 

(1.0,1.0) 

-4.9592 

(0.0,0.0) 

(75/-75)2 -0.80972 

(0.4,0.6) 

-0.81438 

(0.4,0.6) 

 -6.047 

(1.0,1.0) 

-1.9671 

(0.0,0.0) 

-9.3426 

(1.0,1.0) 

-4.4089 

(1.0,1.0) 

(75/-75)5 -0.81113 

(0.6,0.4) 

-0.79251 

(0.4,0.6) 

-6.1081 

(1.0,1.0) 

-1.7864 

(0.0,0.0) 

  -9.251 

(1.0,1.0) 

-4.3592 

(0.0,0.0) * 

  90 -1.2582 

 (0.1,0.1) 

-1.3692 

 (0.0,1.0) 

-6.6239 

(1.0,1.0) 

-1.2853 

(0.35,0.6) 

 -10.557 

 (0.95,1.0) 

-15.316 

(0.0,1.0) 

a/b=1, a/h=100, 
/ /a b =1, c/a=0.2; E11/E22 = 25, G23 = 0.2E22, G13 = G12 = 0.5E22, 12 =21 =0.25. 

Values in the parenthesis indicates the location ( yx, ) of maximum compressive in-plane force in each 

case. 

Asterisk denotes the lowest values of shell actions in each group. 
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Table 5.6: Values of maximum non-dimensional tensile in-plane forces (+ yN ) for different 

antisymmetric angle ply lamination and boundary conditions of stiffened composite hypar shell 

with cutout 

Lamination 

(Degree) 

 

Boundary conditions 

           Group-I             Group-II                 Group-III 

    A       B         A        B            A         B 

    CSSC              CSCS       FCCF      FCFC         FSSF       FSFS 

     0  1.5703 

(0.1,1.0) 

 0.95337 

(0.6,0.6) 

  8.1249 

(0.0,1.0) 

  7.3326 

 (0.0,1.0) 

   13.253 

  (0.0,1.0) 

  13.691 

 (0.0,1.0) 

(15/-15) 1.1795 

(0.1,1.0) 

0.86069 

(0.6,0.6) 

  12.029 

(0.0,1.0) 

   6.584 

(0.0,1.0) 

   14.505 

(0.0,1.0) 

  12.948 

(0.0,1.0) 

(15/-15)2 1.1585 

(0.1,1.0) 

0.85032 

(0.6,0.6) 

   10.773 

(0.0,1.0) 

 6.4789 

(1.0,0.0) 

   13.737 

(0.0,1.0) 

 12.842 

(1.0,0.0) 

(15/-15)5  1.1602 

(0.1,1.0) 

0.85727 

(0.6,0.6) 

  10.591 

(0.0,1.0) 

  6.5179 

(0.0,1.0) 

   13.687 

 (0.0,1.0) 

  12.889 

(0.0,1.0) 

(30/-30) 0.67986 

(1.0,0.0) 

0.54083 

(0.6,0.6) 

  12.012 

(0.0,1.0) 

   6.2147 

(0.0,1.0) 

    12.702 

(0.0,1.0) 

  11.539 

(0.0,1.0) 

(30/-30)2  0.6406 

(0.1,1.0) 

0.53009 

(0.6,0.6) 

  11.46 

(0.0,1.0) 

  5.8546 

(0.0,1.0) 

   12.517 

(0.0,1.0) 

   11.569 

(0.0,1.0) 

(30/30)5 0.63949 

(0.1,1.0) 

0.53243 

(0.6,0.6) 

11.355 

(0.0,1.0) 

 5.829 

(0.0,1.0) 

  12.524 

(0.0,1.0) 

11.611 

(0.0,1.0) 

  (45/-45) 0.42775 

(1.0,0.0) 

0.33923 

(0.4,0.4) 

  9.7855 

(0.0,1.0) 

5.6655 

(0.0,1.0) 

  10.113 

(0.0,1.0) 

  10.007 

(1.0,0.0) 

(45/-45)2 0.35756 

(0.1,1.0) 

0.32619 

(0.6,0.6) 

  9.6464 

(0.0,1.0) 

5.1692 

(0.0,1.0) 

  10.174 

(0.0,1.0) 

10.123 

(1.0,0.0) 

(45/-45)5 0.36093 

(0.4,0.4) 

0.32003 

(0.6,0.6) 

9.6076 

(0.0,1.0) 

5.0771 

(0.0,1.0) 

  10.206 

 (0.0,1.0) 

10.161 

(0.0,1.0) 

(60/-60)  0.25317 

(0.1,1.0) 

0.19181 

(0.6,0.6)* 

 8.3981 

(0.0,1.0) 

 4.209 

(0.0,1.0) 

  9.0008 

(0.0,1.0)* 

  9.2695 

(0.0,1.0) 
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(60/-60)2  0.23936 

(0.1,1.0) 

 0.20644 

(0.6,0.6) 

  8.2328 

(0.0,1.0) 

  3.7103 

(0.0,1.0) 

  9.0538 

(0.0,1.0) 

  9.4215 

(0.0,1.0) 

(60/-60)5  0.23216 

(0.1,1.0) 

 0.20562 

(0.6,0.6) 

 8.1888 

(0.0,1.0) 

  3.5806 

(0.0,1.0) * 

   9.0846 

(0.0,1.0) 

9.4549 

(0.0,1.0) 

(75/-75) 0.31007 

(0.1,1.0) 

0.12527 

(1.0,1.0)* 

  7.9453 

(0.0,1.0) 

 3.5359 

(1.0,0.0) 

   9.2688 

 (0.0,1.0) 

9.2695 

(1.0,0.0) 

(75/-75)2 0.25629 

(0.1,1.0) 

0.16415 

(0.4,0.4) 

7.7264 

(0.0,1.0) 

3.1525 

(0.0,1.0) 

9.2364 

(0.0,1.0) 

9.2189 

(1.0,0.0) 

(75/-75)5 0.23235 

(0.1,1.0) 

0.1725 

(0.6,0.6) 

7.6494 

(0.0,1.0) 

3.0164 

(0.0,1.0)* 

9.246 

(0.0,1.0) 

9.2097 

(1.0,0.0)* 

  90  0.37905 

(0.2,1.0) 

 0.14552 

(0.4,0.4) 

 7.5796 

(0.0,1.0) 

  3.5102 

(0.0,1.0)  

  9.6659 

(0.0,1.0) 

 9.755 

(0.0,1.0) 

a/b=1, a/h=100, 
/ /a b =1, c/a=0.2; E11/E22 = 25, G23 = 0.2E22, G13 = G12 = 0.5E22, 12 =21 =0.25. 

Values in the parenthesis indicates the location ( yx, ) of maximum tensile in-plane forces in each case. 

Asterisk denotes the lowest values of shell actions in each group. 
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Table 5.7: Values of maximum non-dimensional compressive in-plane forces (- yN ) for different 

antisymmetric angle ply lamination and boundary conditions of stiffened composite hypar shell 

with cutout 

Lamination 

(Degree) 

 

Boundary conditions 

           Group-I             Group-II                 Group-III 

    A       B         A        B            A         B 

    CSSC              CSCS       FCCF      FCFC         FSSF       FSFS 

     0 -1.5446 

(0.9,1.0) 

-0.95336 

(0.4,0.6) 

  -8.2301 

(0.0,0.0) 

 -7.3323 

(1.0,1.0) 

  -11.319 

  (0.0,0.0) 

  -13.69 

(1.0,1.0) 

(15/-15) -0.96116 

(0.4,0.6) 

-0.86069 

(0.4,0.6) 

  -6.4601 

 (0.0,0.0) 

 -6.584 

(0.0,0.0) 

   -9.8637 

  (0.0,0.0) 

  -12.948 

  (0.0,0.0) 

(15/-15)2  -0.87044 

(0.4,0.6) 

-0.85031 

(0.4,0.6) 

   -6.5404 

 (0.0,0.0) 

  -6.4788 

(0.0,0.0) 

    -10.486 

   (1.0,1.0) 

   -12.842 

(1.0,1.0) 

(15/-15)5  -0.84528 

(0.4,0.6) 

 -0.85727 

(0.4,0.6) 

   -6.6268 

(0.0,0.0) 

 -6.5177 

(0.0,0.0) 

   -10.958 

(1.0,1.0) 

 -12.889 

(0.0,0.0) 

(30/-30) -0.59335 

(0.6,0.4) 

-0.54083 

(0.4,0.6) 

 -7.6952 

 (1.0,1.0) 

 -6.2147 

(0.0,0.0) 

  -12.178 

(1.0,1.0) 

-11.539 

(1.0,1.0) 

(30/-30)2  -0.57468 

(0.6,0.4) 

-0.5301 

(0.4,0.6) 

-6.8396 

(1.0,1.0) 

 -5.8546 

(0.0,0.0) 

  -12.911 

(1.0,1.0) 

 -11.569 

(1.0,1.0) 

(30/30)5 -0.56497 

(0.6,0.4) 

-0.53242 

(0.6,0.4) 

 -6.645 

(1.0,1.0) 

  -5.8288 

 (0.0,0.0) 

    -13.187 

(1.0,1.0) 

  -11.611 

(0.0,0.0) 

  (45/-45) -0.33559 

(0.4,0.4) 

-0.33922 

(0.6,0.4) 

-5.8249 

(0.0,0.0) 

-5.666 

(1.0,1.0) 

  -9.7042 

(0.0,0.0) 

-10.007 

(1.0,1.0) 

 (45/-45)2 -0.29996 

(0.6,0.4) 

-0.32619 

(0.6,0.4) 

-5.3301 

(0.0,0.0) 

-5.1693 

(0.0,0.0) 

  -9.569 

(0.0,0.0) 

-10.124 

(1.0,1.0) 

 (45/-45)5 -0.2952 

(0.6,0.4) 

-0.32003 

(0.6,0.4) 

-5.2398 

(0.0,0.0) 

 -5.077 

(1.0,1.0) 

-9.5481 

(0.0,0.0) 

-10.161 

(1.0,1.0) 
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(60/-60) -0.19497 

(0.6,0.4) 

-0.19181 

(0.4,0.6)* 

 -4.5275 

(0.0,0.0) 

-4.2091 

(0.0,0.0) 

   -9.4933 

(0.0,0.0) 

  -9.2697 

(1.0,1.0)* 

(60/-60)2  -0.19597 

(0.6,0.4) 

-0.20644 

(0.6,0.4) 

 -4.0089 

(0.0,0.0) 

 -3.7104 

(1.0,1.0) 

  -9.4722 

(0.0,0.0) 

 -9.4217 

(0.0,0.0) 

(60/-60)5  -0.19452 

(0.6,0.4) 

-0.20562 

(0.6,0.4) 

 -3.8755 

(0.0,0.0) 

-3.5807 

(1.0,1.0) 

  -9.4768 

(0.0,0.0) 

  -9.4551 

(0.0,0.0) 

(75/-75) -0.17365 

(0.6,0.4) 

-0.12527 

(0.0,1.0)* 

-4.0322 

(0.0,0.1) 

-3.5358 

(0.0,0.0) 

 -9.4773  

(0.0,0.0) 

-9.2261 

(0.0,0.0) 

(75/-75)2 -0.19411 

(0.6,0.4) 

-0.16416 

(0.4,0.6) 

-3.6081 

(0.0,0.1) 

-3.1525 

(0.0,0.0) 

-9.3544 

(0.0,0.0) 

-9.219 

(0.0,0.0) 

(75/-75)5 -0.19833 

(0.6,0.4) 

-0.1725 

(0.6,0.4) 

-3.4788 

(0.0,0.1)* 

-3.0163 

(0.0,0.0)* 

-9.3489 

(0.0,0.0) 

-9.2095 

(0.0,0.0)* 

  90  -0.23827 

(0.9,1.0) 

 -0.14552 

(0.6,0.4) 

 -3.8587 

(0.0,0.1) 

 -3.5101 

(0.0,0.0) 

  -10.191 

(0.0,0.0) 

  -9.7547 

(1.0,1.0) 

a/b=1, a/h=100, 
/ /a b =1, c/a=0.2; E11/E22 = 25, G23 = 0.2E22, G13 = G12 = 0.5E22, 12 =21 =0.25. 

Values in the parenthesis indicates the location ( yx, ) of compressive in-plane forces in each case. 

Asterisk denotes the lowest values of shell actions in each group. 
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Table 5.8: Values of maximum non-dimensional anticlockwise in-plane shear (+ xyN ) for 

different antisymmetric angle ply lamination and boundary conditions of stiffened composite 

hypar shell with cutout 

Lamination 

(Degree) 

Boundary conditions 

Group-I Group-II Group-III 

A B A B A B 

CSSC CSCS FCCF FCFC FSSF FSFS 

     0 0.0 

(0.55,0.5) 

0.0 

(0.55,0.5) 

1.0677 

(0.1,1.0) 

0.029345 

(0.6,0.5) 

1.475 

(0.1,1.0) 

0.27826 

(0.9,0.0) 

(15/-15) 0.0 

(0.55,0.5) 

0.0 

(0.55,0.5) 

1.6629 

(0.1,1.0) 

0.017635 

(1.0,0.6) * 

1.9098 

(0.1,1.0) 

0.80412 

(0.1,0.0)* 

(15/-15)2 0.0 

(0.55,0.5) 

0.0 

(0.55,0.5) 

1.6889 

(0.1,1.0) 

0.0024528 

(0.4,0.5)* 

1.992 

(0.1,1.0) 

0.83862 

(0.1,1.0) 

(15/-15)5 0.0 

(0.55,0.5) 

0.0 

(0.55,0.5) 

1.6906 

(0.1,1.0) 

0.0033569 

(0.4,0.5) 

2.0144 

(0.1,1.0) 

0.84946 

(0.9,1.0) 

(30/-30) 0.060161 

(0.5,0.4) 

0.049696 

(0.5,0.6) 

1.9643 

(0.1,1.0) 

0.21224 

(0.9,0.0) 

2.0711 

(0.1,1.0) 

1.8101 

(0.1,1.0) 

(30/-30)2 0.050709 

(0.5,0.4) 

0.039623 

(0.5,0.6) 

1.9164 

(0.1,1.0) 

0.20183 

(0.1,1.0) 

2.0612 

(0.1,1.0) 

1.7764 

(0.1,1.0) 

(30/30)5 0.048996 

(0.5,0.4) 

0.039251 

(0.5,0.4) 

1.9068 

(0.1,1.0) 

0.19954 

(0.0,0.9) 

2.0664 

(0.1,1.0) 

1.7653 

(0.9,1.0) 

 (45/-45) 0.10117 

(0.6,0.5) 

0.10363 

(0.5,0.4) 

1.7593 

(0.0,0.9) 

0.94609 

(0.9,1.0) 

2.2236 

(0.1,0.0) 

2.2231 

(0.1,0.0) 

 (45/-45)2 0.10061 

(0.5,0.4) 

0.099911 

(0.5,0.6) 

1.7125 

(0.0,0.9) 

0.75105 

(0.1,0.0) 

2.034 

(0.1,0.0) 

2.084 

(0.9,1.0) 

 (45/-45)5 0.10046 

(0.5,0.4) 

0.098204 

(0.5,0.6) 

1.7037 

(0.0,0.9) 

0.71566 

(0.0,0.9) 

1.9895 

(0.1,0.0) 

2.0507 

(0.9,1.0) 

(60/-60) 0.049745 

(0.6,0.5) 

0.048825 

(0.4,0.5) 

1.9348 

(0.0,0.9) 

0.73477 

(0.0,0.1) 

2.1034 

(0.0,0.9) 

1.7332 

(1.0,0.9) 
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(60/-60)2 0.039239 

(0.6,0.5) 

0.038134 

(0.6,0.5) 

1.8923 

(0.0,0.9) 

0.68062 

(1.0,0.9) 

2.1083 

(0.0,0.9) 

1.675 

(0.0,0.9) 

(60/-60)5 0.037443 

(0.6,0.5) 

0.034525 

(0.6,0.5) 

1.8787 

(0.0,0.9) 

0.66164 

(1.0,0.9) 

2.1132 

(0.0,0.9) 

1.6642 

(1.0,0.9) * 

(75/-75) 0.0 

(0.55,0.5) 

0.0 

(0.55,0.5) 

1.481 

(0.0,0.9) 

0.11281 

(1.0,0.05) 

1.8358 

(0.0,0.9) 

1.7139 

(1.0,0.1) 

(75/-75)2 0.0038622 

(0.0,1.0)* 

0.0 

(0.55,0.5) 

1.5593 

(0.0,0.9) 

0.081054 

(1.0,0.05) 

1.9639 

(0.0,0.9) 

1.7014 

(0.0,0.1) 

(75/-75)5 0.007586 

(0.0,1.0) 

0.0 

(0.55,0.5)* 

1.5639 

(0.0,0.9) 

0.076102 

(1.0,0.05) 

1.9895 

(0.0,0.9) 

1.704 

(1.0,0.1) 

  90 0.012027 

(0.0,1.0) 

0.0 

(0.55,0.5) 

1.23 

(0.1,1.0) 

0.12905 

(0.0,0.9) 

1.5105 

(0.0,0.9) 

1.2476 

(0.0,0.9) 

a/b=1, a/h=100, 
/ /a b =1, c/a=0.2; E11/E22 = 25, G23 = 0.2E22, G13 = G12 = 0.5E22, 12 =21 =0.25. 

Values in the parenthesis indicates the location ( yx, ) of maximum anticlockwise in-plane shear in each 

case. 

Asterisk denotes the lowest values of shell actions in each group. 
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Table 5.9: Values of maximum non-dimensional clockwise in-plane shear (- xyN ) for different 

antisymmetric angle ply lamination and boundary conditions of stiffened composite hypar shell 

with cutout 

Lamination 

(Degree) 

 

Boundary conditions 

           Group-I             Group-II                 Group-III 

    A       B         A        B            A         B 

    CSSC              CSCS       FCCF      FCFC         FSSF       FSFS 

     0  -0.81606 

(0.7,0.5) 

 -0.72411 

(0.7,0.5) 

 -6.4021 

(0.0,1.0) 

 -0.75421 

(0.9,0.5) 

   -8.7467 

(0.0,1.0) 

 -3.1941 

(1.0,0.0) 

(15/-15)  -0.91201 

(0.7,0.5) 

 -0.82463 

(0.7,0.5)* 

  -8.4393 

(0.0,1.0) 

-0.8656 

(0.2,0.5) 

  -9.6042 

(0.0,1.0) 

 -4.329 

(0.0,0.0)* 

(15/-15)2 -0.93954 

(0.7,0.5) 

-0.86683 

 (0.3,0.5) 

 -8.4212 

(0.0,1.0) 

 -0.83944 

(0.2,0.5) 

  -9.8791 

(0.0,1.0) 

 -4.3948 

(1.0,0.0) 

(15/-15)5  -0.94796 

(0.7,0.5) 

-0.88329 

(0.3,0.5) 

 -8.3941 

(0.0,1.0) 

 -0.82952 

(0.8,0.5)* 

  -9.9615 

 (0.0,1.0) 

-4.4361 

(0.0,1.0) 

(30/-30) -0.96259 

(0.7,0.5) 

-0.94028 

(0.7,0.5) 

-9.7512 

(0.0,1.0) 

 -2.0594 

(0.0,0.0) 

  -10.144 

(0.0,1.0) 

-6.3284 

(1.0,1.0) * 

(30/-30)2 -0.98367 

(0.7,0.5) 

-0.95642 

(0.3,0.5) 

-9.6088 

(0.0,1.0) 

-2.081 

(0.0,0.0) 

  -10.245 

(0.0,1.0) 

  -6.3365 

(1.0,1.0) 

(30/30)5 -0.98776 

(0.7,0.5) 

-0.96097 

(0.7,0.5) 

-9.5631 

(0.0,1.0) 

-2.0998 

(0.0,1.0) 

  -10.286 

(0.0,1.0) 

  -6.3508 

(0.0,1.0) 

  (45/-45) -0.92099 

(0.4,0.6) 

-0.91662 

(0.4,0.4) 

-9.8578 

(0.0,1.0) 

-4.1137 

(1.0,1.0) 

-10.134 

(0.0,1.0) 

-8.3716 

(1.0,1.0) 

(45/-45)2 -0.91888 

(0.4,0.4) 

-0.90318 

(0.7,0.5) 

 -9.743 

(0.0,1.0) 

-3.8612 

(1.0,1.0) 

-10.209 

(0.0,1.0) 

-8.3429 

(1.0,1.0) 

(45/-45)5 -0.92326 

(0.4,0.4) 

-0.89661 

(0.7,0.5) 

-9.7044 

(0.0,1.0) 

-3.8051 

(0.0,1.0) 

-10.247 

(0.0,1.0) 

-8.3367 

(0.0,1.0) 

(60/-60) -0.93505 

(0.5,0.3) 

-0.95646 

(0.5,0.7) 

 -9.2283 

(0.0,1.0) 

 -3.1476 

(0.0,0.0) 

  -9.9836 

(0.0,1.0) 

 -9.0771 

(1.0,1.0) 
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(60/-60)2   -0.95 

(0.5,0.3) 

-0.9614 

(0.5,0.7) 

 -9.0971 

(0.0,1.0) 

  -2.853 

(1.0,1.0) 

  -10.121 

(0.0,1.0) 

  -9.0538 

(0.0,0.0) 

(60/-60)5  -0.95295 

(0.5,0.3) 

 -0.95819 

(0.5,0.3) 

 -9.0465 

(0.0,1.0) 

 -2.7523 

(1.0,1.0) 

 -10.166 

(0.0,1.0) 

 -9.0516 

(0.0,0.0) 

(75/-75) -0.88576 

(0.5,0.3) 

-0.90129 

(0.5,0.7) 

-7.5545 

(0.0,1.0) 

-1.0161 

(0.5,0.0) 

-9.3392 

(0.0,1.0) 

-8.1809 

(1.0,0.0) 

(75/-75)2 -0.91152 

(0.5,0.3) 

-0.90488 

(0.5,0.7) 

-7.6942 

(0.0,1.0) 

-1.0141 

(0.5,0.7) * 

-9.7283 

(0.0,1.0) 

-8.268 

(0.0,0.0) 

(75/-75)5 -0.91993 

(0.5,0.3) 

-0.9019 

(0.5,0.7)* 

-7.684 

(0.0,1.0) 

-1.0563 

(0.5,0.7) 

-9.8266 

(0.0,1.0) 

-8.3072 

(1.0,0.0) 

  90  -0.79284 

(0.5,0.3) 

-0.70155 

(0.5,0.7) 

 -6.1053 

(0.0,1.0) 

 -0.83783 

(0.3,0.45) 

  -8.8142 

(0.0,1.0) 

 -7.1506 

(0.0,1.0) 

a/b=1, a/h=100, 
/ /a b =1, c/a=0.2; E11/E22 = 25, G23 = 0.2E22, G13 = G12 = 0.5E22, 12 =21 =0.25. 

Values in the parenthesis indicates the location ( yx, ) of maximum clockwise in-plane shear in each 

case. 

Asterisk denotes the lowest values of shell actions in each group. 
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Table 5.10: Values of maximum non-dimensional hogging moments (+ xM ) x102 for different 

antisymmetric angle ply lamination and boundary conditions of stiffened composite hypar shell 

with cutout 

Lamination 

(Degree) 

 

Boundary conditions 

           Group-I             Group-II                 Group-III 

    A       B         A        B            A         B 

    CSSC              CSCS       FCCF      FCFC         FSSF       FSFS 

     0  0.1733 

(0.0,0.2) 

0.11113 

(1.0,0.7) 

 0.56473 

(1.0,1.0) 

0.024122 

(0.1,0.2)  

 0.49104 

(0.0,1.0) 

0.011692 

(0.5,0.2) 

(15/-15) 0.070218 

(0.0,0.8) 

0.009076 

(0.5,0.6)* 

 0.58267 

(1.0,1.0) 

 0.018106 

(1.0,0.0)* 

  0.21799 

  (0.6,1.0) 

 0.042386 

(0.1,1.0) 

(15/-15)2 0.073993 

(0.0,0.8) 

0.020888 

(0.0,0.7) 

0.47933 

(1.0,1.0) 

0.054734 

(1.0,0.0) 

 0.17383 

(0.0,1.0) 

0.014633 

(0.9,1.0) 

(15/-15)5 0.078154 

(0.0,0.8) 

0.03203 

(1.0,0.3) 

 0.46034 

(1.0,1.0) 

 0.070948 

(0.0,1.0) 

  0.25984 

  (0.0,1.0) 

0.008737 

(0.5,0.9)* 

(30/-30) 0.035442 

(0.5,0.4) 

0.033458 

(0.5,0.6) 

  0.43318 

  (0.1,1.0) 

 0.078403 

(0.1,0.0) * 

  0.42881 

  (0.1,1.0) 

 0.21199 

 (0.1,0.0) 

(30/-30)2 0.046301 

(0.0,0.8) 

 0.019482 

 (0.5,0.4) 

  0.40742 

  (1.0,0.9) 

 0.13146 

 (0.1,1.0) 

   0.20589 

  (0.1,1.0) 

0.084094 

(0.9,0.0) 

(30/30)5 0.065945 

(0.0,0.8) 

0.017297 

(1.0,0.8)* 

  0.40778 

  (1.0,0.9) 

 0.18042 

 (0.0,1.0) 

 0.16959 

(0.1,0.9) 

0.022879 

(0.0,0.1) * 

(45/-45) 0.07068 

(0.6,0.5) 

0.070597 

(0.4,0.5) 

0.54376 

(0.1,1.0) 

0.39356 

(0.9,1.0) 

0.53034 

(0.1,1.0) 

0.46518 

(0.9,1.0) 

(45/-45)2 0.059565 

(0.0,0.8) 

0.040782 

(0.4,0.5) 

0.4976 

(1.0,0.9) 

0.48243 

(0.1,1.0) 

0.30771 

(0.1,1.0) 

0.18732 

(0.1,0.0) 

(45/-45)5 0.10176 

(0.0,0.8) 

0.04585 

(0.0,0.2) 

0.48296 

(1.0,0.9) 

0.47989 

(0.1,1.0) 

0.3096 

(0.1,0.9) 

0.088067 

(0.1,0.1) 

(60/-60)  0.12571 

 (0.6,0.5) 

 0.12601 

(0.4,0.5) 

  0.75082 

  (0.0,0.9) 

0.38716 

(0.1,0.0) 

   0.88609 

   (0.0,0.1) 

  0.88041 

 (0.0,0.9) 
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(60/-60)2 0.093456 

(0.0,0.8) 

0.068749 

(0.6,0.5) 

  0.76655 

  (0.1,0.0) 

0.66116 

(0.1,1.0) 

   0.37744 

   (0.0,0.1) 

 0.40718 

 (1.0,0.1) 

(60/-60)5 0.17278 

(0.0,0.8) 

0.11344 

(1.0,0.2) 

 0.84427 

 (0.1,0.0) 

  0.73403 

  (0.9,1.0) 

   0.33143 

   (0.1,0.95) 

 0.26611 

(0.5,0.7) 

(75/-75) 0.17833 

(0.4,0.5) 

0.17252 

(0.6,0.5) 

0.45453 

(0.0,0.9) 

0.22302 

(1.0,0.0) 

 1.4684 

(0.0,0.1) 

1.4223 

(1.0,0.9) 

(75/-75)2 0.31203 

(0.0,0.85) 

0.17805 

(1.0,0.8) 

0.55158 

(0.1,0.0) 

0.49388 

(0.0,0.0) 

0.69868 

(0.0,0.1) 

0.68733 

(1.0,0.1) 

(75/-75)5 0.43019 

(0.0,0.8) 

0.32431 

(0.0,0.2) 

0.77332 

(0.0,1.0) 

0.56095 

(1.0,0.0) 

0.43899 

(0.0,1.0) 

0.43072 

(0.5,0.7) 

  90 1.2084 

(0.0,0.8) 

1.1036 

(0.0,0.8) 

  1.6053 

(0.0,1.0) 

0.83884 

(0.5,0.7) 

  1.5659 

 (0.0,1.0) 

0.63796 

(0.5,0.7) 

a/b=1, a/h=100, 
/ /a b =1, c/a=0.2; E11/E22 = 25, G23 = 0.2E22, G13 = G12 = 0.5E22, 12 =21 =0.25. 

Values in the parenthesis indicates the location ( yx, ) of maximum hogging moment in each case. 

Asterisk denotes the lowest values of shell actions in each group. 
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Table 5.11: Values of maximum non-dimensional sagging moments (- xM ) x102 for different 

antisymmetric angle ply lamination and boundary conditions of stiffened composite hypar shell 

with cutout 

Laminati

on 

(Degree) 

 

Boundary conditions 

           Group-I             Group-II                 Group-III 

    A       B         A        B            A         B 

    CSSC              CSCS       FCCF      FCFC         FSSF       FSFS 

     0 -0.07217 

(0.1,0.2) 

 -0.04077 

(0.5,0.8)  

 -0.15652 

 (0.1,1.0) 

 -0.01237 

(0.5,0.7) 

 -0.12979 

  (0.2,1.0) 

 -0.02785 

  (0.1,0.1) 

(15/-15) -0.07661 

(0.1,0.8) 

-0.05455 

(0.7,0.2) 

-0.19706 

(0.5,1.0) 

-0.05043 

(0.9,0.4) 

-0.19147 

(0.8,1.0) 

-0.23389 

(0.0,1.0) 

(15/-15)2 -0.06434 

(0.1,0.8) 

-0.03983 

(0.3,0.2) 

-0.11269 

(0.5,1.0) 

 -0.03299 

 (0.1,0.4) 

 -0.1124 

 (0.2,1.0) 

-0.09701 

(1.0,1.0) 

(15/-15)5 -0.05774 

(0.1,0.8) 

-0.03257 

(0.3,0.2)* 

-0.09048 

(0.5,1.0) 

-0.02126 

(0.9,0.6)* 

-0.09444 

(0.2,1.0) 

-0.02251 

(0.2,0.1)* 

(30/-30) -0.12128 

(0.7,0.5) 

-0.11661 

(0.7,0.5) 

-1.1612 

(0.0,1.0) 

-0.17063 

(1.0,0.0) 

-1.0995 

(0.0,0.0) 

-0.87767 

(1.0,1.0) 

(30/-30)2 -0.0806 

(0.1,0.8) 

 -0.0638 

(0.3,0.2) 

-0.31795 

(0.0,1.0) 

-0.07998 

(0.8,0.6) 

-0.34152 

(1.0,1.0) 

-0.35251 

(1.0,0.0) 

(30/30)5 -0.06168 

(0.1,0.8) 

-0.04251 

(0.7,0.2) * 

-0.09197 

(0.8,0.9) 

-0.05672 

(0.95,0.5* 

-0.09418 

(0.3,0.9) 

-0.06886 

(0.8,0.9) * 

(45/-45) -0.21697 

(0.4,0.6) 

-0.21721 

(0.4,0.4) 

-2.4813 

(0.0,1.0) 

-0.83445 

(1.0,1.0) 

-2.3619 

(0.0,1.0) 

-2.1447 

(1.0,1.0) 

(45/-45)2 -0.1145 

(0.6,0.6) 

-0.11326 

(0.6,0.6) 

-0.89639 

(0.0,1.0) 

-0.16664 

(0.5,0.0) 

-0.87451 

(0.0,1.0) 

-0.83756 

(0.0,0.0) 

(45/-45)5 -0.08484 

(0.1,0.9) 

-0.0633 

(0.3,0.8) 

-0.14748 

(0.3,0.9) 

-0.12532 

(0.1,0.8) 

-0.16408 

(0.3,0.9) 

-0.11715 

(0.1,0.5) 

(60/-60) -0.34231 

(0.5,0.3) 

-0.34383 

(0.5,0.7) 

-3.09 

(0.0,1.0) 

-1.0957 

(1.0,1.0) 

-4.1246 

(0.0,0.0) 

-4.1127 

(0.0,1.0) 
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(60/-60)2 -0.1933 

(0.2,0.9) 

-0.1738 

(0.5,0.7) 

-0.95147 

(0.0,1.0) 

-0.23158 

(0.5,0.0) 

-1.6648 

(0.0,0.0) 

-1.8092 

(1.0,1.0) 

(60/-60)5 -0.143  

(0.2,0.9) 

-0.1143 

(0.8,0.9) 

-0.22949 

(0.3,1.0) 

-0.15333 

(0.1,0.2) 

-0.30349 

(0.0,0.0) 

-0.45751 

(0.0,1.0) 

(75/-75) -0.57022 

   (0.5,0.3) 

-0.58318 

(0.5,0.3) 

-1.88 

(0.0,0.9) 

-0.68 

(1.0,1.0) 

-5.33 

(0.0,0.0) 

-5.20 

(0.0,1.0) 

(75/-75)2 -0.36472 

(0.2,0.9) 

-0.33128 

 (0.6,0.7) 

-0.67973 

(0.2,1.0) 

-0.36461 

(0.5,0.0) 

-2.448 

(0.0,0.0) 

-2.4407 

(0.0,0.0) 

(75/-75)5 -0.29287 

(0.2,0.9) 

-0.2382 

(0.8,0.9) 

-0.63808 

(0.2,1.0) 

-0.1734 

(0.5,1.0) 

-0.89725 

(0.0,0.0) 

-0.91497 

(0.0,0.0) 

  90 -0.5455 

(0.8,0.8) 

-0.38428 

(0.3,0.9) 

-1.105 

(0.2,1.0) 

-0.11682 

(0.6,0.5) 

-1.1064 

(0.3,1.0) 

-0.31231 

(0.0,1.0) 

a/b=1, a/h=100, 
/ /a b =1, c/a=0.2; E11/E22 = 25, G23 = 0.2E22, G13 = G12 = 0.5E22, 12 =21 =0.25. 

Values in the parenthesis indicates the location ( yx, ) of maximum sagging moment in each case. 

Asterisk denotes the lowest values of shell actions in each group. 
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Table 5.12: Values of maximum non-dimensional hogging moments (+ yM ) x102 for different 

antisymmetric angle ply lamination and boundary conditions of stiffened composite hypar shell 

with cutout 

Lamination 

(Degree) 

 

Boundary conditions 

           Group-I             Group-II                 Group-III 

    A       B         A        B            A         B 

    CSSC              CSCS       FCCF      FCFC         FSSF       FSFS 

     0   1.0989 

(0.3,1.0) 

  0.14567 

(0.8,0.4) 

   1.9282 

 (0.0,1.0) 

  1.5501 

(1.0,1.0) 

    1.9577 

  (0.0,1.0) 

 0.76568 

(0.0,1.0) 

(15/-15) 0.18294 

(0.5,0.6) 

0.17602 

(0.5,0.6) 

 0.60494 

(0.1,1.0) 

 0.49154 

(1.0,0.0) 

  1.4971 

  (0.9,1.0) 

0.43213 

(0.1,1.0) 

(15/-15)2 0.33502 

(0.1,1.0) 

0.094348 

(0.5,0.4) 

 0.59732 

(0.0,0.0) 

 0.81579 

(1.0,0.0) 

   0.71556 

  (0.9,1.0) 

 0.13878 

(0.9,1.0)* 

(15/-15)5 0.42442 

(0.05,1.0) 

0.043018 

(0.5,0.6) 

0.71295 

(0.0,0.0) 

0.95353 

(0.0,1.0) 

0.51698 

(0.0,1.0) 

0.23817 

(1.0,0.2) 

(30/-30) 0.13018 

(0.5,0.4) 

0.12592 

(0.5,0.6) 

0.65895 

 (0.1,1.0) 

0.29714 

(0.1,0.0)* 

0.64229 

 (0.1,1.0) 

0.45894 

(0.1,0.0) 

(30/-30)2 0.12439 

(0.2,1.0) 

0.068785 

(0.5,0.4) 

0.68264 

(1.0.0.9) 

0.68264 

(0.05,1.0) 

0.39622 

(0.0,0.9) 

0.23195 

(1.0,0.9) 

(30/30)5 0.19502 

(0.2,1.0) 

0.030276 

(0.5,0.4) 

0.69153 

(1.0,0.9) 

0.65549 

(0.0,1.0) 

0.41284 

(0.1,0.9) 

0.21265 

(0.0,0.1) 

 (45/-45) 0.070755 

(0.5,0.4) 

0.0715 

(0.5,0.6) 

0.63083 

(0.0,0.9) 

0.54743 

(0.9,1.0) 

0.62673 

(0.0,0.9) 

0.48471 

(1.0,0.9) 

 (45/-45)2 0.073105 

(0.2,1.0) 

0.041513 

(0.5,0.6) 

0.63658 

(0.1,0.0) 

0.63803 

(0.1,1.0) 

0.33191 

(0.0,0.9) 

0.28047 

(0.0,0.1) 

 (45/-45)5 0.11192 

(0.2,1.0) 

0.03273 

(0.0,0.2) 

0.62425 

(0.1,0.0) 

0.63063 

(0.1,1.0) 

0.42522 

(0.1,0.9) 

0.17798 

(0.05,0.1) 

(60/-60) 0.0343 

(0.6,0.5) 

0.034695 

(0.4,0.5) 

0.52066 

(0.1,0.0) 

0.45694 

(0.1,0.0) 

0.39142 

(0.0,0.9) 

0.35426 

(0.0,0.1) 
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(60/-60)2 0.054548 

(0.2,1.0) 

0.020571 

(0.4,0.5)* 

0.57856 

(0.1,0.0) 

0.50927 

(0.1,1.0) 

0.20942 

(0.05,0.9) 

0.22069 

(1.0,0.9) 

(60/-60)5 0.071821 

(0.2,1.0) 

0.032858 

(1.0,0.2) 

0.58183 

(0.1,0.0) 

0.51212 

(0.9,1.0) 

  0.24199 

 (0.1,0.9) 

0.17021 

(0.1,0.9) 

(75/-75) 0.074306 

(0.2,1.0) 

0.010284 

(0.6,0.5)* 

0.6692 

(0.0,0.0) 

0.64125 

(1.0,0.0) 

0.34954 

(0.0,1.0) 

0.22477 

(1.0,0.4) 

(75/-75)2 0.077768 

(0.2,1.0) 

0.014925 

(1.0,0.9) 

0.53987 

(0.0,0.0) 

0.48786 

(0.0,0.0) 

0.3024 

(0.0,1.0) 

0.12056 

(0.0,0.0)* 

(75/-75)5 0.081093 

(0.2,1.0) 

0.026659 

(1.0,0.9) 

0.50161 

(0.0,0.0) 

0.4395 

(1.0,0.0) * 

0.29251 

(0.0,1.0) 

0.1519 

(1.0,1.0) 

  90 0.16104 

(0.8,1.0) 

0.019233 

(0.0,0.9) 

 0.52068 

(0.0,1.0) 

0.39293 

(0.0,1.0) 

  0.4542 

(0.0,1.0) 

0.2274 

(0.0,1.0) 

a/b=1, a/h=100, 
/ /a b =1, c/a=0.2; E11/E22 = 25, G23 = 0.2E22, G13 = G12 = 0.5E22, 12 =21 =0.25. 

Values in the parenthesis indicates the location ( yx, ) of maximum hogging moments in each case. 

Asterisk denotes the lowest values of shell actions in each group. 
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Table 5.13: Values of maximum non-dimensional sagging moment (- yM ) x102 for different 

antisymmetric angle ply lamination and boundary conditions of stiffened composite hypar shell 

with cutout 

Laminati

on 

(Degree) 

 

Boundary conditions 

           Group-I             Group-II                 Group-III 

    A       B         A        B            A         B 

    CSSC              CSCS       FCCF      FCFC         FSSF       FSFS 

     0 -0.5569 

(0.2,0.2) 

-0.4939 

(0.3,0.2) 

-1.0872 

(0.0,0.8) 

-0.53002 

(0.0,0.5) 

-1.0741 

(0.0,0.7) 

-0.48039 

(1.0,0.5) 

(15/-15) -0.5711 

(0.7,0.5) 

-0.51574 

(0.7,0.5) 

-2.5698 

(0.0,1.0) 

-0.70504 

(0.2,0.7) 

-6.0338 

(1.0,1.0) 

-2.274 

(0.0,1.0) 

(15/-15)2 -0.36225 

(0.2,0.2) 

-0.33883 

(0.3,0.2) 

-0.55374 

(0.0,0.75) 

-0.46423 

(0.8,0.4) 

-2.797 

(1.0,1.0) 

-0.86614 

(1.0,1.0) 

(15/-15)5 -0.27309 

(0.2,0.2) 

-0.24825 

(0.3,0.2) 

-0.58115 

(0.0,0.75) 

-0.31348 

(1.0,0.7) 

-0.96784 

(1.0,1.0) 

-0.30621 

(0.0,0.5) 

(30/-30) -0.34589 

(0.7,0.5) 

-0.33118 

(0.7,0.5) 

-2.7859 

(0.0,1.0) 

-0.44972 

(0.8,0.6) 

-3.1552 

(1.0,1.0) 

-1.9656 

(1.0,0.0) 

(30/-30)2 -0.19022 

(0.2,0.8) 

-0.18219 

(0.7,0.8) 

-0.86671 

(0.0,1.0) 

-0.26521 

(0.8,0.6) 

-1.2467 

(1.0,1.0) 

-0.74163 

(1.0,0.0) 

(30/30)5 -0.14064 

(0.1,0.8) 

-0.11837 

(0.7,0.2) 

-0.21554 

(0.0,0.7) 

-0.1902 

(0.0,0.5) 

-0.2256 

(0.05,0.7) 

-0.19999 

(0.0,0.5) 

(45/-45) -0.21819 

(0.4,0.6) 

-0.21759 

(0.4,0.4) 

-1.7462 

(0.0,1.0) 

-0.2829 

(0.5,0.0) 

-1.6292 

(0.0,1.0) 

-1.4003 

(1.0,1.0) 

(45/-45)2 -0.11564 

(0.1,0.9) 

-0.11318 

(0.6,0.6) 

-0.5536 

(0.0,1.0) 

-0.20584 

(0.5,1.0) 

-0.5317 

(0.0,1.0) 

-0.4722 

(0.0,0.0) 

(45/-45)5 -0.09188 

(0.1,0.9) 

-0.06634 

(0.2,0.1) 

-0.1338 

(0.1,0.7) 

-0.14615 

(0.5,0.0) 

-0.16154 

(0.3,0.1) 

-0.13433 

(0.05,0.5) 

(60/-60) -0.12133 

(0.5,0.3) 

-0.12091 

(0.5,0.7) 

-0.4647 

(0.0,1.0) 

-0.16361 

(0.0,0.5) 

-0.58686 

(0.0,0.0) 

-0.64936 

(0.0,1.0) 
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(60/-60)2 -0.083579 

 (0.2,0.9) 

-0.070521 

(0.8,0.1) 

-0.097655 

(0.1,0.2) 

-0.10789 

(0.5,0.0) 

-0.12226 

(0.0,0.0) 

-0.10789 

(1.0,0.0) 

(60/-60)5 -0.066557 

(0.2,0.9) 

-0.049949 

(0.8,0.9) * 

-0.086694 

(0.0,0.3)* 

-0.089522 

(1.0,0.3) 

-0.080367 

(0.05,0.7)* 

-0.096107 

(0.95,0.3) 

(75/-75) -0.07812 

(0.2,0.9) 

-0.06465 

(0.8,0.9) 

-0.19869 

(0.0,0.5) 

-0.20524 

(1.0,0.5) 

-0.19122 

(0.0,0.5) 

-0.20417 

(0.0,0.5) 

(75/-75)2 -0.06825 

(0.2,0.9) 

-0.05064 

(0.8,0.9) 

-0.11075 

(0.0,0.5) 

-0.12232 

(0.0,0.5) 

-0.10259 

(0.0,0.5) 

-0.12641 

(0.0,0.3) 

(75/-75)5 -0.0627 

(0.2,0.9) 

-0.04301 

(0.8,0.9)* 

-0.08809 

(0.0,0.5)* 

-0.10272 

(0.0,0.3) 

-0.08626 

(0.0,0.3)* 

-0.11185 

(1.0,0.3) 

  90 -0.071805 

(0.2,0.9) 

-0.048512 

(0.2,0.9) 

-0.145 

(0.0,0.9) 

-0.13011 

(1.0,0.7) 

 -0.13213 

(0.0,0.8) 

-0.13244 

(1.0,0.7) 

a/b=1, a/h=100, 
/ /a b =1, c/a=0.2; E11/E22 = 25, G23 = 0.2E22, G13 = G12 = 0.5E22, 12 =21 =0.25. 

Values in the parenthesis indicates the location ( yx, ) of maximum sagging moment in each case. 

Asterisk denotes the lowest values of shell actions in each group. 
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Table 5.14: Values of maximum non-dimensional anticlockwise twisting moments (+ xyM ) x102 

for different antisymmetric angle ply lamination and boundary conditions of stiffened composite 

hypar shell with cutout 

Laminatio

n 

(Degree) 

Boundary conditions 

           Group-I             Group-II                 Group-III 

    A       B         A        B            A         B 

    CSSC              CSCS       FCCF      FCFC         FSSF       FSFS 

     0 0.037944 

(0.1,0.0)  

0.031328 

(0.9,1.0) 

0.12088 

(0.1,1.0) 

0.024386 

(0.0,0.3) 

0.11372 

(0.0,0.0) 

0.090819 

(0.0,0.0) 

(15/-15) 0.088735 

(0.6,0.6) 

0.080738 

(0.4,0.4) 

    0.923 

(0.0,1.0) 

0.43923 

(0.0,1.0) 

1.0578 

(0.0,1.0) 

0.82629 

(0.0,1.0) 

(15/-15)2 0.057772 

(0.4,0.4) 

0.052299 

(0.4,0.4) 

0.35989 

(0.1,0.9) 

0.24023 

(1.0,0.0) 

0.37682 

(0.1,0.9) 

0.35256 

(1.0,0.0) 

(15/-15)5 0.040785 

(1.0,0.9) * 

0.031211 

(0.4,0.4)* 

0.32007 

(0.1,0.9) 

0.11952 

(0.0,1.0) * 

0.32814 

(0.1,0.9) 

0.13407 

(1.0,0.1)* 

(30/-30) 0.18995 

(1.0,0.0) 

0.10485 

(0.6,0.6) 

  1.9754 

 (0.0,1.0) 

0.91723 

(0.0,1.0) 

1.9759 

(0.0,1.0) 

1.5173 

(0.0,1.0) 

(30/-30)2 0.07692 

(0.4,0.4) 

0.068537 

(0.6,0.6) 

0.70675 

(0.0,1.0) 

0.48562 

(0.0,1.0) 

0.7438 

(0,1,0.9) 

0.65793 

(1.0,0.0) 

(30/30)5 0.045777 

(0.4,0.4) 

0.040937 

(0.4,0.4) 

0.58772 

(0.1,0.9) 

0.2484 

(0.05,0.9) 

0.60932 

(0.1,0.9) 

0.25235 

(1.0,0.1) 

(45/-45) 0.21947 

(1.0,0.0) 

0.11146 

(0.4,0.4) 

2.1835 

(0.0,1.0) 

1.3376 

(1.0,0.0) 

2.1452 

(0.0,1.0) 

1.9668 

(1.0,0.0) 

(45/-45)2 0.075312 

(0.4,0.4) 

0.073197 

(0.4,0.4) 

0.84521 

(0.1,0.9) 

0.68613 

(0.0,1.0) 

0.89207 

(0.1,0.9) 

0.83756 

(0.0,1.0) 

(45/-45)5 0.045154 

(0.4,0.4) 

0.043868 

(0.6,0.6) 

0.68098 

(0.1,0.9) 

0.43169 

(0.1,0.9) 

0.707 

(0.1,0.9) 

0.43052 

(0.1,0.9) 
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(60/-60) 0.11493 

(1.0,0.0) 

0.1039 

(0.4,0.4) 

1.5035 

(0.0,1.0) 

1.0423 

(0.0,1.0) 

1.5841 

(0.0,1.0) 

1.6624 

(0.0,1.0) 

(60/-60)2 0.072134 

(0.6,0.6) 

0.067079 

(0.4,0.4) 

0.68201 

(0.1,0.9) 

0.61209 

(0.0,1.0) 

0.72278 

(0.1,0.9) 

0.73891 

(1.0,0.0) 

(60/-60)5 0.042195 

(0.,6,0.6) 

0.042783 

(0.9,1.0) 

0.60475 

(0.1,0.9) 

0.39865 

(0.1,0.9) 

0.62474 

(0.1,0.9) 

0.48929 

(0.9,0.1) 

(75/-75) 0.08634 

(0.4,0.4) 

0.084457 

(0.9,1.0) 

0.42859 

(1.0,0.05) 

0.35338 

(1.0,0.0) 

0.54137 

(0.05,1.0) 

0.29934 

(0.95,0.1) 

(75/-75)2 0.060973 

(0.2,0.0) 

0.068926 

(0.9,1.0) 

0.33476 

(0.1,0.9) 

0.29418 

(0.0,1.0) 

0.35635 

(0.1,0.9) 

0.2705 

(0.9,0.1) 

(75/-75)5 0.05751 

(0.9,0.9) 

0.061555 

(0.9,1.0) 

0.31778 

(0.1,0.9) 

0.24969 

(1.0,0.0) * 

0.33055 

(0.1,0.9) 

0.23722 

(0.9,0.1)* 

  90 0.094868 

(0.0,0.85) 

0.094647 

(0.0,0.9) 

0.098128 

(0.1,1.0) 

0.074555 

(0.2,0.9) 

0.12883 

(0.0,0.0) 

0.095647 

(0.0,0.0) 

a/b=1, a/h=100, 
/ /a b =1, c/a=0.2; E11/E22 = 25, G23 = 0.2E22, G13 = G12 = 0.5E22, 12 =21 =0.25. 

Values in the parenthesis indicates the location ( yx, ) of maximum anticlockwise twisting moment in 

each case. 

Asterisk denotes the lowest values of shell actions in each group. 
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Table 5.15: Values of maximum non-dimensional clockwise twisting moments (- xyM ) x102 for 

different antisymmetric angle ply lamination and boundary conditions of stiffened composite 

hypar shell with cutout 

Laminati

on 

(Degree) 

 

Boundary conditions 

           Group-I             Group-II                 Group-III 

    A       B         A        B            A         B 

    CSSC              CSCS       FCCF      FCFC         FSSF       FSFS 

     0 -0.055845 

(1.0,0.0) 

-0.031327 

(0.9,0.0) 

-0.24013 

(0.0,1.0) 

-0.024384 

(0.0,0.7)  

-0.23557 

(0.0,1.0) 

 -0.090831 

(0.0,1.0)  

(15/-15) -0.082597 

(0.4,0.6) 

-0.080739 

(0.4,0.6) 

-0.46078 

(1.0,1.0) 

-0.43923 

(0.0,0.0) 

-0.65365 

(1.0,1.0) 

-0.82627 

(0.0,0.0) 

(15/-15)2 -0.054896 

(0.6,0.4) 

-0.052298 

(0.4,0.6) 

-0.24402 

(1.0,1.0) 

-0.24022 

(0.0,0.0) 

-0.32104 

(0.9,0.9) 

-0.35257 

(1.0,1.0) 

(15/-15)5 -0.045312 

(1.0,0.1) 

-0.031211 

(0.6,0.4)* 

-0.20873 

(0.9,0.9)* 

-0.11952 

(0.0,0.0) * 

-0.25284 

(0.9,0.9) 

-0.13408 

(1.0,0.9) * 

(30/-30) -0.11314 

(0.6,0.4) 

-0.10485 

(0.6,0.4) 

-1.3121 

(1.0,1.0) 

-0.91722 

(0.0,0.0) 

-1.7703 

(1.0,1.0) 

-1.5173 

(0.0,0.0) 

(30/-30)2 -0.072684 

(0.6,0.4) 

-0.068538 

(0.6,0.4) 

-0.59443 

(1.0,1.0) 

-0.48561 

(0.0,0.0) 

-0.70074 

(1.0,1.0) 

-0.65792 

(1.0,1.0) 

(30/30)5 -0.043701 

(0.4,0.6) 

-0.040939 

(0.6,0.4) * 

-0.42815 

(0.9,0.9) 

-0.24837 

(0.05,0.1) 

-0.48183 

(0.9,0.9) 

-0.25232 

(1.0,0.9) 

(45/-45) -0.11261 

(0.4,0.6) 

-0.11146 

(0.6,0.4) 

-1.3708 

(0.0,0.0) 

-1.3377 

(1.0,1.0) 

-1.8555 

(0.0,0.0) 

-1.9668 

(1.0,1.0) 

(45/-45)2 -0.07387 

(0.4,0.6) 

-0.0732 

(0.4,0.6) 

-0.70037 

(0.0,0.0) 

-0.68614 

(0.0,0.0) 

-0.71911 

(0.0,0.0) 

-0.8376 

(0.0,0.0) 

(45/-45)5 -0.05117 

(0.1,0.9) 

-0.04387 

(0.4,0.6) 

-0.41485 

(0.1,0.1) 

-0.43166 

(0.1,0.1) 

-0.43291 

(0.05,0.1) 

-0.43053 

(0.9,0.9) 
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(60/-60) -0.10681 

(0.6,0.4) 

-0.1039 

(0.4,0.6) 

-1.0968 

(0.0,0.0) 

-1.0423 

(0.0,0.0) 

-1.6311 

(0.0,0.0) 

-1.6624 

(0.0,0.0) 

(60/-60)2 -0.069411 

(0.6,0.4) 

-0.067078 

(0.6,0.4) 

-0.64052 

(0.0,0.0) 

-0.61206 

(0.0,0.0) 

-0.68785 

(0.0,0.0) 

-0.7389 

(1.0,1.0) 

(60/-60)5 -0.049518 

(0.1,0.9) 

-0.042783 

(0.9,0.0) 

-0.4098 

(0.0,0.0) 

-0.3987 

(0.9,0.9) 

-0.50166 

(0.1,0.1) 

-0.4893 

(0.9,0.9) 

(75/-75) -0.08036 

(0.4,0.6) 

-0.08445 

(0.1,1.0) 

-0.38089 

(1.0,1.0) 

-0.35338 

(1.0,1.0) 

-0.39001 

(0.95,1.0) 

-0.29929 

(0.05,1.0) 

(75/-75)2 -0.06047 

(0.9,0.0) 

-0.06892 

(0.9,0.0) 

-0.30561 

(0.0,0.0) 

-0.29418 

(0.0,0.0) 

-0.27639 

(0.05,0.1) 

-0.2705 

(0.1,0.1) 

(75/-75)5 -0.05426 

(0.9,0.0) 

-0.06155 

(0.1,1.0) 

-0.26932 

(0.0,0.0) 

-0.24967 

(0.0,0.0)  

-0.24089 

(0.1,0.1) 

-0.23721 

(0.9,0.8) * 

  90 -0.084457 

(0.0,0.1) 

-0.094646 

(0.0,0.1) 

-0.18059 

(1.0,1.0) 

-0.074542 

(0.2,0.1) 

-0.10505 

(0.0,1.0) 

-0.095682 

(0.0,1.0) 

a/b=1, a/h=100, 
/ /a b =1, c/a=0.2; E11/E22 = 25, G23 = 0.2E22, G13 = G12 = 0.5E22, 12 =21 =0.25. 

Values in the parenthesis indicates the location ( yx, ) of maximum clockwise twisting moment in each 

case. 

Asterisk denotes the lowest values of shell actions in each group. 
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Table 5.16: Shell options arranged according to ascending order of positive values of shell actions 

different antisymmetric angle ply lamination and boundary conditions of stiffened composite 

hypar shell with cutout 

Non-dimensional Shell Action Non-dimensional co-ordinates 

( x , y ) 

Shell actions at each layer 

          

      

                          xN  

 x =0.6   y =0.6 CSCS/(30/-30) 

x =0.6,  y =0.6 CSCS/ (15/-15)2 

x =0.0,   y =1.0 FCFC/ (15/-15) 

x =0.0,   y =1.0 FCFC/(75/-75)5 

x = 0.0,  y =1.0 FSFS/ (15/-15) 

x =0.0,   y =1.0  FSFS/ (30/-30) 

 

 

                          yN  

x =1.0,   y =1.0 CSCS/ (75/-75) 

x =0.6,   y =0.6 CSCS/ (60/-60) 

x =0.0,   y =1.0 FCFC/(75/-75)5 

x = 0.0,   y =1.0 FCFC/(60/-60)5 

x = 0.0,  y =1.0 FSSF/(60/-60) 

x = 1.0,  y =0.0 FSFS/(75/-75)5 

 

 

                 

                          xyN  

x =0.55,  y =0.5 CSCS/(75/-75)5 

x = 0.0,  y =1.0 CSSC/(75/-75)2 

x = 0.4,   y =0.5 FCFC/(15/-15)2 

x =1.0,     y =0.6 FCFC/ (15/-15) 

x =0.1,     y =0.0 FSFS/ (15/-15) 

x =1.0,     y =0.9 FSFS/(60/-60)5 

 

 

 x =0.5,       y =0.6 CSCS/(15/-15) 

x =1.0,       y =0.8 CSCS/(30/-30)5 
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                          xM  

x =1.0,        y =0.0 FCFC/(15/-15) 

x = 0.1,       y =0.0 FCFC/(30/-30) 

x =0.5,        y =0.9 FSFS/(15/-15)5 

x =0.0,       y =0.1 FSFS/(30/-30)5 

 

 

 

 

                             yM  

x =0.6,       y =0.5 CSCS/(75/-75) 

x =0.4,      y =0.5 CSCS/ (60/-60)2 

x =0.1,      y =0.0 FCFC/(30/-30) 

x =1.0,     y =0.0 FCFC/(75/-75)5 

x =0.0,    y =0.0 FSFS/(75/-75)2 

x =0.9,     y =1.0 FSFS/ (15/-15)2 

   

 

    

                          

                              xyM  

x =0.4,      y =0.4 CSCS/(15/-15)5 

x =1.0,      y =0.9 CSSC/ (15/-15)5 

x =0.0,      y =1.0 FCFC/ (15/-15)5 

x =1.0,      y =0.0 FCFC/ (75/-75)5 

x =1.0,       y =0.1 FSFS/ (15/-15)5 

x =0.9,       y =0.1 FSFS/ (75/-75)5 
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Table 5.17: Shell options arranged according to ascending order of negative values of shell actions 

of different antisymmetric angle ply lamination and boundary conditions of stiffened composite 

hypar shell with cutout 

Non-dimensional Shell Action Non-dimensional co-ordinates 

( x , y ) 

Shell actions at each layer 

 

 

 

 

                          w  

x =0.5,       y =0.6 CSCS/(45/-45)5 

x =0.5,       y =0.6 CSCS/(60/-60)5 

x =0.0,     y =0.5 FCFC/(15/-15) 

x =0.0,      y =0.5 FCFC/(30/-30)2 

x =1.0,      y =0.5 FSFS/(15/-15)5 

x =1.0,      y =0.5 FSFS/(30/-30)5 

 

 

                       xN

  

x = 0.6,     y =0.4 CSCS/(30/-30) 

x = 0.4,    y =0.6 CSCS/(15/-15)2 

x =0.0,      y =0.0 FCFC/(15/-15) 

x =0.0,      y =0.0 FCFC/(30/-30)2 

x =0.0,      y =0.0  FSFS/(15/-15) 

x =0.0,      y =0.0  FSFS/(75/-75)5 

 

 

                 

                            yN  

x =0.0,    y =1.0 CSCS/(75/-75) 

x =0.4,     y =0.6 CSSC/(60/-60) 

x =0.0,    y =0.0 FCFC/(75/-75)5 

x =0.0,     y =0.1 FCCF/(75/-75)5 

x =0.0,    y =0.0 FSFS/(75/-75)5 

x =1.0,   y =1.0 FSSF/(60/-60) 

 

 

x =0.7,       y =0.5 CSCS/(15/-15) 

x =0.5,       y =0.7 CSCS/(75/-75)5 
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                               xyN  

 

 

 

x = 0.8,      y =0.5 FCFC/(15/-15)5 

x =0.5,        y =0.7 FCFC/(15/-15) 

x =0.0,        y =0.0 FSFS/(15/-15) 

x =1.0,         y =1.0 FSFS/(30/-30) 

 

 

 

 

                                 xM  

x =0.3,       y =0.2 CSCS/(15/-15)5 

x =0.7,       y =0.2 CSCS/(30/-30)5 

x = 0.9,      y =0.6 FCFC/(15/-15)5 

x =0.95,       y =0.5 FCFC/(30/-30)5 

x =0.2,       y =0.1 FSFS/(15/-15)5 

x =0.8,     y =0.9 FSFS/(30/-30)5 

 

 

 

 

                              yM  

x =0.8,    y =0.9 CSCS/(75/-75)5  

x =0.8,     y =0.9 CSCS/(60/-60)5 

x = 0.0,    y =0.3 FCCF/(60/-60)5 

x =0.0,     y =0.5 FCCF/(75/-75)5 

x =0.05,   y =0.7 FSSF/(60/-60)5 

x =0.0,   y =0.3 FSSF/(75/-75)5 

 

 

 

                              xyM  

x =0.6,       y =0.4 CSCS/(15/-15)5 

x =0.6,       y =0.4 CSSC/(30/-30)5 

x =0.0,      y =0.0 FCFC/(15/-15)5 

x =0.9,      y =0.9 FCCF/(15/-15)5 

x =1.0,      y =0.9 FSFS/ (15/-15)5 

x =0.0,      y =0.8 FSFS/(75/-75)5 
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Table 5.18: Relative performance matrix considering CSCS/(15/-15)2 and CSCS/(45/-45)2 shells 

 Shell actions CSCS/(15/-15)2 CSCS/(45/-45)2 

 

 

 

 

Positive 

xN  1 0 

yN  0 1 

xyN  1 1 

xM  1 1 

yM  1 1 

xyM  
1 1 

 

 

 

Negative 

w  0 1 

xN  1 0 

yN  0 1 

xyN  1 1 

xM  1 0 

yM  0 1 

xyM  
1 1 

 

Total 

 

9 

 

10 

 

5.3.2  Shell characteristics along some typical lines of dominating values of the respective 

shell actions  

Ten layered antisymmetric angle ply laminates like (+15/-15)5, (+30/-30)5, (+45/-45)5, 

(+60/-60)5, (+75/-75)5 are chosen for additional study with graphite epoxy as the material subjected 

to uniformly distributed load. It has been found from the previous study by the author that as the 

number of layer increases the shell actions decreases. So ten layered antisymmetric angle ply 

laminates are chosen for the present study. The shell characteristics along some typical lines of 

dominating values of the respective shell actions are studied for different lamination angle of 

antisymmetric angle ply laminates for CSSC and CSCS boundary conditions. The comparative 

performance of different lamination angle of antisymmetric angle ply lamination in terms of non-

dimensional values of static displacements, static stress resultants of different shell combinations 

are presented systematically in Fig 5.2-5.8. The material and geometric properties of the hypar 
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shells for these problems are considered as: a/b=1, a/ /b /=1, a/h=100, c/a=0.2, E11=25E22, 

G12=G13=0.5E22, G23=0.2E22, ν=0.25, =100 N-sec2/m4. 

Displacement component w  

Figs. 5.2a and 5.2b show that deflection values are highest for cross ply shells (00 and 900). 

Fig. 5.2a shows the values of deflection along 6.0y for CSSC shell. It is seen that with the increase 

in lamination angle deflection increases. It is seen that (+75/-75)5 lamination shows higher 

deflection than (+60/-60)5 lamination. Whereas the deflection of (+45/-45)5, (+30/-30)5, and (+15/-

15)5 laminations are decreasing gradually. This indicates superior performance of the lower 

lamination angle compared to higher lamination angle On the other hand values of deflection along 

4.0y for CSCS boundary condition (Fig. 5.2b) is always higher for 00 and 900 lamination angle 

than other lamination angle. The values of deflection of (+15/-15)5 and (+75/-75)5 are close to each 

other whereas deflection for (+30/-30)5, (+45/-45)5 and (+60/-60)5 laminations are almost same. 

(+30/-30)5, (+45/-45)5 and (+60/-60)5 laminations and showing lower deflection than (+15/-15)5 

and (+75/-75)5 laminations. Comparing Fig. 5.2a and 5.2b, it is noted that the arrangement of 

boundary constraints have a large impact on deflection. 

 

 

        (a)                   (b) 

Fig. 5.2 Variation of w  (a) along 6.0y for CSSC boundary (b) along 4.0y  for CSCS 

boundary 
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Stress resultant xN  

The plots of xN along 9.0y for CSSC boundary condition and xN  along 6.0y for CSCS 

boundary condition (Fig.5.3a and Fig. 5.3b) show that values of xN  increase with increase in 

lamination angle. The rate of increase is higher for higher lamination angle. In case of CSSC shell 

the peak values of xN are 179% and 206% for (+60/-60)5 and (+75/-75)5 lamination whereas for 

the (+30/-30)5, (+45/-45)5 and (+60/-60)5 laminations are respectively about -3.7%, 19.8% and 

70% more than the maximum value of the 00 lamination. For CSCS shells the peak values of (+60/-

60)5 and (+75/-75)5 shells are 123% and 243% with respect to 00 shell whereas peak values of other 

lamination angles are within 38%. This indicates superior performance of the lower lamination 

angle. The peak values of xN  for CSSC boundary is occurring along the clamped edge whereas 

the peak values of CSCS shells are occurring near the cutout of the shell. Here, again the effect of 

arrangement of boundary constraints upon the shell characteristics is proved. 

 

 

(a)                   (b) 

Fig. 5.3 Variation of xN  (a) along 9.0y for CSSC boundary (b) along 6.0y for CSCS 

boundary 

 



67 
 

Stress resultant yN  

The nature and values of yN  along 1.0x for CSSC shell (Fig. 5.4a) reveals that the values 

of (+75/-75)5 and (+15/-15)5 laminations are much higher than the other lamination but lower than 

00 lamination. The yN  values of (+45/-45)5 and (+60/-60)5 laminations are close to each other and 

showing lowest values.  The values are increased at high rate from simply supported edge to a 

clamped edge. The nature and values of yN along for CSCS boundary condition (Fig.5.4b) shows 

with the increase in lamination angle shell action decreases gradually with reference to 00 

lamination. For a CSCS shell there is fluctuation of stress parallel to clamped edge and maximum 

shell actions occur near the cutout. The effect of arrangement of boundary constraints is once again 

established. 

 

 

 

 

(a)                   (b) 

Fig. 5.4 Variation of yN  (a) along 1.0x for CSSC boundary (b) along 6.0x for CSSC 

boundary 

 

 

 



68 
 

Stress resultant xyN  

The values of xyN  along 7.0x for CSSC and CSCS boundary (Fig. 5.5a and 5.5b) are 

found to be wavy in nature. With increase in lamination angle the wavy nature increases. 

 

 

(a)                   (b) 

Fig. 5.5 Variation of xyN  (a) along 7.0x for CSSC boundary (b) along 7.0x for CSCS 

boundary 

 

 

Stress couple xM  

The plots of xM along 8.0y  (Fig 5.6a) for CSSC shell and along 2.0y  (Fig.5.6b) for 

CSCS shell indicates that, for lower lamination angle, increase in lamination angle has marginal 

effect with respect to nature and magnitude. However, the higher lamination angles show 

significant increase in the values, the peak values being 25% and 216% more respectively for the 

(+60/-60)5 and (+75/-75)5, in comparison to cross ply (0) shell. The similar nature of variation and 

marginal changes of values clearly establishes the superiority of the shell with lower lamination 

angle over those with higher lamination angle. 
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(a)                   (b) 

Fig. 5.6 Variation of xM  (a) along 8.0y for CSSC boundary (b) along 2.0y  for CSCS 

boundary 

 

 

Stress couple yM  

It is observed from Fig.5.7a that the values of yM  hardly changed along 05.0x for CSSC 

boundary for (+60/-60)5 and (+45/-45)5 lamination. But with increase in lamination angle above 

600 or decrease in lamination angle below 450 there are appreciable changes in the peak values, 

both positive and negative. For (+15/-15)5, (+30/-30)5 and (+75/-75)5 lamination, the peak values 

occurring along the clamped edges and plots are wavy in mature. However, from Fig. 5.7b it is 

found that variation of yM  along 3.0x for CSCS boundary condition is significant for lower 

lamination angle whereas for higher lamination angle the changes are marginal. The peak values 

are toward the simply supported edges. 
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(a)                   (b) 

Fig. 5.7 Variation of yM  (a) along 05.0x for CSSC boundary (b) along 3.0x for CSCS 

boundary 

 

 

(a)                   (b) 

Fig. 5.8 Variation of xyM  along 9.0x for (a) CSSC boundary (b) CSCS boundary 
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Stress couple xyM  

The plots of xyM  along 9.0x for CSSC and CSCS boundary conditions (Fig. 5.8a and 

5.8b) show an identical nature for all the lamination and the values are found to increase uniformly 

with an increase in lamination angle, except CSSC shell with (+75/-75)5. In both the cases peak 

values occur along the simply supported edges.  

 

5.3.3  Comparative performance of shell characteristics around the opening  

Four layered antisymmetric angle ply laminate (+45/-45)2 is chosen with graphite epoxy as 

the material subjected to uniformly distributed load. The shell characteristics at the nodal points of 

different boundary elements around the openings are studied for CSSC boundary conditions. The 

arrangement of cutout is designated by three characters. The first letter denotes cutout and the next 

two digits denote the number of elements encompassing cutout along x and y direction 

respectively.  C22, C42 and C62, designated herein as longitudinal cutout. They are increasing in 

size with 2, 4 and 6 elements removed along the x-direction and 2 elements removed along the y-

direction. Similarly, cutout removing 2, 4 and 6 elements along y direction and 2 elements along x 

direction is designated as transverse cutout and designated as C22, C24 and C26. Thus C22 is 

common in longitudinal and transverse cutout. Furthermore, cutouts with same number of elements 

are termed as equivalent. Shell with no cutout is designated as C00. The effect of different sizes of 

the cutout on shells in terms of non-dimensional values of static displacements, force and moment 

resultants of different shell combinations are presented systematically in Tables 5.19 and 5.20. The 

material and geometric properties of the hypar shells for these problems are considered as: a/b=1, 

a//b/=1, a/h=100, c/a=0.2, E11=25E22, G12=G13=0.5E22, G23=0.2E22, ν=0.25, =100 N-sec2/m4.  

5.3.3.1 Displacement around the cutout 

The study is concerned with the changes in the values of the shell displacement around the 

opening for different types of cutouts. The displacement components w are computed at the nodal 

points of different boundary elements around the openings and typical results are shown in Table 

5.19. Five different types of cutouts are considered along with no cutout case. The dash marks in 

many locations of Table 5.19 indicate the absence of the shell due to cutouts encompassing those 

locations.  
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The values of w  around the cutouts reveal that, in general the cutouts tend to increase the 

values of w when increasing the size of the openings. The comparative values at the corresponding 

points, with reference to those for the C00 indicate that the maximum change occurs at the points 

on the centre line of the shell towards the simply supported end for C22. But reverse is the case for 

C42 and C62. The absolute maximum is for the C24 shell. For the C24 and the C26, also, the 

maximum changes occur at the locations of points on the centre line towards the simply supported 

edges. It is further observed from Table 5.19 that the shell profile along the length of the cutout 

drastically reverses with the increase in the size of the cutout in the transverse direction, i.e. from 

the C24 to C26.  From Table 5.19 it can be said that the C22 is definitely better than the C42 and 

C62 respectively. But C26 is better than C24, considering the displacement component w, which 

is often a major criterion for design. 

Table 5.19: Non dimensional displacement component ( w  x104) around the cutouts for CSSC 

shells 

x  y  C22 C42 C62 C24 C26 C00 

0.2 0.35          -         - -0.0919          -           - -0.0710 

0.4          -         - -0.1071         -           - -0.0662 

0.45          -         - -0.1203         -           - -0.0676 

0.5          -         - -0.1285         -           - -0.0701 

0.55          -         - -0.1269         -           - -0.0685 

0.6          -         - -0.1202         -           - -0.0694 

0.65          -         - -0.1108         -           - -0.0792 

0.3 0.35 - -0.1365 -0.1459 - - -0.1011 

0.4          - -0.1523         -         -           - -0.0976 

0.45          - -0.1650         -         -           - -0.0971 

0.5          - -0.1717         -         -           - -0.0974 

0.55          - -0.1674         -         -           - -0.0961 
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0.6          - -0.1563         -         -           - -0.0962 

0.65         - -0.1409 -0.1603         -          - -0.1003 

0.4 0.15         -          -         -         - -0.1155 -0.0833 

0.25         -          -         - -0.1945 -0.2401 -0.1119 

0.35 -0.1520 -0.1729 -0.1933 -0.3445 -0.2650 -0.1193 

0.4          -          -          - -0.4031 -0.2433 -0.1188 

0.45          -          -          - -0.4937 -0.2679 -0.1177 

0.5 -0.1829          -          - -0.5490 -0.2905 -0.1162 

0.55           -          -          - -0.4921 -0.2656 -0.1145 

0.6           -          -          - -0.4020 -0.2387 -0.1122 

0.65 -0.1445 -0.1714 -0.1957 -0.3507 -0.2603 -0.1088 

0.7           -          -          - -0.2955 -0.2751 -0.1029 

0.75           -          -          - -0.2069 -0.2336 -0.0934 

0.8           -          -          -          - -0.1678 -0.0795 

0.85           -          -          -          - -0.1052 -0.0599 

 

5.3.3.2 Stress resultants and stress couples around the cutout 

Table 5.20 presents the values of the stress resultants, yx NN ,  and xyN  and stress couples, 

yx MM ,  and xyM  at some selective points of the longitudinal faces of the longitudinal cutout for 

CSSC boundary conditions. It is observed that shell characteristics changes drastically with 

changes in sizes of cutout even sometimes shell characteristics reverses with increase in sizes of 

the cutout. This fluctuation is maximum when C00 shell is converted to C22 and C22 is converted 

to C42. But when C42 is converted to C62 the changes are not so significant except a few cases. 

Another interesting observation is that the values of all the shell characteristics are lower for the 

C62 than C22 and C42; thereby indicating the superiority of C62 type of cutout. 
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Table 5.20: Shell characteristics along longitudinal faces of longitudinal cut-outs (C00, C22, 

C42 and C62) for CSSC boundary condition 

y  x  Cut -out xN  yN  xyN  xM  yM  xyM  

0.35  

0.4 

C-00 -0.0469 -0.0063 -0.6331 -0.0798 -0.0811 +0.0014 

C-22 +0.1228 +0.1694 -0.7274 -0.0927 -0.0932 +0.0532 

C-42 -0.0531 -0.1347 -0.5191 -0.0354 -0.0286 +0.0026 

C-62 -0.0480 -0.0248 -0.6026 -0.0396 -0.0295 +0.0033 

 

0.5 

C-00 -0.0102 +0.0235 -0.6408 -0.0848 -0.0862 +0.0055 

C-22 -0.0137 +0.0056 -0.3894 -0.0264 -0.0216 +0.0033 

C-42 -0.0217 -0.0034 -0.5904 -0.0465 -0.0373 0.0000 

C-62 -0.0193 -0.0011 -0.6629 -0.0443 -0.0337 0.0010 

 

0.6 

C-00 +0.0165 +0.0424 -0.6334 -0.0823 -0.0834 +0.0076 

C-22 -0.1502 -0.1332 -0.7074 -0.0943 -0.0945 -0.0459 

C-42 +0.0204 +0.1479 -0.5098 -0.0399 -0.0325 0.0000 

C-62 +0.0021 +0.0241 -0.6087 -0.0426 -0.0319 -0.0031 
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5.4 CONCLUSIONS 

Following conclusions can be drawn from the present study, 

1) The close agreement between the results obtained by the present approach and those 

appearing in the published literature establishes the correctness of the formulation. 

2) An increase in support restraints always reduces the deflection and static stress resultants 

near the boundary.  

3) Among shells with two boundaries clamped and other two simply supported, the ones with 

adjacent boundaries clamped show lesser deflection for all the antisymmetric laminations 

considered here. 

4) Among shells with two free boundaries, one with two adjacent boundaries free shows greater 

static deflection for all the antisymmetric laminations considered here. 

5) Free boundaries bring in higher flexibility in shells and in this respect whether the other 

boundaries are simply supported or clamped matters to a great extent. Also when a free 

boundary is introduced to a stiffened shell with cutout, maximum deflection and stress 

resultants always occur near the free boundary.  

6) The superiority of a particular combination in terms of a shell action cannot predict the 

performance of the shell for other shell actions. 

7) For antisymmetric angle ply laminated composite shells lamination angle is a governing 

criterion to determine the shell characteristics. Also arrangements of boundary constraints 

have a large impact on deflection and static stress resultants. 

8) Though the superiority of the shells with less number of cutouts is clearly established, in 

some situations it is seen that even cut outs with more openings perform better than shell 

with fewer openings in terms of all the shell actions. 
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                                                                                                 Chapter 6 

FREE VIBRATION BEHAVIOR  

 

 

6.1  GENERAL 

The mathematical formulation for free vibration analysis of laminated composite stiffened 

hypar shell with cutout is presented in Chapter 4. In Chapter 5, section 5.2, some benchmark 

problems are identified. In this chapter also some benchmark problems have been identified and 

presented in section 6.2 which are relevant to the scope of present study. Those problems are solved 

and the results are compared with the previous ones to check the correctness of the present 

formulation.  

In section 6.3 some additional examples of laminated composite stiffened hypar shells with 

cut-out are considered with different parametric variations. The results are analyzed critically from 

different angles of variations and discussed accurately to show their engineering applications. 

Results having maximum practical implications are analyzed for the sake of brevity. The outcome 

of this study is presented systematically as conclusions in section 6.4. 

 

6.2  BENCHMARK PROBLEMS 

From Table 6.1, the agreement of present results with the earlier ones is excellent and the 

correctness of the stiffener formulation is established. Free vibration of simply supported and 

clamped hypar shell with (0/90)4 shell with cut-outs is also considered in section 5.2. The 

fundamental frequencies of hypar shell with cut-out obtained by the present method agree well 

with those reported by Chakravorty et al. (1998) as evident from Table 5.2, establishing the 

correctness of the cut-out formulation. Thus it is evident that the finite element model proposed 

here can successfully analyze vibration problems of stiffened skewed hypar composite shells with 

cut-out which is reflected by close agreement of present results with benchmark ones. 
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Table 6.1: Natural frequencies (Hz) of centrally stiffened clamped square plate 

Mode 

no. 

Mukherjee and 

Mukhopadhyay 

(1988) 

Nayak and 

Bandyopadhyay (2002a) 

Present 

method 

N8(FEM) N9(FEM) 

1 711.8 725.2 725.1 733 

a=b=0.2032 m, thickness =0.0013716 m, stiffener depth=0.0127 m, stiffener width =0.00635 m, stiffener eccentric 

at bottom, Material property: E=6.87x1010 N/m2, =0.29, =2823 kg/m3 

 

6.3  HIGHER MODE VIBRATION OF SHELLS 

6.3.1  Effect of varying boundary conditions and ply orientation 

Laminated composite stiffened hypar shells with cut-out is analysed to study the behavior 

of the shell under free vibration at higher mode for different parametric variations. The cut-outs 

are placed concentrically on the shell surface. The stiffeners are placed along the cut-out periphery 

and extended up-to the edge of the shell. The material and geometric properties of the shells are: 

a/b=1, a/h=100, / /a b =1, /a a =0.2, c/a=0.2, E11/E22=25, G23 = 0.2E22, G13= G12= 0.5E22, 12 =21 

=0.25,=100 N-sec2/m4 unless otherwise specified. Different type of symmetric and antisymmetric 

cross and angle ply laminates with different lamination angle is considered. 

The different boundary conditions which are used in the present analysis are CCCC, CCSS, 

SSCC, CSCS, SCSC, SSSS, CCFF, FFCC and CFCF. Numerical analyses are also performed to 

determine the effect of curvature on non-dimensional frequency by varying c/a = 0.2, 0.15, 0.1 and 

0.05. 

Table 6.2 presents the non-dimensional frequencies for shells with different laminations 

and boundary conditions. To facilitate the interpretation of results the boundary conditions are 

divided into three groups. Group I consists of commonly encountered edge conditions which are 

clamped and simply supported. Each of the boundary conditions included in either of Group II and 

Group III has equal number of support constraints. On examining the results, it is evident that the 

frequencies for all the laminations for all the modes depend on the number of boundary constraints. 

With increase in number of boundary constraints frequencies increase. Further it is noticed that for 
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two layered laminates for Group I boundary conditions, angle ply shells show better performance 

than cross ply laminates but reverse is the case for Group III shells. For Group II shells cross ply 

shells show better performance on lower mode and angle ply shell shows better performance on 

higher mode. It is also evident from Table 6.2 that with increase in number of layers angle ply 

shells perform better than their cross ply counterpart, except some few cases. This is true for Group 

I and Group II shells but for group III shells except a very few cases cross ply shells are better 

choices. These are true for both fundamental and higher mode.  

 Among Group II boundary condition although CCSS and SSCC perform better than CSCS 

and SCSC shells in lower mode but reverse is the case on higher mode. A more careful observation 

suggests that among Group III shells when numbers of layers are less CCFF and FFCC perform 

better but with increase in number of layers, performance of CFCF shells are improved. Hence 

lamination order may influence the frequency of stiffened composite shell with cutout more 

significantly than its boundary conditions. 

The mode shapes corresponding to the first five modes of vibration are plotted in Fig.6.1 

for cross ply and angle ply shells respectively. The normalized displacements are drawn with the 

shell mid-surface as the reference for all the support condition and for all the lamination used here. 

The fundamental mode is clearly a bending mode for all the boundary condition for cross ply and 

angle ply shell. At higher modes of vibration mode shape do not change to a great extent. Most of 

the mode shapes are in bending mode. It is found that for higher mode, nature of the mode shapes 

is somewhat similar, only the crest and trough position changes. 

Table 6.3 contains the non-dimensional frequency values for different symmetric laminates 

by varying the lamination angle and boundary conditions. It is observed from the results, with the 

increase in number of layer frequencies increase marginally from three layered to four layered 

shells. But with further increase in number of layers does not come to any effective benefit except 

CSCS and CFCF shells. This is expected as increasing the number of layers will result in reduced 

bending-stretching coupling and will increase the shell stiffness, till on increasing the number of 

layers the material becomes quasi-isotropic. Beyond that, increase in the number of layers will not 

improve the frequency to any extent. Rather, (0/θ)s lamination exhibit reasonably good 

performance and may be adopted for all practical purposes. It is also observed that except for 

CCCC shells, where θ=450 yields the highest values of frequency but for all other boundary 

conditions frequency increases with θ. For CCSS and CSCS shells θ=600 either gives the highest 
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frequency or yields a frequency value which is marginally less than the highest one. Similarly, for 

SSSS shells θ=750 and for CCFF and CFCF shells θ=900 gives the highest results. Fig. 6.2 

represents the mode shape corresponding to symmetric cross ply and angle ply laminated 

composite stiffened shells with cutout for fundamental and higher mode. 

The frequencies of four layered symmetric and antisymmetric laminates are furnished in 

Table 6.4 for various lamination angles and boundary conditions. Since four layered laminates are 

very common in industrial applications, Table 6.4 is expected to be a good design aid for practicing 

engineers. Examining the frequencies of shells with four layered symmetric and antisymmetric 

stacking orders presented in Table 6.4, it is found that for CCFF, CFCF and CCSS shells with 

0/θ/0/θ stacking order the vibrational stiffness increase monotonically with θ. But for CCCC, 

CSCS, SSSS and 0/ θ/ θ/0 CCSS shells, the frequency increases with θ upto a certain value but 

decreases when θ is further increased. Such decreases are quite marginal in all of these cases. All 

these observations are true for the first five modes shown here except very few cases. Out of twelve 

cases considered here in four cases (for CCFF, CFCF and CCSS shells with 0/θ/0/θ) highest 

frequencies are found to be at θ=900. In another eight cases highest frequencies are found to be at 

θ=600. 

When performances of antisymmetric and symmetric laminates are compared, it is found 

that considering all the modes performance of antisymmetric laminate is better than its symmetric 

counterpart. The only exception is symmetrically laminated CCCC shell with lamination angle 150. 

For this shell symmetric laminate perform better than the antisymmetric laminate in all five modes 

shown here. Fig. 6.3 represents the typical mode shapes corresponding to symmetric and anti- 

symmetric cross ply and angle ply laminated composite stiffened shells with cutout for 

fundamental and higher mode. 

The frequencies of 0/θ/θ/0 laminates are presented in Table 6.5 for various lamination 

angles with different c/a ratio for CCSS boundary condition. It is observed in general that frequency 

of each mode first increases with lamination angle then decrease for all c/a ratios. From Table 6.5 

it is also observed that for CCSS boundary condition for a given lamination angle increase in c/a 

ratio increases the frequency of each mode. Fig. 6.4 represents the typical mode shapes 

corresponding to fundamental and higher mode for symmetric angle ply laminated composite 

stiffened shells with cutout for different c/a ratio. 
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Table 6.2: Non-dimensional frequencies   for different laminations of laminated composite stiffened hypar shell with cut-out for 

different boundary conditions on higher mode 

θ Mode 

Group I Group II Group III 

CCCC SSSS CCSS SSCC CSCS SCSC CCFF FFCC CFCF 

0/90 

1 98.018 26.637 85.438 85.770 49.438 48.964 44.250 44.564 34.587 

2 108.446 26.929 91.838 92.100 76.142 76.592 52.083 52.484 61.940 

3 109.370 39.897 93.835 94.029 97.696 98.754 75.362 75.594 71.091 

4 119.423 42.461 103.232 103.272 102.429 102.454 77.192 76.842 76.053 

5 125.111 57.209 111.447 111.621 105.696 107.404 79.180 79.819 90.241 

45/-45 

1 120.698 37.986 83.906 84.201 49.165 49.362 27.561 27.473 26.910 

2 124.864 38.107 86.901 88.370 79.967 80.096 31.568 31.527 50.815 

3 125.550 60.215 93.530 94.343 113.990 114.144 54.854 54.747 54.034 

4 142.375 74.380 100.425 102.105 119.097 117.965 58.839 58.823 62.302 

5 180.017 96.224 117.059 118.783 119.229 118.890 66.271 66.178 82.723 

0/90/0 

1 100.702 40.793 87.276 87.509 47.510 81.413 43.943 45.331 22.040 

2 109.903 56.046 94.274 94.392 66.005 93.511 56.146 56.117 44.861 

3 117.771 57.826 101.721 102.883 90.226 105.734 73.599 73.147 75.056 

4 127.017 76.016 105.475 105.962 95.401 109.393 79.927 81.230 75.230 

5 127.127 88.721 112.081 113.024 108.090 117.934 85.013 85.250 76.614 

45/-45/45 

1 142.317 53.814 99.785 102.450 72.082 71.489 34.008 33.900 37.830 

2 149.189 55.274 108.133 107.543 113.228 111.680 37.943 37.919 59.124 

3 155.431 83.546 109.827 110.466 138.565 135.739 59.926 59.844 62.084 
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4 159.182 106.898 128.808 131.657 143.016 142.474 67.858 67.857 80.642 

5 200.078 129.254 149.427 150.869 144.652 144.137 74.376 74.268 91.550 

0/90/0/90 

1 101.746 48.701 94.487 95.001 65.309 61.773 49.317 49.639 51.795 

2 117.561 48.995 97.755 98.056 87.723 87.472 59.477 59.877 71.901 

3 118.346 80.970 101.568 101.743 110.525 111.199 81.850 82.181 78.391 

4 134.043 89.063 121.367 121.489 115.587 112.578 85.988 86.129 88.043 

5 151.843 103.765 126.195 126.267 120.032 115.479 87.161 87.134 100.779 

45/-45/45/-

45 

1 143.534 54.131 96.560 98.725 71.356 71.585 31.861 31.761 37.875 

2 157.273 54.182 113.940 114.594 113.115 113.233 36.583 36.527 62.076 

3 158.121 86.637 116.915 116.274 145.381 144.034 62.488 62.371 65.217 

4 165.640 106.252 127.234 128.724 146.878 145.797 68.768 68.728 83.822 

5 216.514 135.294 155.055 155.960 150.707 150.013 77.731 77.595 100.095 

0/90/0/90/0 

1 102.336 45.490 94.328 94.860 57.234 78.297 48.607 49.332 38.823 

2 114.740 55.612 97.220 97.479 82.655 92.895 59.331 59.712 65.989 

3 125.389 74.322 105.417 105.646 109.061 111.457 81.196 80.333 78.763 

4 138.143 91.929 116.855 117.669 113.620 118.442 83.160 84.523 83.759 

5 138.925 105.747 124.153 124.296 114.241 123.069 91.756 91.689 93.516 
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Table 6.3: Non-dimensional   frequencies for symmetric laminated composite stiffened hypar 

shell with cut-out with different boundary condition 

Boundary 

Condition 
θ (0/θ/0) (0/θ)S (0/θ/0)S [(0/θ)2 ]S [(0/θ)5]S 

CCCC 

0° 92.874 93.093 93.526 93.093 93.094 

15° 110.434 114.779 112.219 115.791 116.266 

30° 120.993 122.546 123.193 123.201 123.311 

45° 121.153 122.941 124.570 124.686 125.341 

60° 117.064 118.771 121.600 121.632 122.930 

75° 111.024 113.132 117.109 116.898 118.736 

90° 100.702 102.030 102.571 102.587 102.679 

CCSS 

0° 81.037 81.437 82.220 81.437 81.437 

15° 84.473 85.188 86.148 85.424 85.467 

30° 87.443 88.284 89.642 88.863 88.939 

45° 88.839 89.657 91.149 90.260 90.260 

60° 89.033 89.950 91.663 90.757 90.787 

75° 87.885 89.911 92.831 91.997 92.392 

90° 87.276 90.964 95.544 95.333 96.022 

CSCS 

0° 39.747 39.935 40.302 39.939 39.933 

15° 43.082 43.983 44.378 44.507 44.770 

30° 47.388 49.570 50.896 51.678 52.703 

45° 50.529 54.464 57.362 59.018 61.275 

60° 52.420 58.216 62.162 64.869 68.207 

75° 50.642 57.051 62.272 65.107 69.207 

90° 47.510 53.208 60.222 62.180 66.728 

SSSS 

0° 32.418 32.543 32.837 32.547 32.542 

15° 34.688 35.396 35.853 35.964 36.243 

30° 37.607 39.215 40.577 41.047 41.929 

45° 39.729 42.274 44.529 45.304 46.724 

60° 41.439 44.707 47.165 48.213 49.682 

75° 41.779 45.213 47.682 48.892 50.322 

90° 40.793 43.804 46.898 47.958 50.116 
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CCFF 

0° 29.312 29.409 29.596 29.413 29.415 

15° 29.948 30.167 30.551 30.419 30.530 

30° 31.211 31.548 32.023 31.936 32.067 

45° 33.377 33.876 34.284 34.270 34.313 

60° 37.124 37.918 38.165 38.315 38.234 

75° 42.187 43.812 44.531 45.191 45.166 

90° 43.943 45.859 49.123 49.343 50.178 

CFCF 

0° 16.299 16.419 16.797 16.426 16.422 

15° 16.320 16.558 17.036 16.765 16.812 

30° 16.670 17.841 19.477 19.572 20.447 

45° 17.877 21.341 25.710 26.560 29.037 

60° 19.715 26.198 33.831 35.551 39.845 

75° 21.358 30.343 40.613 43.025 48.863 

90° 22.040 31.967 43.256 45.952 52.412 
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Table 6.4: Non-dimensional frequencies   for composite stiffened hypar shell with cut-out with 0/θ/0/θ and 0/θ/θ/0 lamination 

scheme and different boundary conditions on higher mode 

θ Mode 

BOUNDARY CONDITION 

CCCC CCSS CSCS SSSS CCFF CFCF 

0/θ/0/θ 0/θ/θ/0 0/θ/0/θ 0/θ/θ/0 0/θ/0/θ 0/θ/θ/0 0/θ/0/θ 0/θ/θ/0 0/θ/0/θ 0/θ/θ/0 0/θ/0/θ 0/θ/θ/0 

0° 

1 93.093 93.093 81.437 81.437 39.935 39.935 32.543 32.543 29.409 29.409 16.419 16.419 

2 106.371 106.371 84.595 84.595 55.034 55.034 48.270 48.270 44.947 44.947 33.066 33.066 

3 109.995 109.995 88.777 88.777 73.047 73.047 56.092 56.092 57.358 57.358 48.250 48.250 

4 110.260 110.260 95.973 95.973 87.515 87.515 62.595 62.595 65.815 65.815 48.520 48.520 

5 116.956 116.956 103.540 103.540 95.965 95.965 84.479 84.479 70.574 70.574 56.071 56.071 

15° 

1 111.960 114.779 81.785 85.188 45.478 43.983 36.699 35.396 30.995 30.167 16.844 16.558 

2 115.687 116.295 90.856 90.133 61.772 59.971 54.530 52.559 47.231 46.336 34.766 33.921 

3 128.878 130.301 98.844 99.544 81.674 78.304 56.864 57.909 62.764 60.978 50.135 50.021 

4 130.427 133.877 112.802 112.599 100.026 101.648 71.059 67.853 69.912 69.097 52.497 51.119 

5 140.496 142.419 120.095 119.977 102.962 106.987 92.798 94.828 72.897 73.089 57.662 56.664 

30° 

1 118.349 122.546 84.994 88.284 53.234 49.570 42.253 39.215 32.250 31.548 20.373 17.841 

2 132.432 129.103 104.341 97.437 75.344 67.956 58.233 58.848 50.919 47.307 41.158 36.867 

3 146.421 140.195 110.837 108.153 101.662 88.629 64.897 59.485 66.516 64.557 55.465 53.783 

4 148.276 152.635 127.119 125.869 118.461 116.438 87.613 76.774 73.115 72.637 56.016 55.531 

5 160.833 161.266 136.646 135.310 122.698 122.225 105.810 103.934 78.731 77.092 69.109 61.080 

45° 

1 121.010 122.941 86.838 89.657 61.578 54.464 46.469 42.274 34.025 33.876 28.739 21.341 

2 136.675 130.152 113.312 102.168 92.408 76.412 57.809 59.411 54.637 49.174 52.006 43.288 

3 156.322 140.900 121.090 111.560 125.669 100.876 75.658 64.370 68.258 67.738 60.782 60.975 
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4 156.944 159.237 123.486 127.559 128.633 125.125 102.074 85.970 76.027 76.098 67.482 61.683 

5 166.305 171.106 147.745 141.559 133.669 132.857 108.272 106.353 83.907 82.828 85.023 72.540 

60° 

1 119.538 118.771 87.736 89.950 68.120 58.216 48.447 44.707 37.302 37.918 39.328 26.198 

2 136.911 126.372 109.540 102.446 106.292 83.176 56.160 58.318 57.007 51.014 63.872 52.105 

3 151.622 141.852 120.116 113.423 123.653 111.838 84.490 68.661 70.234 71.436 68.950 71.193 

4 163.179 158.797 127.936 121.051 138.385 123.093 93.730 93.617 79.787 78.587 84.106 71.841 

5 165.697 161.590 144.223 143.545 149.906 137.592 119.474 102.556 86.733 88.843 91.687 85.248 

75° 

1 116.354 113.132 89.720 89.911 68.504 57.051 48.332 45.213 43.808 43.812 48.283 30.343 

2 124.902 119.546 101.523 99.165 106.126 83.470 53.117 56.868 58.053 53.884 74.826 59.516 

3 138.661 140.262 115.751 110.513 117.868 115.616 84.436 69.285 75.700 76.759 79.476 82.918 

4 148.999 143.832 121.725 117.273 131.935 118.242 89.881 95.616 84.933 79.158 96.764 82.980 

5 155.419 145.424 129.441 127.497 132.464 126.783 108.352 97.490 87.615 91.991 97.422 89.354 

90° 

1 101.746 102.030 94.487 90.964 65.309 53.208 48.701 43.804 49.317 45.859 51.795 31.967 

2 117.561 111.696 97.755 96.054 87.723 77.722 48.995 56.080 59.477 60.454 71.901 60.044 

3 118.346 127.711 101.568 107.634 110.525 102.523 80.970 68.019 81.850 77.566 78.391 80.826 

4 134.043 128.893 121.367 108.858 115.587 111.379 89.063 90.758 85.988 81.456 88.043 82.361 

5 151.843 138.257 126.195 123.965 120.032 114.690 103.765 98.610 87.161 92.388 100.779 89.747 
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Table 6.5: Non-dimensional frequencies  for 0/θ/θ/0 stiffened hypar shell with cut-out with 

different c/a ratio for CCSS boundary condition on higher mode 

θ Mode 
c/a 

0.2 0.15 0.1 0.05 

0° 

1 81.437 68.926 50.845 33.025 

2 84.595 70.089 52.940 36.752 

3 88.777 77.733 62.553 50.804 

4 95.973 80.442 74.440 66.119 

5 103.540 87.336 75.331 71.641 

15° 

1 85.188 76.139 60.664 38.424 

2 90.133 80.995 61.326 41.498 

3 99.544 82.078 73.217 55.059 

4 112.599 94.783 77.307 69.290 

5 119.977 102.417 82.645 72.224 

30° 

1 88.284 80.280 67.962 47.013 

2 97.437 87.112 71.727 48.636 

3 108.153 91.259 79.937 61.777 

4 125.869 112.832 90.117 73.096 

5 135.310 116.351 93.836 76.124 

45° 

1 89.657 80.509 68.059 47.720 

2 102.168 89.685 75.140 52.607 

3 111.560 97.278 83.203 65.001 

4 127.559 112.103 92.107 74.601 

5 141.559 125.170 101.364 83.599 

60° 

1 89.950 78.548 63.700 43.078 

2 102.446 88.382 71.985 49.824 

3 113.423 97.166 80.544 68.703 

4 121.051 108.805 95.209 75.920 

5 143.545 122.901 100.398 83.882 

75° 1 89.911 75.713 58.137 37.119 
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2 99.165 81.321 62.024 45.068 

3 110.513 94.973 81.766 71.083 

4 117.273 102.476 85.903 74.848 

5 127.497 110.154 93.761 80.592 

90° 

1 90.964 74.507 54.050 34.489 

2 96.054 75.982 58.420 44.005 

3 107.634 92.748 79.692 70.108 

4 108.858 95.015 83.706 75.919 

5 123.965 105.420 89.772 79.067 
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θ Mode Group I Group II Group III 

CCCC SSSS CCSS SSCC CSCS SCSC CCFF FFCC CFCF 
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Fig.6.1 Mode shapes for cross ply and angle ply shells for different boundary conditions for first five modes. 
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Boundary 

Condition 
θ Mode (0/θ/0) (0/θ)S (0/θ/0)S [(0/θ)2 ]S [(0/θ)5]S 
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Fig. 6.2 Mode shapes of symmetric cross ply and angle ply shells with cut-out for first five 

modes. 
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Fig. 6.3 Mode shapes corresponding to anti symmetric and symmetric laminated composite stiffened hypar shell with cut-out for 

different boundary conditions for first five modes 
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Fig. 6.4 Mode shapes corresponding to 0/45/45/0 laminated composite stiffened hypar shell with 

cut-out for CCSS boundary condition for different c/a ratio for first five modes. 

 

6.3.2  Effect of other parametric variations 

Anti-symmetric angle-ply laminated composite stiffened hypar shells with cutout are 

analyzed to study the behavior of the shell under free vibration at higher mode for different 

parametric variation. The cutouts are placed concentrically on the shell surface. The stiffeners are 

placed along the cutout periphery and extended upto the edge of the shell. The material and 

geometric properties of the shells are: a/b=1, a/h=100, / /a b =1, /a a =0.2, c/a=0.2, E11/E22 =25, G23 

= 0.2E22, G13 = G12 = 0.5E22, 12 =21 =0.25,  =100 N-sec2/m4 unless otherwise specified. 

Seven laminate stacking sequences, viz. anti-symmetric angle-ply (0/-0)10, (15/-15)10, (30/-

30)10, (45/-45)10, (60/-60)10, (75/-75)10 and (90/-90)10 are considered. Numerical analyses are 

performed to determine the effect of fibre orientation angle (θ= 00, 150, 300, 450, 600, 750 and 900), 

degree of orthotropy (E11/E22 = 5, 10, 20, 25, 30, 40 and 50) and width to thickness ratio (b/h=10, 
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20, 50, 100) on non-dimensional natural frequency. The different boundary conditions which are 

used in the present analysis are CSCS, CSSC, FCCF, FCFC, FSFS and FSSF. 

Table 6.6 gives the non-dimensional fundamental frequency (first mode frequencies) for 2 

layer, 4 layer and 10 layered anti-symmetric angle-ply laminated composite stiffened hypar shells 

with cutout with the fibre orientation angle varying between 00 and 900. In each column, the 

maximum value is indicated by an asterisk. It is seen that for 2 layer hypar shell, maximum 

fundamental frequency occurs for lamination angle either 00 or 900 except CSSC shell. For CSSC 

shell, maximum fundamental frequency occurs for lamination angle 450. It is also observed that 

for all the boundary conditions considered here, 4 layer and 10 layer laminates exhibit maximum 

value of frequency parameter for same lamination angle. For CSCS and CSSC shells, maximum 

fundamental frequency occurs at lamination angle θ=750 and 450 respectively, for FCFC shells at 

θ =00 and for FCCF, FSFS and FSSF shells at θ =300. This observation is valid for both 4 layer and 

10 layer hypar shells. According to the number of boundary constraints, boundary conditions can 

be grouped as: CSCS & CSSC; FCCF & FCFC; FSFS & FSSF. For all the layers considered here, 

as the number of boundary constraint increases fundamental frequency increases. Thus CSCS & 

CSSC perform better than FCCF & FCFC which in turn perform better than FSFS & FSSF shells. 

It is also seen from Table 6.6 that with the increase in layer, frequency parameter increases. The 

increments are sharper from two layer to 4 layer compared to 4 layer to 10 layer, in which a mild 

increase in the frequency parameter is observed. As 10 layer laminates exhibit best performance 

so far the fundamental frequency is concerned, 10 layer laminates are considered for further 

studies. 

6.3.2.1 Effect of fibre orientation 

The total thickness of the laminate was maintained constant and the number of layers being 

10. Fig. 6.5 shows the variation of non-dimensional frequency with boundary conditions and 

lamination angle. Seven laminate stacking sequences, viz. anti-symmetric angle-ply (0/-0)10, (15/-

15)10, (30/-30)10, (45/-45)10, (60/-60)10 (75/-75)10 and (90/-90)10 are considered. The non-

dimensional frequency parameter for the first, second, third, fourth and fifth mode increases with 

an increase in fibre orientation angle from 00 to 450 for CSSC, FCCF and FSFS shells but for 

further increase in lamination angle, fundamental frequency decreases. Similarly, for CSCS shell,  
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Table 6.6: Non-dimensional fundamental frequency of anti-symmetric angle-ply multilayered 

laminated composite stiffened hypar shell with cutout 

Angle-ply Boundary Condition 2 Layer 4 Layer 10 Layer 

0° 

15° 

30° 

45° 

60° 

75° 

90° 

 

 

CSCS 

6.356 

6.056 

6.787 

7.825 

8.914 

10.196 

13.254* 

6.356 

7.467 

9.399 

11.356 

12.622 

12.919 

13.254* 

6.356 

7.892 

10.121 

12.324 

13.631 

13.642* 

13.254 

0° 

15° 

30° 

45° 

60° 

75° 

90° 

 

 

CSSC 

13.017 

12.449 

12.607 

13.356* 

12.526 

12.402 

13.008 

13.016 

13.979 

14.954 

15.369* 

14.928 

13.998 

13.008 

13.016 

14.307 

15.547 

15.799* 

15.549 

14.362 

13.008 

0° 

15° 

30° 

45° 

60° 

75° 

90° 

 

 

FCCF 

6.539 

6.011 

6.263 

6.233 

6.196 

6.000 

6.548* 

6.539 

6.855 

7.327* 

7.161 

7.212 

6.806 

6.548 

6.539 

7.082 

7.555* 

7.377 

7.436 

7.024 

6.548 

0° 

15° 

30° 

45° 

60° 

75° 

90° 

 

 

FCFC 

11.707* 

8.031 

5.875 

4.283 

3.147 

2.674 

2.604 

11.706* 

10.746 

8.628 

6.033 

3.795 

2.741 

2.604 

11.708* 

11.394 

9.246 

6.435 

3.958 

2.759 

2.604 

0° 

15° 

30° 

45° 

60° 

75° 

90° 

 

 

FSFS 

4.367* 

4.041 

3.974 

2.941 

2.194 

1.860 

1.806 

4.367 

4.732 

4.984* 

4.038 

2.583 

1.905 

1.806 

4.367 

4.882 

5.204* 

4.293 

2.679 

1.918 

1.806 

0° 

15° 

30° 

45° 

60° 

75° 

90° 

 

 

FSSF 

3.628* 

3.310 

3.349 

3.290 

3.304 

3.268 

3.560 

3.628 

3.945 

4.190* 

4.166 

4.104 

3.860 

3.560 

3.628 

4.127 

4.403* 

4.380 

4.307 

4.027 

3.560 
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fundamental frequency increases upto 600 then decreases. Again for FCFC shell, fundamental 

frequency decreases with increase in lamination angle. On the other hand, for FSSF shell, the 

change in frequency with change in lamination angle is very insignificant. For all the laminations 

and boundary conditions shown here, frequency parameter increases from first mode to fifth mode 

except few cases, where frequency parameter is almost same in two consecutive modes. The 

lamination and boundary conditions interact in a complex manner so that no unified conclusion 

can be reached. The reason behind is that the frequencies depend upon the contribution made by 

extensional stiffness, coupling stiffness and bending stiffness term in addition to the boundary 

conditions and panel geometry among others. However, for all the lamination angles considered 

here, CSCS, CSSC perform better than FCCF, FCFC which in turn perform better than FSFS, 

FSSF. So it can be concluded that number of boundary constraints plays a great role for free 

vibration. CSSC perform better than CSCS for lower lamination angles but for higher lamination 

angle CSCS perform better than CSSC. But reverse trend is observed when free edges are involved. 

FCFC and FSFS perform better in lower lamination angle but FCCF and FSSF perform better in 

higher lamination angle.  

 

Fig.6.5 Variation of non-dimensional fundamental frequency with fibre orientation angle 
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6.3.2.2 Effect of material anisotropy 

The effects of material anisotropy on the frequencies of ten-layer anti-symmetric angle-ply 

square shells with fibre orientation angles 00, 150, 300, 450, 600, 750 and 900 for CSCS, CSSC, 

FCCF, FCFC, FSFS and FSSF edge boundary conditions are demonstrated in Figs. 6.6-6.12. These 

results are obtained by keeping the material properties constant as G12/E22 =0.5 and ν12 =0.25, and 

changing the E11/E22 ratio. As seen from these figures, the first, second, third, fourth and fifth 

frequency parameter increases monotonically for all the laminations and boundary conditions 

considered here as the degree of orthotropy increases. These increments are sharper for CSSC 

shell. FCFC shell shows better performance for lower lamination angle but with the increase in 

lamination angle performance of CSCS shell is better. For other boundary conditions mild increase 

in the frequency parameter is observed. It is also observed that for almost all the cases frequency 

parameter increases from first mode to fifth mode. In a few cases frequency remains almost same 

between two consecutive modes. 

 

 

 
Fig.6.6 Variation of non-dimensional fundamental frequency with material anisotropy for (0/-0)10 

lamination 
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Fig.6.7 Variation of non-dimensional fundamental frequency with material anisotropy for (15/-

15)10 lamination 

 
Fig.6.8 Variation of non-dimensional fundamental frequency with material anisotropy for (30/-

30)10 lamination 
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Fig.6.9 Variation of non-dimensional fundamental frequency with material anisotropy for (45/-

45)10 lamination 

 
Fig.6.10 Variation of non-dimensional fundamental frequency with material anisotropy for (60/-

60)10 lamination 
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Fig.6.11 Variation of non-dimensional fundamental frequency with material anisotropy for (75/-

75)10 lamination 

 

 
Fig.6.12 Variation of non-dimensional fundamental frequency with material anisotropy for (90/-

90)10 lamination 
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6.3.2.3 Effect of width to thickness ratio 

If the width to thickness ratio is increased while maintaining the width of the laminate a 

constant and the number of layers being fixed at 10, the thickness of the shell is decreased. Figs. 

6.13-6.19 show the variation of the non-dimensional frequency for the first, second, third, fourth 

and fifth mode with variation of width to thickness ratio and boundary conditions for various values 

of lamination angles. Ten layered anti-symmetric angle-ply laminates with fibre orientation angle 

varying as 0°, 15°, 30°, 45°, 60°, 750 and 90° having different width to thickness ratios (b/h=10, 

20, 50, 100) are analyzed. It is evident from Figs. 6.13-6.19 that with increase in width to thickness 

ratio dimensionless frequencies decrease. This decrease in frequency is very much significant in 

case of CSSC, CSCS and FCFC shells. For other boundary conditions these decrease in 

dimensionless frequency is significant at higher value of width to thickness ratio. These are true 

for all the five modes. Here also for all the combination of stacking sequences, boundary conditions 

and width to thickness ratios, the non-dimensional frequency increases from first mode to fifth 

mode except few cases.  

 

 
Fig.6.13 Variation of non-dimensional fundamental frequency with b/h ratio for (0/-0)10 

lamination 
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Fig.6.14 Variation of non-dimensional fundamental frequency with b/h ratio for (15/-15)10 

lamination 
 
 

 
Fig.6.15 Variation of non-dimensional fundamental frequency with b/h ratio for (30/-30)10 

lamination 
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Fig.6.16 Variation of non-dimensional fundamental frequency with b/h ratio for (45/-45)10 

lamination 
 
 

 
Fig.6.17 Variation of non-dimensional fundamental frequency with b/h ratio for (60/-60)10 

lamination 
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Fig.6.18 Variation of non-dimensional fundamental frequency with b/h ratio for (75/-75)10 

lamination 

 

 
Fig.6.19 Variation of non-dimensional fundamental frequency with b/h ratio for (90/-90)10 

lamination 
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6.4  CONCLUSIONS 

Higher mode free vibration analysis of composite hypar shells is presented using finite 

element method based on first order shear deformation theory and including the effect of cross 

curvature. The following conclusions are drawn from the present study: 

1. In general, fundamental frequency increases with the increase in the number of support 

constraints. There are, however, few departures from this general tendency when two 

shells of different laminations are compared. Sometimes lamination order may influence 

the frequency of stiffened composite shell with cut-out more significantly than its 

boundary conditions.  

2. (0/θ)s lamination exhibit reasonably good performance and may be adopted for all 

practical purposes.  

3. For four layered laminates the frequency either increases monotonically with θ or 

increases with θ upto a certain value of θ then decreases. For CCCC, CSCS, SSSS and 0/ 

θ/ θ/0 CCSS shells, the frequency increases with θ upto a certain value but decreases when 

θ is further increased. For each of these shells the values of θ yielding highest frequencies 

are to be found out by numerical experimentation. All these observations are true for the 

first five modes except very few cases.  

4. Considering all the modes performance of four layered antisymmetric laminate is better 

than its symmetric counterpart, except CCCC shell with lamination angle 150.  

5. For shell with CCSS boundary condition for a given lamination angle increase in c/a ratio 

increases the frequency of each mode. 

6. As the number of layers increase, fundamental frequency increases. With the increase in 

lamination angle non-dimensional natural frequency may increase or decrease but from 

first mode to fifth mode natural frequency always increase or remain same in very few 

cases.  

7. The first, second, third, fourth and fifth non-dimensional frequency parameter increases 

monotonically for all the laminations and boundary conditions as the degree of orthotropy 

increases.  

8. With increase in width to thickness ratios, dimensionless frequencies decrease from first 

mode to fifth mode.  
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9. Free vibration behavior mainly depends on the number of boundary constraints whatever 

may be the other parametric variation like change in fibre orientation angle, increase in 

degree of orthotropy and width to thickness ratio etc. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

106 
 

 

                                                                                                    Chapter 7 

OPTIMIZATION OF VIBRATION BEHAVIOR  

 

 

7.1  GENERAL 

In previous chapters, the static and free vibration behavior of laminated stiffened hypar 

shell with cutout at different boundary conditions has been discussed. In this chapter, a method of 

analysis has been presented to optimize the value of fundamental frequency at different parametric 

variations such as effect of lamination angle (A), width to thickness ratio (B), cutout location along 

x-direction and cutout location along y-direction using Taguchi robust design concept.  

Vibration frequencies of laminated panels depend on laminations, edge conditions, shell 

dimensions (thickness, length) and cutout (size and position). Therefore, for cutout borne stiffened 

hypar shells with various material system and geometric shape, obtaining an appropriate 

combination of lamination angle, thickness, cutout position and end conditions for maximization 

of the fundamental frequency becomes an interesting problem. This is more so because 

fundamental frequency needs to be higher to skip any resonance effect occurring from ground 

vibrations and other natural disturbances. However, there has not been much of an activity in this 

respect perhaps due to the complexities involving so many shell parameters and complicated 

algorithm flow as well.  

Despite of good number of studies on maximization of fundamental frequency by 

appropriate design of stacking sequence, extensive scrutiny of literature reveals paucity of reports 

on optimization of the fiber orientation, dimension, thickness, material orthotropy and position of 

the cutout for different edge constraints leading to maximum fundamental frequency of laminated 

shells. This study of stiffened hypar shells considers the application of the Taguchi method along 

with an efficient finite element formulation to determine the suitable combination of multi-

parametric design optimization to yield maximum frequency of cutout borne shell. Taguchi 
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orthogonal design is applied with four design factors namely, fiber orientation, width-to-thickness, 

level of orthotropy of the composite and position of the cutout as independent variables. Taguchi 

analysis is performed to obtain the suitable combination of factors that results maximum 

fundamental frequency. A confirmation analysis verified the optimal parametric combination 

obtained from Taguchi approach. Analysis of variance (ANOVA) was performed to get the 

significant design factors and the level of significance of their interactions. 

7.2 TAGUCHI METHOD 

Taguchi method [Taguchi, 1990; Ross, 1996] employs orthogonal array (OA) based 

experiments that help in reducing the variance with optimum combination of control factors. For 

achieving the same, it integrates design of experiments (DOE) technique with optimization of 

control factors. For performance analysis, traditional experimental designs use the average of 

characteristics while Taguchi method is based on the effect of variation of the characteristics. In 

essence, the performance of the system becomes insensitive to the variation of noise factors. 

Standard OA helps to evaluate the ability of design parameters in controlling the variability of a 

particular characteristic by performing least number of tests. 

Thus, Taguchi method considers the total design space using reduced number of experiments to 

evaluate all of the design factors and interactions. The optimal setting of the design factors for 

maximizing the objective function is thus obtained. The factor trends and noise sensitivities are 

also obtained. The flow-chart in Taguchi design is shown in Fig. 7.1. 

Taguchi optimization uses signal-to-noise (S/N) ratio as the objective function. S/N ratio 

considers the mean (signal) as well as the variability (noise). It depends on the type of the design. 

Three types of S/N ratios are defined: Type LB: lower is better, Type HB: higher is better and Type 

NB: nominal is best. The combination of factor levels that yields the maximum value of the S/N 

ratio is the optimal condition. For the current study, fundamental frequency needs to be maximized, 

thus HB characteristic is to be used. Moreover, ANOVA [Montgomery, 2001] is performed to 

obtain the significant factors. S/N ratio analysis and ANOVA together yield the suitable setting of 

the design factors that optimizes the objective function. Finally, confirmatory run verifies the 

optimal setting of factors obtained from the analysis. 

The main advantage of Taguchi method is that it considers a mean performance characteristic 

value close to the target rather than a value within specified limits. Taguchi method is simple and 
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easy to apply. Thus it is a powerful yet simple tool for optimization without requirement for large 

amount of experimentation. Hence it is cost effective and less time consuming. On the other hand, 

the main demerit of the method is that the results obtained are only relative and do not exactly 

point out which parameter has the highest effect on the performance characteristic. Moreover, since 

orthogonal arrays do not test all variable combinations, this method is not recommended if 

relationships between all variables are sought for. Also, Taguchi method fails to account for all 

interactions between parameters. The other demerit of the method is its offline nature. Thus it 

cannot be applied for dynamically varying situations. Since Taguchi approach deals with designing 

quality rather than correcting for poor quality, it is most effective and also recommended for early 

stages of process development only. According, in the present study, Taguchi methodology is 

applied to determine the combination of parameters that yield the maximum fundamental 

frequency of composite stiffened hypar shell in presence of perforations in the form of cutout. 

 

 

Fig. 7.1 Flow chart in Taguchi design 

7.3 DESIGN OF EXPERIMENTS 

DOE helps in analyzing of the effect of design factors on the response characteristics. Here, 

response is fundamental frequency of the shell which is an unknown function of design factors. A 
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large number of factors may influence the fundamental frequency. However, existing literature 

reveals that the fundamental frequency of laminated shell is mostly influenced by lamination angle 

(A), width/thickness factor of shell (B) and degree of orthotropy of the material (C). The shell 

material considered here is orthotropic and the degree of orthotropy is defined as the ratio of 

longitudinal to transverse Young’s modulus ( 2211 / EE ). Thus these are taken as design factors along 

with their interaction. Also, it is well documented in literature that position of cutout (D) influences 

the fundamental frequency of cutout borne shells. Thus position of cutout (D) is taken as the fourth 

design factor. Table 7.1 exhibits the levels of design factors within the operating range of the 

factors. The purpose of choosing three levels is to consider the curvature or non-linearity effects. 

This study is employed to consider free vibration of laminated hypars with stiffeners and cutout. 

The response variable here is the fundamental frequency. The design factors are optimized with 

the aim to have maximum fundamental frequency of shell. 

Table 7.1: Design factors along with level settings 

Design factors Notation in OA Levels 

1 2 3 

Lamination angle (  degree) A 30 45 60 

Width/thickness factor, b/h  B 20 50 100 

Degree of orthotropy, 2211 / EE  C 10 25 40 

Position of cutout ),( yx  D (0.2, 0.2) (0.3, 0.3) (0.4, 0.4) 

 

According to Taguchi philosophy, the choice of suitable OA is governed by consideration 

of degrees of freedom (DOFs). DOF of chosen OA needs to be larger than or at least equal to the 

total DOFs needed for the analysis. In the present study, there are four design factors and each 

factor has three levels. For this three level run, each main factor has (3-1) DOF. Thus, DOF of four 

main factors is 4x(3-1), i.e., 8. The DOF for three two-way interactions (AxB, AxC, BxC) is 3x 

(3-1) x(3-1), i.e., 12. Hence, the total DOFs required for the analysis is 20. Accordingly, an L27 

OA is chosen as It has 26 degrees of freedom (DOF). It contains 27 rows; each row corresponds 

to a test run. There are total 13 columns (all are not shown here in Table 7.1 for brevity). 1st column 

is allotted to lamination angle (A), 2nd column is allotted to b/h ratio (B), 5th column is allotted to  
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Table 7.2: Experimental layout based on L27 OA 

Trial No. Lamination 

angle (A) 

Width/thickness 

factor  of shell (B) 

Degree of 

orthotropy (C) 

Position of 

cutout (D) 

1 1 1 1 1 

2 1 1 2 2 

3 1 1 3 3 

4 1 2 1 2 

5 1 2 2 3 

6 1 2 3 1 

7 1 3 1 3 

8 1 3 2 1 

9 1 3 3 2 

10 2 1 1 2 

11 2 1 2 3 

12 2 1 3 1 

13 2 2 1 3 

14 2 2 2 1 

15 2 2 3 2 

16 2 3 1 1 

17 2 3 2 2 

18 2 3 3 3 

19 3 1 1 3 

20 3 1 2 1 

21 3 1 3 2 

22 3 2 1 1 

23 3 2 2 2 

24 3 2 3 3 

25 3 3 1 2 

26 3 3 2 3 

27 3 3 3 1 
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material orthotropy (C), and 9th column is allotted to position of cutout (D). Six columns (3rd, 4th, 

6th, 7th, 8th, 9th and 11th) are considered for two-way interactions and the rest three columns (10th, 

12th and 13th) are considered for error terms. The trial run is governed by the combination of the 

design factors and the same is shown in Table 7.2. It may be noted that for a full factorial design 

that considers four factors at three levels, the number of trial run required is 3x3x3x3 =81. On the 

other hand, L27 OA needs only 27 runs, i.e., a part of full factorial design. Moreover, the array is 

orthogonal; and thus factor levels carry equal weights throughout the design space. 

 

7.4 NUMERICAL ANALYSIS 

In this section, laminated stiffened hypars with cutout is considered with eight types of end 

conditions, viz., SSSS, CCCC, CSCS, CSSC, FCCF, FCFC, FSFS and FSSF. However, for brevity, 

results of SSSS boundary condition are explained in details. The laminate layups of the shells are 

[(θ/-θ)10], i.e., a twenty-layer anti-symmetric angle ply laminate is selected for analysis. The non-

dimensional coordinates of the cutout centre is denoted by (𝑥̅ = 𝑥/𝑎, 𝑦̅= y/a,). Shell dimensions 

are taken as: a/b=1, a/h=100, a//b/=1, c/a=0.2; while material properties are chosen as: E11/E22 = 

25, G23 = 0.2E22, G13 = G12 = 0.5E22, 12 =21 =0.25. Fundamental frequency of stiffened hypars 

with cutout is obtained as per the trial run mentioned in L27 OA based on the combination of 

design factors. The same is then subjected to S/N ratio analysis, ANOVA analysis and validation 

study. S/N ratio analysis of test data is done using Minitab [2001]. As fundamental frequency needs 

to be maximized, higher is better (HB) criterion of S/N ratio analysis is chosen here. S/N ratios of 

data (fundamental frequency) are calculated by the following relation (n is number of observations, 

iy  is examined data): 


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













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11
log10

iynN

S
        (7.1) 

 

7.5 RESULTS AND DISCUSSION 

Table 7.3 shows the fundamental frequency for SSSS shell obtained from finite element 

analysis following sequential trials as per L27 OA and the corresponding S/N ratios. DOE being 

orthogonal, the effect of each parameter can easily be separated at different levels. Thus, the mean 

S/N ratio for factor A at level 1 is obtained by taking the average of S/N ratios for the experiments  
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Table 7.3: Non-dimensional fundamental frequencies and S/N ratios for SSSS shell 

Trial No. Fundamental frequency S/N Ratio 

1 18.037 25.12 

2 25.804 28.23 

3 31.116 29.85 

4 10.211 20.18 

5 14.667 23.32 

6 16.453 24.32 

7 8.535 18.62 

8 10.624 20.52 

9 14.269 23.08 

10 21.563 26.67 

11 30.612 29.71 

12 36.373 31.21 

13 11.609 21.29 

14 15.778 23.96 

15 19.746 25.90 

16 8.35 18.43 

17 12.806 22.14 

18 15.747 23.94 

19 18.516 25.35 

20 25.184 28.02 

21 31.301 29.91 

22 9.74 19.77 

23 14.508 23.23 

24 17.858 25.03 

25 8.458 18.54 

26 12.157 21.69 

27 12.587 21.99 
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1-9 and so on. Mean S/N ratio for all levels of each factor A-D is presented in response table (Table 

7.4). Total mean of S/N ratio is obtained as 24.08 for SSSS shell. Table 7.4 also includes delta 

value of every design factor. Depending on the delta value, design factors are given ranks that help 

to decide the impact of factors on fundamental frequency. Table 7.4 shows that depending on delta 

value, width/thickness parameter (B) gets the rank 1, Degree of orthotropy (C) gets the rank 2, 

lamination angle (A) gets rank 3 and cut-out location (D) gets rank 4. Thus, B has the maximum 

influence in determining the fundamental frequency for SSSS shell. 

Table 7.4: Response table for SSSS shell 

Level A B C D 

1 23.7 28.23 21.56 23.71 

2 24.81 23 24.54 24.21 

3 23.73 21 26.14 24.32 

Delta 1.11 7.23 4.59 0.61 

Rank 3 1 2 4 

 

 

Fig. 7.2: Main effects plot of S/N ratios for SSSS shell 
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Main effect plot helps to observe the effect of design factors on fundamental frequency of 

the concerned structure. It also identifies the optimal parametric combination that yields the 

maximum frequency. Figure 7.2 shows the main effect plot for SSSS shell. The type of the plots 

explains the significance of the factors and their level of significance. If inclination of plot of a 

factor is the highest, then that factor has greater influence while gentle slope of a factor means less 

influence. Figure 7.2 shows that plot of factor B yields the highest inclination while that of factors 

C, A and D are in decreasing order. Hence factor B is the most influencing one and other factors 

have little influence. It is evident from Fig. 7.2 that B has the highest S/N ratio at lowest level 

whereas factor C has the highest S/N ratio at its highest level, factor A contains the highest S/N 

ratio at middle level, and factor D yields the highest S/N ratio value at its highest level. 

The optimal parametric combination is the one where S/N ratio achieves the maximum 

value. Accordingly, the optimal combination for highest fundamental frequency is A2B1C3D3, 

i.e., 450 lamination angle, width/thickness value 20, 2211 / EE  ratio 40 and cut-out location (0.4, 

0.4). Figure 7.3 represents the two-way interaction plot for SSSS shells. In interaction graph, non-

parallelism between lines means occurrence of some level of interaction while intersecting lines 

indicate occurrence of significant interaction. In Fig. 7.3, non-parallel lines are obtained for (A×B) 

and (A×C) which implies that interaction is present for SSSS shells. 

 

Fig. 7.3: Interaction plot of S/N ratios for SSSS shell 
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ANOVA provides the significant design factors and interactions which mostly impact total 

variance of obtained data. Results of ANOVA for SSSS shells is included as Table 7.5. Along with 

F-ratio and P-value, ANOVA table includes % contribution of design factors. F-ratio justifies 

whether a factor or interaction is significant or not. Factor having Higher F-ratio value for a factor 

indicates that the factor has higher impact. For SSSS shells, B receives the highest F-ratio value. 

Factors C and A follow the same. This implies that width-to-thickness factor (B) is the most 

dominating factor while degree of orthotropy (C) and lamination angle (A) have some significance. 

Among the interaction parameters, (A×B) and (A×C) have some significance. P-values of all the 

factors (except D) are below 0.005, which indicates that A, B, C all are significant factors in 

controlling the fundamental frequency of SSSS shells. Table 7.5 also includes the percentage 

contribution of each factor and interactions. Here B has 69.91% contribution and C has 27.16% 

contribution whereas other factors and interactions contribute little. 

 

Table 7.5: ANOVA result for SSSS shell 

Source DF Seq SS Adj SS MS F P % 

A 2 7.226 7.226 3.613 46.77 0 2.01 

B 2 251.091 251.091 125.545 1625.25 0 69.91 

C 2 97.571 97.571 48.786 631.56 0 27.16 

D 2 1.908 1.908 0.954 12.35 0.007 0.53 

A*B 4 0.481 0.481 0.12 1.56 0.299 0.13 

A*C 4 0.353 0.353 0.088 1.14 0.42 0.09 

B*C 4 0.045 0.045 0.011 0.15 0.958 0.01 

Error 6 0.463 0.463 0.077    

Total 26 359.139      

S=0.277933 R-Sq=99.87% R-Sq (adj.)=96.64%  

 

Coefficient of determination value for the present analysis of SSSS shells is 99.87%. The 

normal probability plot in Fig. 7.4 verifies that the model is adequate. It correlates the predicted 

values with the data obtained from numerical analysis (finite element procedure). Figure. 7.4 

reveals that all these data approximately lie on a straight line. Thus it establishes the adequacy of 
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the analysis. The residual versus the fitted value of frequency is plotted in Fig. 7.4 and it can be 

seen that fitted values do not form any definite pattern, in other words, these are scattered. Thus 

adequacy of the model is confirmed from this. The data independency is checked by plotting 

residuals against test order, as included in Fig. 7.4. The residuals plot justified that no predictive 

pattern can be seen and all the residuals are scattered within allowable limits.  

 

 

Fig. 7.4: Residual plots for SSSS shell 

 

Lastly, a confirmatory test compares the initial factor setting with optimal factor setting. It helps 

in obtaining the improvement in final optimal result. Optimal setting of design factors is obtained 

using the following equation: 
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Here, m represents total mean of data, i denotes mean of data at optimal combination, while 

o denotes the number of design factors with significant influence on fundamental frequency. Table 
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7.6 provides the results of the confirmation test for SSSS shells. S/N ratio gets improved by 7.04 

dB (29.03%) compared to the initial condition. Thus, significant improvement is obtained through 

this procedure. 

Table 7.6: Confirmation table for SSSS shell 

 Initial setting Predicted setting FE Analysis 

Level A2B2C2D2 A2B1C3D3 A2B1C3D3 

Fundamental frequency 16.305  36.698 

S/N ratio (dB) 24.25 29.8 31.29 

 

Table 7.7: Summary of contribution (%) of design factors for different shell boundaries 

Shell 

boundaries 

Lamination 

angle (A) 

Width/thickness 

factor (B) 

Degree of 

orthotropy (C) 

Position of 

cutout (D) 

CCCC 1.29 39.58 57.45 0.21 

CSCS 5.67 64.81 28.44 0.33 

CSSC 0.44 66.31 32.22 0.02 

SSSS 2.01 69.91 27.17 0.53 

FCCF 0.13 69.41 29.81 0.11 

FCFC 18.99 53.45 25.71 0.51 

FSFS 0.24 77.80 21.27 0.03 

FSSF 0.16 72.12 27.45 0.02 

 

For other boundary conditions (CCCC, CSCS, CSSC, FCCF, FCFC, FSFS and FSSF), 

similar analysis is performed, however details are omitted for brevity. Instead, salient observations 

are mentioned here. From ANOVA analysis results for all these boundary conditions, summary of 

contribution of the design factors on fundamental frequency of shells is shown in Table 7.7. It is 

seen from the present study that in general with number of boundary constraints play a pivotal role 

in controlling the fundamental frequency. Width/thickness factor (B) is the most dominating factor 

for deciding the frequency of all shell boundary conditions except CCCC shells. In CCCC shell, 

degree of orthotropy (C) is the most effective one. As the number of edge constraints is maximum 

in CCCC shell, the stiffness of the shell is also maximum. So for shells with increased number of 
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e constraints, rate of change of stiffness due to change in material orthotropy is higher than rate of 

change of stiffness with lamination thickness. It is also found from the present study that 

arrangement of boundary constrains has significant influence on fundamental frequency. 

For CCCC shells, contributions of B and C are 39.58% and 57.45%. For CSCS shells, the 

same contributions are 64.81% and 28.44% while for CSSC shells these are 66.31% and 32.22% 

respectively. Similarly, for FCCF shells, contributions of B and C are 69.41% and 29.81%; for 

FCFC shells, contributions of A, B and C are 18.99%, 53.45% and 25.71% respectively. For FSFS 

shells, contributions of B and C are 77.80% and 21.27% and for FSSF shells, these are 72.12% and 

27.45% respectively. It is interesting to note here that when two opposite boundaries are clamped 

and other two are free (FCFC shell), lamination angle significantly influence the fundamental 

frequency. This is because with variation in lamination angle, the direction of fiber lay changes. 

Accordingly, the stiffness of shell is high when the fibers are laid in the direction of clamped edges, 

compared to case when the fibers are laid in the direction of free edges. Regarding interactions, it 

is found from the present analysis that for shells with boundary conditions like CCCC, CSCS, 

CSSC, FCCF, FCFC, FSFS and FSSF have interaction at (A×B) and (A×C), while FCFC shells 

have also some interaction at (B×C). 

 

Table 7.8: Optimal condition for different shell boundaries 

Shell boundaries Optimal condition 

CCCC A2B1C3D3 

CSCS A3B1C3D2 

CSSC A3B1C3D3 

SSSS A2B1C3D3 

FCCF A1B1C3D3 

FCFC A1B1C3D3 

FSFS A2B1C3D1 

FSSF A3B1C3D3 

 

For different edge supports, the optimal conditions for maximum fundamental frequency 

are tabulated in Table 7.8. As already discussed earlier, the optimal condition for SSSS shells is 

A2B1C3D3. Similarly, for shells with CCCC, CSCS, CSSC, FCCF, FCFC, FSFS and FSSF 
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boundary conditions, the optimal predictions are A2B1C3D3, A3B1C3D2, A3B1C3D3, 

A1B1C3D3, A1B1C3D3, A2B1C3D1 and A3B1C3D3 respectively. Thus, it is observed that 

maximum fundamental frequency is obtained at the lowest level of width/thickness r of shell (i.e., 

at b/h =20) and the highest level of degree of orthotropy (i.e., at 2211 / EE =40) for all the shell 

boundaries considered here. 

The present approach of using Taguchi based DOE method in design optimization of 

structural response is new of its kind in literature. Though similar methodology is well established 

in process optimization of machining methods and tribology of materials. It is believed that the 

present analysis will greatly help the structural engineers who design and analyze shell structures 

made of laminated composite materials. In the current study, dynamic response is taken up for 

optimization. However, future studies may be attempted considering other structural issues like 

bending, buckling, post-buckling etc. adopting similar approach. 

 

7.6 CONCLUSION 

In this study, fundamental frequency of cutout borne stiffened hypars made of laminated 

composites are obtained by numerical approach (finite element method). Taguchi technique is used 

for optimizing shell attributes like lamination angle, width/thickness, degree of orthotropy, and 

cutout location in order to have the maximum fundamental frequency. Significant shell parameters 

are obtained by performing analysis of variance (ANOVA). Residual analyses testify the adequacy 

of the model. Confirmatory test is conducted for comparison of the initial combination with optimal 

combination of factors in order to determine the improvement in final optimal result. From this 

design of experiment analysis, the following conclusions are made: 

1) For SSSS shell, optimum combination for highest fundamental frequency is A2B1C3D3, 

i.e., 450 lamination angle, width/thickness factor 20, 2211 / EE ratio 40 and cut-out location 

(0.4, 0.4). 

2) Similarly, for CCCC, CSCS, CSSC, FCCF, FCFC, FSFS and FSSF boundary conditions, 

the optimal predictions are A2B1C3D3, A3B1C3D2, A3B1C3D3, A1B1C3D3, 

A1B1C3D3, A2B1C3D1 and A3B1C3D3 respectively. 
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3) For SSSS shell, interaction (A×B) and (A×C) have some significance. Similarly, for other 

shells with boundary conditions like CCCC, CSCS, CSSC, FCCF, FCFC, FSFS and FSSF 

have interaction at (A×B) and (A×C). FCFC shell has some interaction at (B×C). 

4) For different shell boundaries considered here, width/thickness factor (B) is the most 

dominating factor followed by degree of orthotropy (C). Only in case of CCCC shells, 

degree of orthotropy (C) is the most dominating factor followed by width/thickness factor 

of shell (B). Lamination angle (A) plays significant contribution in case of FCFC shells. 

5) Position of cutout has very little impact for all the shell boundaries considered here. 

6) Maximum fundamental frequency is obtained at the lowest level of width/thickness factor 

(i.e., at b/h =20) and the highest level of degree of orthotropy (i.e., at 2211 / EE =40) for all 

the shell boundaries considered here.  
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                                                                                                    Chapter 8 

CONCLUSIONS 

 

 

8.1  GENERAL 

  The engineering conclusions from numerical and parametric studies presented in Chapters 

5 to 7 are included at respective chapters. In this chapter, the generalized conclusions and future 

scope of research are presented. 

 

8.2  CONCLUSIONS 

The mathematical formulation proposed for static and free vibration problems of laminated 

composite skewed hypar shells is successfully validated from the results of the benchmark 

problems. Static analysis of antisymmetric angle ply laminated composite stiffened hypar shells 

with cut-out for different type of practical boundary conditions reveals a lot of interesting 

conclusions. An increase in support restraints always reduces deflection and static stress resultants 

near the boundary. Among shells with two boundaries clamped and other two simply supported, 

the ones with adjacent boundaries clamped show lesser deflection for all antisymmetric 

laminations considered in the present study. For shells with free boundaries, one with two adjacent 

boundaries free shows greater static deflection for all antisymmetric laminations considered. Free 

boundaries bring high flexibility in shells with respect to other boundaries (clamped or simply 

supported). Also, when a free boundary is introduced to stiffened shell with cutout maximum 

deflection and stress resultant always occur near free boundary. Thus arrangement of boundary 

constraints has a large impact on deflection and static stress resultants.  

Higher mode free vibration of laminated composite skewed hypar shell with cutout at 

various boundary conditions has been studied. The non-dimensional fundamental frequency varies 

with the variation of parameters like material anisotropy, width to thickness ratio and fibre 

orientation angle. In some cases, non-dimensional frequency increases with fibre orientation angle 
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and material anisotropy and decreases in few cases. With increase in width to thickness ratio 

fundamental frequency decreases from first mode to fifth mode.  Mode frequency analysis has 

been discussed for laminated composite skewed hypar shell with cutout. The first five non-

dimensional fundamental frequency parameter increases monotonically for all laminations and 

boundary constraints as the degree of orthotropy increases. It has been noticed that free vibration 

behavior mainly depends on the number of support constraints whatever be the parametric 

variations in terms of fibre orientation angle, degree of orthotropy, width-to-thickness ratio etc. 

Taguchi robust design has been presented to optimize shell parameters (lamination angle, 

width-thickness ratio, cutout location along x-direction and cutout along y-direction) to maximize 

the fundamental frequency of the shell structure. Significant shell parameters and their interactions 

are obtained by testing analysis of variance (ANOVA). Adequacy of the present model is verified 

by the residual plots. Confirmation test is implemented to compare the initial condition with 

optimal condition so that improvement in final optimal result can be understood.  From the design 

of experiment investigation, subsequent interpretations are made considering numerical trials with 

respect to various types of boundary conditions. The results obtained for each trial shows the 

improvement in final results for the boundary conditions considered here for analysis. Position of 

cutout has less impact on optimum condition for all shell boundaries considered here. Maximum 

fundamental frequency is obtainable at the lowest level of width-to-thickness ratio and the highest 

level of degree of orthotropy for all shell boundaries considered here. 

 

8.3  FUTURE SCOPE 

The present study clearly explains the static and free vibration behavior of composite 

stiffened hypar shell with cutout. But still some parametric behavior of static and dynamic analysis 

of hypar shell with cut out at various support constraints and cutout positions are yet to be studied. 

Buckling and stability aspects and optimization behavior for critical buckling load of stiffened 

hypar shells with cutout may be studied in future. The above topics are only suggestive topics of 

research.  
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