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Chapter 1 

 

INTRODUCTION 

 

1.1 Cellular manufacturing system 

Manufacturing systems deal with the set of procedures used by the company to operate the 

production facilities to manage production efficiently by solving the technical and logistics 

problems encountered in the factory, and ensuring that products meet quality standards. The 

cellular manufacturing system (CMS) is considered as an efficient production strategy to 

make batch manufacturing as efficient and productive as possible. The CMS relies on the 

principle of group technology (GT) for grouping dissimilar machines into machine cells and 

grouping parts into part families to take the advantage of their similarities in design and 

production. 

Cell formation in CMS is an important problem in today’s automated batch production 

systems. It reduces work-in-process inventory cost, material handling cost, processing time, 

labor requirement and number of setups. It also simplifies the process planning and 

production scheduling, and improves the quality of products by promoting standardization of 

tooling, fixturing, and setups. Since manufacturing equipment of automated manufacturing 

systems are highly multifunctional, production processes can be accomplished by using 

multiple process routings. An optimum cell formation leads to more independent cells and 

less intercellular movement of parts. 

 
1.2 Motivation of the current research work 

In order to be successful in today's competitive manufacturing environment, managers have 

had to look for new approaches to facilities planning. For years, the industrial job shop has 

faced an increase in complexity and a decline in productivity due to an increase in part mix, 

volume of parts, plant size, machine production rates, and part complexity (Greene and 

Sadowski, 1984). It has been seen that between twenty and fifty percent of the total costs 

within manufacturing are related to material handling and as a result, effective planning can 

reduce these costs by ten to thirty percent (Balakrishnan and Cheng, 2007). 
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One innovative approach to facilities planning is called GT. GT is based on the principle 

of grouping parts into families based on similarities in design or manufacturing. The GT and 

cellular manufacturing aims to eliminate or minimize the complexity and to improve or 

maximize productivity. 

Manufacturing cells, which consist of machines or workstations, are then, physically 

grouped together and dedicated to producing the parts into families. Cells combine the 

advantages of flow shops and job shops with characteristics such as reduced cycle times 

compared to jobs shops and increased flexibility and greater job satisfaction as compared to 

flow shops. It is reasonable to believe that the processing of each part of a given family of 

parts would result in manufacturing efficiencies. 

Manufacturing takes opportunities under all types of economic systems. In a free market 

economy system, manufacturing is usually motivated to the mass production of products for 

sale to consumers at a profit. Therefore, optimization of formation of cells and part families in 

CMS results in improving the process efficiency as well as reducing the cost of production. 

The objective of this research work aims at improving the existing optimization techniques as 

well as developing new optimization techniques for optimum design of cell formation in 

cellular manufacturing systems.   

1.3 Objectives and scope of the current research work 

Cellular manufacturing is a rich area for research and one that encompasses wide variety of 

distinct issues such as cell formation, cell scheduling and lot sizing, where, there is scope of 

improvement on the existing solution methods or development of new methods to enhance the 

efficiencies of the CMS systems. 

These issues can be explored in details using the model-oriented tools of OR/OM 

investigations (such as exact optimization techniques, namely, linear programming and 

branch and bound algorithm, approximation optimization techniques, including heuristic 

algorithms, metaheuristics, and simulation). The objective of the current research work has 

been summarized as follows: 

i) To conduct a comprehensive literatures review on various optimization methods and 

applications of different problems and identify the gaps in the literature related to 

cellular manufacturing systems. 

ii) To develop new construction heuristics in improving the efficiencies of the CMS 

problems. 
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iii) To develop effective and efficient metaheuristics for the CMS problems. 

iv) To examine the application of the proposed solution methods in a real-life 

manufacturing system. 

v) Finally, to compare the performance of the proposed optimization methods with the 

state-of-the-art procedures based on a set of benchmark problems with respect to both 

solution quality and computational times. 

The present research investigates two types of cell formation problems that frequently 

appear in the cellular manufacturing literature. The first problem deals with the cell formation 

with single routing and no process sequences with the objective of maximizing grouping 

efficacy and the cell utilization. We consider another cell formation problem with multiple 

routings, process sequences and part volumes, with the objective of minimizing total inter-

cellular movement of parts.  

The present work proposes a heuristic approach based on Euclidean distance matrix for 

the machine-part cell formation problem. The objective of this study is to generate optimal 

machine cells and part families considering the correlations between machines or parts in 

cellular manufacturing systems. The correlations between machines or parts are generated 

based on their similarities in processes and are represented in the form of Euclidean distance 

matrix. In order to cluster the machines for machine cells and parts for part families, we used 

Euclidean distance matrix. Computational comparative results of the proposed method with 

the well-known existing methods considering twenty benchmark problems from the literature 

show that the proposed method outperforms the existing algorithms. In the second research 

work, we proposed a genetic algorithm to maximize the grouping efficacy for the machine-

part cell formation problem.  

Next, we presented a heuristic approach for the cell formation problem considering 

multiple routings. In this research work, we computed the minimum Euclidean distances of 

machines for processing the parts considering parts volume, batch size, and number of 

batches by using the single linkage clustering technique in order to generate optimum 

machine cells having minimum intercellular movement of parts. Computational results of the 

proposed algorithm and comparisons with the well-known existing methods considering a set 

of five benchmark problems depict that the proposed algorithm is either better than or 

competitive with the well-known existing algorithms. Finally, we propose a genetic algorithm 

for the cell formation problem considering alternative routings for a real-life problem. The 

experimental results reveal that the proposed algorithm gives solutions in terms of 

intercellular movement either better than or competitive with the existing metaheuristic 
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algorithms. This research work considers the cell formation problem allowing cell load 

variation in alternative routes of parts and process sequences with the objective of minimizing 

intercellular movements of parts.  

1.4 Organization of this thesis 

The organization of this thesis in the subsequent chapters is given below: 

Chapter 2 (Cellular Manufacturing System – An Overview) – This chapter briefly reviews 

the existing literature on the theory of cell formation problems with reference to the problem 

formulation, various noteworthy optimization methods, and different performance criteria to 

assess the performance of the proposed optimization methods. 

Chapter 3 (A Heuristic based on Euclidean Matrix for the Cell Formation) – This chapter 

presents a heuristic approach based on Euclidean distance matrix. We conducted the 

computational experiments based on a set of twenty benchmark problems taken from the 

literature. The computational results demonstrate that the performance of the proposed 

heuristic in terms of grouping efficacy are either better than or competitive with the well-

known existing construction algorithms, namely, ROC, ZODIAC, GRAFICS, PCA, LA and 

SCM. 

Chapter 4 (Cell Formation using GA to Maximize Grouping Efficacy) – This chapter 

provides a genetic algorithm heuristic to solve the cell formation problem. Computational 

experiments considering twenty benchmark problem sets show that the proposed heuristic has 

produced solutions in terms of grouping efficacy that are either better than or competitive 

with the existing metaheuristic algorithms such as GRASP, GA, SA, and PSO algorithms. 

Chapter 5 (A Heuristic for the Cell Formation with Alternative Routings) - In this chapter, 

a heuristic approach is proposed based on Euclidean distance matrix for the cell formation 

problem considering multiple routes, process sequences and parts volume (including batch 

size and number of batches). We carried out the computational experiments with five 

benchmark problem sets taken from the literature and the results demonstrate that the 

proposed heuristic in terms of the intercellular movements of parts is relatively more effective 

than the well-known existing algorithms. 

Chapter 6 (A GA for the Cell Formation with Alternative Routings) - In this chapter, a 

genetic algorithm based heuristic is presented for the cell formation problem with multiple 

process routes, sequence of processes and parts volume. The experimental results based on 
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some standard benchmark problem instances demonstrate that the performance of the 

proposed approach in terms of total intercellular movements of parts and the selection of the 

best route is better than the well-known existing methods. 

Chapter 7 (Application of GA to a Real-life Cell Formation Problem) - The objective of 

this study is to determine the optimal processing route and the balanced machine cells for a 

real-life cell formation problem involving parts volume and process sequences to minimize 

intercellular movements of parts. A genetic algorithm is applied to solve this problem. 

Computational results show that the proposed approach produces comparatively better results 

compared to the well-known existing methods in respect of total intercellular movements of 

parts. 

Chapter 8 (Conclusions, Limitations and Future Research Directions) – This chapter 

summarizes the conclusion of this dissertation and it includes the limitations and future 

directions of research.  





Chapter 2 

 

 

CELLULAR MANUFACURING SYSTEM: AN OVERVIEW 

 

 

2.1 Cellular manufacturing system 

Grouping technology (GT) is a manufacturing philosophy that deals with the grouping of 

similar parts that are classified based on their similarities in design and production, resulting 

in manufacturing efficiencies of a cellular manufacturing system (CMS). The application of 

GT in a manufacturing system improves productivity, product quality, manufacturing lead 

times, utilization of resources and on the other hand, it reduces work in process inventory, 

setup time, and material handling cost.   

The cell formation problem (CFP) usually attempts to obtain a solution with the 

formation of completely independent machine cells, where each machine cell assigns a set of 

independent part families so that the cell can carry out all operations of that particular part 

family. However, in actual practice, it is sometimes difficult to execute all the operations of a 

part family belonging to a particular machine cell. Therefore, the principal objective of 

applying GT in manufacturing systems is to minimize intercellular movements of parts i.e., to 

minimize the exceptional machines and parts and to maximize utilization of machines. Since 

the CFP belongs to the class of NP- hard, heuristic and meta-heuristic approaches are mostly 

preferred to obtain optimal or near-optimal solution for these problems, especially for solving 

large-sized problems in reasonable time. 

 

2.2  Problem definition 

The cell formation problem is formulated as n×𝑚 binary incidence matrix (where, n is the 

number of parts and 𝑚 is the number of machines) as shown in Table 2.1. Here, rows and 

columns represent parts and machines of a problem respectively. The element of the binary 

matrix is denoted as 𝑎𝑖𝑗 . If the part i is processed on machine j, then 𝑎𝑖𝑗  =1; Otherwise, 𝑎𝑖𝑗  = 

0. 
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Table 2.1 A seven parts and five machines incidence matrix for a CFP 

 M1 M2 M3 M4 M5 

P1 0 0 1 1 0 
P2 1 0 1 0 0 
P3 0 1 0 1 1 
P4 1 0 1 0 1 
P5 0 1 0 0 1 
P6 0 0 0 1 1 
P7 1 0 1 0 0 

 

The main objective of applying GT in the CFP is to minimize the movements of the inter-

cells of the parts and to maximize the utilization of machines within a cell by converting the 

machine-part incidence matrix into some diagonally arranged blocks, where each block 

represents a combination of a machine cell and a part family (King and Nakornchai, 1982).  

Table 2.2 shows the solution of the CFP problem given in Table 2.1 in the form of block 

diagonal machine-part incidence matrix. 

Table 2.2 Solution of the CFP problem given in Table 2.1  

 M2 M4 M5 M1 M3 

P3 1 1 1   
P5 1  1   
P6  1 1   
P1  1   1 
P2    1 1 
P4   1 1 1 
P7    1 1 

 

2.3 Objective functions 

The quality of the solution of a CFP can be evaluated by the grouping efficacy (𝐺𝐶) to 

measure the clustering effectively. It is defined as the ratio of total number of operations in 

the blocks to the sum of total number of operations in the incidence matrix and total number 

of void elements in the blocks. Grouping efficacy can be determined from the following 

expression: 

  𝐺𝐶 =
𝑂−𝐸𝐸

𝑂+𝑉𝐸
       (2.1) 

Where, O is the total of total number of operations in the machine-part incidence matrix 

i.e., total number of 1’s. EE is the number of operations appeared outside the diagonal blocks 

and it is called exceptional elements and VE is the number of zeros inside the diagonal blocks 

and it is called void elements. 

Cell utilization (𝐶𝑈𝑐) for a cellc can be defined as: 
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𝐶𝑈𝑐 =
 𝑀𝑈𝑖𝑐
𝑚 𝑐
𝑖=1

𝑚𝑐
       (2.2) 

Where, 𝑚𝑐  is the number of machines in cell 𝑐 and 𝑀𝑈𝑖𝑐 = utilization of machine 𝑖 in cell 𝑐. 

Alternatively, the cell utilization (𝐶𝑈𝑘) for a machine or a part in cell 𝑘 can be defined by 

𝐶𝑈𝑘 =
𝑈𝐸𝑒−𝐸𝐸𝑒

𝑚𝑘𝑛𝑘
       (2.3) 

Where, 𝑈𝐸𝑒  = total number of operations by the exceptional machine or for the 

exceptional part, 𝐸𝐸𝑒  = exceptional elements for the exceptional machine or part for that 

particular machine or part after merging, 𝑚𝑘  = total number of machines in cell k, 𝑛𝑘  = 

number of parts in family k. For merging an exceptional machine, 𝑚𝑘 = 1 and for an 

exceptional part, 𝑛𝑘 = 1. 

2.4 Numerical illustration 

In order to compute the GC, let us consider a problem of five machines and seven parts with 

the corresponding the part-machine incidence matrix given in Table 2.1. Consider the 

generated solution of the cells formation problem as given in Table 2.2. From the results of 

Table 2.2, we can see that one operation of part P1 and one operation of part P4 are outside 

the blocks. Hence, EE = 2. Additionally, we find that there are three zeros in the blocks. The 

number of zeros inside the diagonal cells denote the number of void elements (VE). Hence, 

VE=3. Therefore, for the given problem, 𝐺𝐶 =
16−2

16+3
=

14

19
=0.7368 or 73.68%. 

We consider a cell formation problem consisting of eight parts, six machines and with 

alternative routings and parts volume. 

 

The objective of the problem is to minimize the intercellular movements of 𝑛 parts. Table 

2.4 shows the solution of the CFP problem given in Table 2.3 in the form of block diagonal 

machine-part incidence matrix. The results of Table 2.4 show that there are no intercellular 

movements of the parts except the part P6 having intercellular movements of ten. Hence, total 

number of intercellular movements for the entire production system will be ten. 
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Table 2.3 The CFP of 8 parts and 6 machines with alternative routings 

Parts Part 

volume 

Part 

route 

Machines 

M1 M2 M3 M4 M5 M6 

P1 50 1 1 3  2   

2  1 2  3 4 

3  2 1  3 4 

P2 30 1   1  3 2 

P3 20 1   1  2 3 

P4 30 1 1   2   

2 2 1  3   

P5 20 1  3 2  4 1 

2   1   2 

P6 10 1 1 2 3    

2 1 2    3 

P7 15 1  3   1 2 

2   3  1 2 

3  1    2 

P8 40 1  2  1   

Table 2.4 Solution of the CFP given in Table 2.3 

Parts 
Part 

volume 

Selected 

part route 

Machine cell 1 Machine cell 2 Total intercellular 

movements for 

each part 
M1 M2 M4 M3 M5 M6 

P1 50 1 1 3 2    0 

P4 30 1 1  2    0 

P6 10 1 1 2  3   10 

P8 40 1  2 1    0 

P2 30 1    1 3 2 0 

P3 20 1    1 2 3 0 

P5 20 2    1  2 0 

P7 15 2    3 1 2 0 

 

2.5 Literature review on cellular manufacturing 

The main goal of CMS design is to divide the production system into some production cells 

and part families. The cell formation methods are classified into three categories such as (a) 

hierarchical clustering, (b) non-hierarchical clustering, and(c) array-based clustering 

procedures, apart from the mathematical models, heuristics, metaheuristics, and simulation. 

2.5.1 Heuristics for the CFP with single routing and no sequences 

A number of remarkable heuristics in the CMS have been suggested in the literature. In 

hierarchical clustering methods, based on similarity correlation values, the techniques include 

the single linkage clustering (SLC) (McAuley, 1972), the average linkage clustering (ALINK) 

(Seifoddini, 1989b) and complete linkage clustering algorithm (CLINK) (Gupta and 

Seifoddini, 1990). In the category of non-hierarchical clustering methods, nodes and arcs are 

connected by the nodes of the graph representing machines-parts and operations of parts 
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respectively. GRAFICS (Srinivasan and Narendran, 1991) and ZODIAC (Chandrasekharan 

and Rajagopalan, 1987) belong to this category. 

In the area of array-based clustering, machine cells and part families for a problem are 

constructed by altering the position of the respective rows and columns. Rank order clustering 

(ROC) (King, 1980), modified rank order clustering (MODROC) (Chandrasekharan and 

Rajagopalan, 1986a), bond energy algorithm (McCormicket al. 1972), and direct clustering 

algorithm (Chan and Milner, 1982) are examples of this array-based clustering class. 

Similarly, some noteworthy SLC-based heuristics have been proposed in the CMS 

literature. Mahdavi, Aalaei, Paydar and Solimanpur (2010) presents mathematical model to 

obtain optimum cell utilization considering minimization of exceptional elements and voids. 

McAuley (1972) used SLC in CMS for forming machine-cells through an iterative process. 

Waghodekar and Sahu (1984) considered cluster machines by SLC based on maximum 

similarity. Seifoddini and Djassemi (1991) used average linkage clustering algorithm 

(ALINK), and Gupta, and Seifoddini (1990) used complete linkage clustering algorithm 

(CLINK).  Suer, Huang and Maddisetty (2010) proposed a configuration-based clustering 

algorithm for family formation and considered the number of machines of each type for 

calculation of similarity coefficient. Yin, and Yasuda (2002) proposed a new clustering 

methodology based on average voids value, which indicates the average number of voids 

when two machine groups are combined. 

In addition, some notable matrix-based heuristic approaches have been developed by 

Sneath (1957a), Romesburg (1984), Sneath (1957b), Seifoddini and Djassemi (1991), Sarker 

and Xu (1998), and Mosier and Taube (1985b). Sneath (1957a) first used SLC analysis for the 

classification of bacteria. McAuley (1972) used SLC in CMS for forming machine-cells 

through an iterative process. To solve the CFP by the similarity coefficient method (SCM), 

similarity coefficient matrices (for machines and parts separately) are obtained from the 

original machine-part incident matrix. Then, from the generated similarity matrices, machines 

(or parts) with maximum similarity coefficient are grouped to form machine-cells (or part-

families). Various researchers (Romesburg, 1984; Sneath, 1957b; Seifoddini and Djassemi, 

1991) have proposed different similarity coefficients. McAuley (1972) first used the Jaccard 

similarity coefficient (Jaccard, 1908). Among these coefficients, Seifoddini and Djassemi 

(1991), and Sarker and Xu (1998) used production data based similarity coefficient such as 

production volume, processing times, and sequence of operations which incorporates in 

production process. Mosier and Taube (1985b) applied weighted similarity coefficients. 

http://booksc.org/g/William%20T.%20McCormick%20Jr.
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To evaluate the quality of solution, Chandrasekharan and Rajagopalan (1989) analyzed 

the grouping efficiency. Kumar and Chandrasekharan (1990), Chu and Tsai (1990) 

investigated both the grouping efficacy and the grouping efficiency of array-based machine-

part grouping methods: ROC, DCA and BEA. Garbie, Parsaei and Leep (2005) used machine 

and cell utilization in flexibility systems for accepting a new part into existing CMS. 

Dimopoulos and Mort (2001) used the grouping efficacy to measure performance of a genetic 

programming based on SLC method with five other procedures. 

2.5.2 Heuristics for multiple routings with process sequences and parts volume 

In the cell formation literature, most of the cell formation problems consider single process 

routing. However, in the current practice, manufacturing equipment are multifunctional and 

therefore, production processes can be done by more than one number of process routes. 

Alternative process routes provide better configuration and flexibility in the cell design (Amel 

and Arkat, 2008). Alternative process routes also reduce intercellular material movements, 

reduce capital investment in machines and give more independent cells and machine 

utilization (Hwang and Ree, 1996). 

Kusiak and Cho (1992) and Chow and Hawaleshka (1992) suggested similarity 

coefficient methods for the CFP in alternative routing of parts. Chow and Hawaleshka (1992) 

considered parts volume in their model. Gupta (1993) extended Jaccard’s similarity 

coefficient incorporation with process routes, operation sequence, processing time and parts 

volume. 

Won and Kim (1997) used a generalized Jaccard’s similarity coefficient, integrating with 

process routing factors only. Yin and Yasuda (2002) extended the Won and Kim (1997) used 

Jaccard’s similarity coefficient by incorporation of process sequence, parts volume, 

processing time. Alhourani (2013) proposed a modified Jaccard’s similarity coefficient 

incorporated with process sequences and parts volume. 

Other heuristic techniques for multiple routings, parts volume and sequential cell 

formation problem include simulated annealing (Sofianopoulou, 1999), fuzzy approach (Chu 

and Hayya, 1991), tabu search (Chung, Wu and Chang, 2011), genetic algorithm (Saeidi, 

Solimanpur, Mahdavi and Javadian, 2014). 
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2.5.3  Metaheuristics for the CFP with single routing and no sequences 

Since the application of soft computing techniques in CF problems, they have been 

increasingly gaining popularity due to its consistent, robust performance results and easy to 

implement. Various soft computing techniques in the literature include fuzzy theory (Li, Ding 

and Lei, 1986; Chu and Hayya, 1991), ANN (Xing, Fulufhelo, Battle, Gaoand Marwala, 

2009; Miljkovic and Babic, 2005), SA (Wu, Chang and Chung, 2008), GA (Onwubolu and 

Mutingi, 2001; Goncalves and Resende, 2004), tabu search (Zolfaghari and Liang, 2002), and 

PSO (Ali, Karimi and Noktehdan, 2014). Zolfaghari and Liang (2002) carried out a 

comparative study of effectiveness of GA, SA, and tabu search in cell formation problems and 

they found that SA is superior to other existing methods.  

Recently, hybrid heuristics and metaheuristics have been applied in the CFPs  such as 

HGGA (James, Brown and Keeling, 2007), GRASP (Diaz, Luna and Luna, 2012), HGA 

(Tariq, Hussain and Ghafoor, 2009), CARI (Gupta, Devika, Valarmathi, Sowmiya and 

Shinde, 2014), and HGBPSO (Ali, Karimi and Noktehdan, 2014).  

2.5.4 Metaheuristics for multiple routings with process sequences and part volumes 

Some noteworthy metaheuristic algorithms for the CF problems with alternative routings, 

uneven part volumes and process sequences include simulated annealing (Sofianopoulou, 

1997 and Chen, Cotruvo and Baek, 1995), fuzzy approach (Chu and Hayya, 1991), and tabu 

search (Sun, Lin and Batta, 1995). 

2.6 Design of computational experimentation in cell formation 

We considered a set of thirty standard benchmark problems to evaluate the proposed 

algorithms with the best-known existing algorithms. We used the standard cell formation 

benchmark experimental framework as given in Table 2.5. 

2.7 Conclusion  

This chapter focuses on an overview of two different cell formation problems to satisfy some 

cell formation criteria. The formulation of these problems along with the corresponding 

numerical illustrations is presented. Next, different types of the relevant state-of-the-art 

algorithms for these problems are provided. Finally, the experimental setup procedure and the 

performance criteria to evaluate the comparative performance of the heuristics are discussed. 

 

https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=8533468700&zone=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=7404129184&zone=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=6701760915&zone=
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Table 2.5 Test problems and their sizes in the experimental framework 

Prob. No. Problem source Size (n x m) 

1 Waghodekar and Sahu (1984) 7×5 

2 King and Nakornchai (1982) 7×5 

3 Waghodekar and Sahu (1984) 7×5 

4 Seifoddini (1989a) 18×5 

5 Kusiak and Cho (1992) 8×6 

6 Boctor (1991) 11×7 

7 Kusiak and Chow (1987) 11×7 

8 Seifoddini and Wolfe (1986) 12×8 

9 Chandrasekharan and Rajagopalan (1986a) 20×8 

10 Chan and Milner (1982) 15×10 

11 Asktn and Subramantan (1987) 23×14 

12 Stanfel, 1985 24×14 

13 McCormick et al. (1972) 24×16 

14 Srinivasan et al. (1990) 30×16 

15 King (1980) 43×16 

16 Carrie (1973) 24×18 

17 Mosier and Taube (1985b) 20×20 

18 Kumar et al. (1986) 23×20 

19 Carrie (1973) 35×20 

20 Boe and Cheng (1991) 35×20 

21 Chandrasekharan and Rajagopalan (1989) 40×24 

22 Chandrasekharan and Rajagopalan (1989) 40×24 

23 Chandrasekharan and Rajagopalan (1989) 40×24 

24 Chandrasekharan and Rajagopalan (1989) 40×24 

25 Carrie (1973) 46×28 

26 Kumar and Vannelli (1987) 41×30 

27 Stanfel, 1985 50×30 

28 King and Nakornchai (1982) 90×36 

29 McCormick et al. (1972) 53×37 

30 Chandrasekharan and Rajagopalan (1987) 100×40 

 

http://booksc.org/g/William%20T.%20McCormick%20Jr.
http://booksc.org/g/William%20T.%20McCormick%20Jr.


Chapter 3 

 
A HEURISTIC BASED ON EUCLIDEAN MATRIX FOR THE 

CELL FORMATION 

 

 

3.1 Introduction 

The objective of the cell formation problem (CFP) is to obtain an optimal solution with 

formation of completely independent machine cells corresponding to a set of independent part 

families with the objective of satisfying some cell formation criteria. In the particular 

solution, the machines in each machine cell can carry out all operations of the parts of a 

particular part family. However, in actual practice, it is sometimes difficult to execute all the 

operations of a part family belonging to a particular machine cell. Therefore, the objective of 

applying GT in manufacturing systems is to generate the optimal solution to minimize 

intercellular movements of parts i.e., to minimize the exceptional machines and parts and to 

maximize utilization of machines (Sofianopoulou, 1997). 

Since the CF problem belongs to the class of NP- hard (Sofianopoulou, 1997), heuristic 

and metaheuristic approaches are mostly preferred to obtain optimal or near-optimal solutions 

for these problems, especially for solving large-sized problems in reasonable time.  

A number of noteworthy heuristics have been proposed in the CMS literature, namely, 

ROC (King, 1980), MODROC (Chandrasekharan and Rajagopalan, 1986a), PCA (Hachicha 

et al., 2008), Hamiltonian path heuristic (Askin et al., 1991), cluster identification method 

(Kusiak et al., 1993), MD (Gupta et al., 2014), QM (Kitaoka et al., (1999), and similarity 

coefficients method (Wu et al., 2009). Sneath (1957b) first used SLC analysis for the 

classification of bacteria. Then, using this concept, McAuley (1972) used SLC in the CFP for 

forming the machine-cells through an iterative procedure. 

To solve the CFP by the similarity coefficient method (SCM), heuristics make use of the 

similarity coefficient matrices (for machines and parts separately) from the original machine-

part incident matrix. Then, from the generated similarity matrices, machines (or parts) with 

maximum similarity coefficient are grouped to form machine-cells (or part-families). 

Heuristics based on similarity coefficients have been proposed by Romesburg (1984), Sneath 

and Sokal (1973) and Seifoddini and Djassemi (1991). Among different similarity 

coefficients, McAuley, (1972) first used the Jaccard similarity coefficient (Jaccard, 1908). 



A Heuristic based on Euclidean Matrix for the Cell Formation 

15 

 

Seifoddini and Djassemi, (1991), and Sarker and Xu, (1998, 2000) used production databased 

similarity coefficient such as production volume, processing times, and sequence of 

operations in production processes. Mosier and Taube (Mosier and Taube, 1985b) applied 

weighted similarity coefficients. 

To evaluate the quality of solution of the CFP, Chandrasekharan and Rajagopalan (1989) 

analyzed the grouping efficiency. Kumar and Chandrasekharan (1990) and Chu and Tsai 

(1990) also applied the grouping efficacy in their methods, namely, ROC, DCA and BEA. 

Garbie et al. (2005) used the machine cell utilization in flexibility system for accepting a new 

part into existing CFP. Dimopoulos and Mort (2001) used the grouping efficacy to compare 

the performance of a genetic programming based on SLC method with five other procedures. 

The objective of the proposed approach based on Euclidean distance matrix is to identify 

the exceptional machines and parts from the binary machine-part incidence matrix, if exists 

and to allocate them to some predefined groups or new cells by using cell utilization 

approach.  

3.2 Single linkage clustering (SLC) 

The goal of clustering is to incrementally group a number objects with the help of some 

correlations in the form of the similarity of processing of machines or parts. In the SLC 

procedure, in each step, merge the highest similar pairs as a single entity and the clustering 

process continued until certain termination conditions are satisfied. Clustering algorithms 

convert the machine-part incidence matrix into some diagonally arranged blocks and each 

block represents a combination of a machine cell and a part family group. 

3.3 Euclidean distance matrix (EDM) 

Consider a list of points {𝑥𝑖, 𝑖 = 1, . . . , 𝑛} in the Euclidean space Rη of dimension η. A matrix 

D ∈ 𝑅+
𝑛×𝑛 is called a Euclidean Distance Matrices (EDM), where, its entries, 𝑑𝑖,𝑗

2  are the 

Euclidean distance- squares between points of 𝑥𝑖 and 𝑥𝑗, i.e.,𝐷[𝑖, 𝑗] = 𝑑𝑖,𝑗
2 = ‖𝑥𝑖 − 𝑥𝑗‖

2
.As a 

result, any element of an EDM must satisfy the basic Euclidean matrix properties: 

i. Non-negativity: 𝑑𝑖,𝑗 ≥ 0. 

ii. Self-distance: 𝑑𝑖,𝑗 = 0 ⟺ 𝑥𝑖 = 𝑥𝑗. 

iii. Symmetry: 𝑑𝑖,𝑗 = 𝑑𝑗,𝑖. 

iv. Triangle inequality: 𝑑𝑖,𝑗 ≤ 𝑑𝑖,𝑘 + 𝑑𝑘,𝑗. 

Using the Euclidean distance matrix, cluster two entities based on minimum distance and 
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consider them as a single entity for further cluster analysis. 

 3.4 Proposed Heuristic  

Step 1: Standardize the machine-part incidence binary matrix. 

Obtain the standardized matrix from the original matrix Abased on the procedure by 

Hachicha et al. (2008). Say, the initial machine-part incidence matrix for 𝑛 parts and 

𝑚machines is 

𝐴 =

[
 
 
 
 
𝑎11 𝑎12 𝑎13 ⋯ 𝑎1𝑚

𝑎21 𝑎22 𝑎23 ⋯ 𝑎2𝑚
⋯
⋯
𝑎𝑛1

⋯
⋯
𝑎𝑛2

⋯
⋯
𝑎𝑛3

⋱
⋱
⋯

⋯
⋯

𝑎𝑛𝑚]
 
 
 
 

    (3.1) 

 

Where, each row represents a part and each column represents a machine. The values of 

the elements are binary (i.e., 1 or 0). If the part 𝑖 is needed to process on machine 𝑗, then 

𝑎𝑖𝑗 = 1; Otherwise 𝑎𝑖𝑗= 0. 

To obtain the standardized matrix B from A, first find the sum of each column 

individually, e.g., for machine 𝑗,  

𝐴𝑗 = ∑ 𝑎𝑖𝑗
𝑛
𝑖=1  ,𝑖 = 1,2,3,… , 𝑛 and 𝑗 = 1,2,3,… ,𝑚   (3.2) 

Next, find the average of 𝐴𝑗,  s.t., Ā𝑗 = 𝐴𝑗 𝑛⁄         (3.3) 

Next, find 𝜎𝑗
2 = Ā𝑗 − Ā𝑗

2
.       (3.4) 

Now, compute 𝑏𝑖𝑗 = (𝑎𝑖𝑗 − Ā𝑗) 𝜎𝑗⁄ for each individual elements of column 𝑗.             (3.5) 

The standardized machine-part incidence matrix will be 

𝐵 =

[
 
 
 
 
𝑏11 𝑏12 𝑏13 ⋯ 𝑏1𝑚

𝑏21 𝑏22 𝑏23 ⋯ 𝑏2𝑚
⋯
⋯
𝑏𝑛1

⋯
⋯
𝑏𝑛2

⋯
⋯
𝑏𝑛3

⋱
⋱
⋯

⋯
⋯

𝑏𝑛𝑚]
 
 
 
 

    (3.6) 

 

Step 2: Compute the Euclidean distance matrix. 

The Euclidean distance between two machines, say, for machine 𝑥 and 𝑦is given by the 

relation 

𝑑𝑥𝑦 = √∑ (𝑏𝑖𝑥 − 𝑏𝑖𝑦)
2𝑛

𝑖=1      (3.7) 
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Compute the Euclidean distance matrix (n x m) for all the machines. 

𝐷 =

[
 
 
 
 
𝑑11 𝑑12 𝑑13 ⋯ 𝑑1𝑚

𝑑21 𝑑22 𝑑23 ⋯ 𝑑2𝑚
⋯
⋯
𝑑𝑛1

⋯
⋯
𝑑𝑛2

⋯
⋯
𝑑𝑛3

⋱
⋱
⋯

⋯
⋯

𝑑𝑛𝑚]
 
 
 
 

    (3.8) 

 

Step 3: Cluster the machines considering the required number of cells. 

In single linkage clustering (SLC), two machines are clustered which have the smallest 

Euclidean distance and the generated machine cell is considered as a single entity for 

proceeding for other machines.   

Step 4: Cluster the exceptional machines. 

To merge the exceptional machines with machine cells, calculate the cell utilization of 

each exceptional machine with each cell as well as cell utilization of individual exceptional 

machine and accordingly, either merge the exceptional machine with the cell or consider the 

exceptional machine as a separate cell based on maximum cell utilization value. Garbie et al., 

(2005) defined the cell utilization. 

To find part families following in the similar manner and to merge the exceptional parts 

with part families, we calculate the cell utilization of each exceptional part individually with 

each family and merge the exceptional part with the family based on maximum cell utilization 

value.  

 3.5 Performance criteria 

The quality of solution can be evaluated either by grouping efficacy (𝐺𝐶) (Chandrasekharan 

and Rajagopalan, 1986b) or by grouping efficiency (𝐺𝐸) (Kumar and Chandrasekharan, 

1990). In this study, we have considered GC only to measure the effectiveness of the 

clustering.  
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Fig.3.1 Flow Chart for the proposed clustering method 

 3.6 Numerical illustration  

A CF problem having 7 parts and 5 machines is shown in Table 3.1. In this section, we 

illustrate the proposed procedure in details considering this problem. 

Table 3.1 A problem having seven parts and five machines  

Parts 
Machines 

M1 M2 M3 M4 M5 

P1   1 1  

P2 1  1   

P3  1  1 1 

P4 1  1  1 

P5  1   1 

P6    1 1 

P7 1  1   

START 

Initial machine-part incidence matrix 

Standardize the initial part-machine incidence matrix 

Generate Euclidean distance matrix 

Clustering for machines (by SLC) 

Are there exceptional 

machines? 

 Merge the exceptional 

machines by considering CU 

Clustering for parts (by SLC) 

Are there 

exceptional parts? 

 Merge the exceptional 

parts by considering CU 

 
Final 

solution 

 
STOP 

 

Yes 

Yes 

No 

No 
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Step 1: The machine-part incidence matrix is 

A =

[
 
 
 
 
 
 
0
1
0
1
0
0
1

0
0
1
0
1
0
0

1
1
0
1
0
0
1

1
0
1
0
0
1
0

0
0
1
1
1
1
0]
 
 
 
 
 
 

 

Step 2: With the help of Equations (3.1) to (3.6), the machine-part incidence matrix 𝐴 can be 

standardized as the machine-part incidence matrix B. To standardize the matrix A, find the 

sum of each column individually, e.g., for machine 1, 

 𝐴1 = ∑ 𝑎𝑖1
𝑛
𝑖=1 = 3  Where, 𝑖 = 1,2,3,… ,7. 

For machine 2, 𝐴2 = ∑ 𝑎𝑖2
𝑛
𝑖=1 = 2, and so on. 

Find the average of  𝐴𝑗,  s.t., Ā𝑗 = 𝐴𝑗 𝑛⁄  i.e., Ā1 = 𝐴1 𝑛 = 3 7⁄⁄ = 0.42857. 

Similarly, Ā2 = 𝐴2 𝑛 = 2 7⁄⁄ = 0.28571, and so on. 

Then, find 𝜎𝑗 = {Ā𝑗 − (Ā𝑗)
2
}
1

2⁄
 Where, 𝑗 = 1,2,… ,5.  

For machine 1, 𝜎1 = {Ā1 − (Ā1)
2}

1
2⁄ = 0.49487; for machine 2, 𝜎2 = {Ā2 −

(Ā2)
2}

1
2⁄ = 0.45175 and so on. 

Now, compute 𝑏𝑖𝑗 = (𝑎𝑖𝑗 − Ā𝑗) 𝜎𝑗⁄ Where,𝑖 = 1,2,… ,7; 𝑗 = 1,2,… ,5.  

For example,𝑏11 = (𝑎11 − Ā1) 𝜎1⁄  = (0 − 0.42857) 0.49487⁄ = −0.8660, 

𝑏21 = (𝑎21 − Ā1) 𝜎1⁄ = (1 − 0.42857) 0.49487⁄ = 1.1547, 

𝑏12 = (𝑎12 − Ā2) 𝜎2⁄ = (0 − 0.28571) 0.45175 = −0.6325⁄ . 

The standardized part-machine incidence matrix B,  

𝐵 =

[
 
 
 
 
𝑏11 𝑏12 𝑏13 ⋯ 𝑏1𝑚

𝑏21 𝑏22 𝑏23 ⋯ 𝑏2𝑚
⋯
⋯
𝑏𝑛1

⋯
⋯
𝑏𝑛2

⋯
⋯
𝑏𝑛3

⋱
⋱
⋯

⋯
⋯

𝑏𝑛𝑚]
 
 
 
 

=

[
 
 
 
 
 
 
−0.8660
   1.1547
−0.8660
   1.1547
−0.8660
−0.8660
   1.1547

−0.6325
−0.6325
   1.5811
−0.6325
   1.5811
−0.6325
−0.6325

   0.8660
   0.8660
−1.1547
   0.8660
−1.1547
−1.1547
   0.8660

   1.1547
−0.8660
   1.1547
−0.8660
−0.8660
   1.1547
−0.8660

−1.1547
−1.1547
   0.8660
   0.8660
   0.8660
   0.8660
−1.1547]
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Step 3: The Euclidean distance between two machines can be computed from Equation (3.7). 

For example, for machine 1 and machine 2, 

𝑑12 = 𝑑12 = √∑ (𝑏𝑖1 − 𝑏𝑖2)
2𝑛

𝑖=1 =[{(−0.8660) − (−0.6325)}2 + {1.1547 −

(−0.6325)}2 + {(−0.8660) − 1.5811}2 + {1.1547 − (−0.6325)}2 +

{(−0.8660) − 1.5811}2 + {(−0.8660) − (−0.6325)}2 + {1.1547 −

(−0.6325)}2]
1

2⁄ =4.6549 

For machine 1 and machine 3, 

𝑑13 = √∑ (𝑏𝑖1 − 𝑏𝑖3)
2𝑛

𝑖=1 =[{(−0.8660) − 0.8660}2 + {1.1547 − 0.8660}2 +

{(−0.8660) − (−1.1547)}2 + {1.1547 − 0.8660}2 + {(−0.8660) −

(−1.1547)}2 + {(−0.8660) − (−1.1547)}2 + {1.1547 −

0.8660}2]
1

2⁄ =1.8708 

Therefore, the Euclidean distance matrix for all the machines is 

𝐷 =

[
 
 
 
 
𝑑11 𝑑12 𝑑13 ⋯ 𝑑1𝑚

𝑑21 𝑑22 𝑑23 ⋯ 𝑑2𝑚
⋯
⋯
𝑑𝑛1

⋯
⋯
𝑑𝑛2

⋯
⋯
𝑑𝑛3

⋱
⋱
⋯

⋯
⋯

𝑑𝑛𝑚]
 
 
 
 

=

[
 
 
 
 

0
4.6549
1.8708
4.9497
4.4534

4.6549
0

4.9218
3.5668
2.5163

1.8708
4.9218

0
4.4534
4.9497

4.9497
3.5668
4.4534

0
3.4156

4.4534
2.5163
4.9497
3.4156

0 ]
 
 
 
 

 

          

Table 3.2. The Euclidean distance matrix 𝐷 

 
 M1 M2 M3 M4 M5 

M1 0 
    

M2 4.6549 0 
   

M3 1.8708 4.9218 0 
  

M4 4.9497 3.5668 4.4534 0 
 

M5 4.4534 2.5163 4.9497 3.4156 0 

Table 3.2 shows the Euclidean distance matrix D before clustering the machines. 

Step 4: Cluster two machines, which have minimum Euclidean distance in distance matrix 

and considered them as a single entity for further cluster. Here the Euclidean distance of M1 

and M3 is minimum (1.8708). Therefore, merge M1 and M3 and consider them as a single 

entity. Consider the minimum value of Euclidean distances for other machines from M1-M3. 

Table 3.2.1 shows the Euclidean distance matrix after merge M1 and M3. 
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Table 3.2.1. The Euclidean distance matrix after merge M1 and M3 

Cell M1-M3 M2 M4 M5 

M1-M3 0    

M2 4.6549 0   

M4 4.4534 3.5668 0  

M5 4.4534 2.5163 3.4156 0 

In this stage, the Euclidean distance of M2 and M5 is minimum (2.5163). So, merge M2 

and M5 and consider them as another single entity. Table 3.2.2 shows the Euclidean distance 

matrix after clustering M1, M2, M3 and M5. 

Table 3.2.2. The Euclidean distance matrix after clustering M1, M2, M3 and M5 

Cell M1-M3 M2-M5 M4 

M1-M3 0   

M2-M5 4.4534 0  

M4 4.4534 3.4156 0 

The Euclidean distance of M2-M5 and M4 is minimum (3.4156). So, merge M2-M5 and 

M4 and consider them as another single entity. Table 3.3 shows the Euclidean distance matrix 

after clustering all machines. 

Table 3.3 The Euclidean distance matrix after clustering all machines  

Cell M1-M3 M2-M4-M5 

M1-M3 0 
 

M2-M4-M5 4.4534 0 

At the end of Step 4, machine cells are as follows. 

 (1) M1-M3= machine cell C1and (2) M2-M4-M5= machine cell C2 

Following in the same manner, find the part families. Here the part families are as: 

 (1) P1-P2-P4-P7 = part family F1 and (2) P3-P5-P6 = part family F2 

The final solution is shown in Table 3.4. 

Table 3.4 Final solution  

Parts 
Machine cell 1 Machine cell 2 

M1 M3 M2 M4 M5 

P1  1  1  

P2 1 1    

P4 1 1   1 

P7 1 1    

P3   1 1 1 

P5   1  1 

P6    1 1 
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 3.7 Comparison of the proposed approach with the best-known algorithms 

A set of 20 benchmark problems (described in Chapter 2) taken from the literature are solved 

to evaluate the performance of the proposed method. The proposed method is coded in 

MATLAB R2010a and run on a PC with Intel Core i5 CPU with 8 GB RAM at 3.30 GHz.  

To compare the proposed approach with the following existing methods, we consider the 

grouping efficacy values: 

 

 ZODIAC (Chandrasekharan and Rajagopalan,1987) 

 GRAFICS (Srinivasan and Narendran, 1991) 

 PCA: Principal component analysis (Hachicha et al., 2008) 

 LA (Wang, 2003) 

 QM (Kitaoka et al., 1999) 

 ROC (King, 1980) 

 MD-based (Gupta et al., 2014) 

 KHM (Unler and Gungor, 2009) 

SCM (Wu et al., 2009) Table 3.5 shows the grouping efficacies of above mentioned 

methods and the proposed method for all benchmark problems. The results of Table 3.5 

reveal that the performance of the proposed method with respect to the grouping efficacies as 

compared with the existing algorithms is either improved or comparable for most of the 

problems except one problem instance. 

In addition, in Table 3.5, the third last row shows the percentage of best solutions on the 

basis of all 20 problems and second last row shows the percentage of best solutions on the 

basis of solutions available in the literature.  For example, the LA (Wang, 2003) algorithm 

has generated six best solutions out of eight problems. So, for LA, the percentage of best 

solution 1 = (6/20) × 100 % = 30 % and the percentage of best solution 2= (6/8) ×

100  % = 75 %. The last row of Table 3.5 shows the summation of the percentage gaps 

between the generated solution and the best solution for each problem and it is calculated as: 

Percentage of total Gap (%) = ∑ (
𝐵𝑒𝑠𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑘−𝑂𝑏𝑡𝑎𝑖𝑛𝑒𝑑 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑘

𝐵𝑒𝑠𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑘
) × 100𝑁

𝑘=1 %     (3.9) 

Where, 𝑁= total number of problems solved and 𝑘=index of problems. 
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Table 3.5 Percentage of Grouping Efficacy of the proposed model and different methods 

Prob  No. 

Methods Best-

known 

results 
ZODIAC GRAFICS PCA LA QM ROC 

MD-

based 
KHM SCM 

Proposed 

method 

1 76.92 82.35 - 82.35 - 82.35 - - - 82.35 82.35 

2 73.68 73.68 73.68 73.68 73.68 73.68 73.68 73.68 73.68 73.68 73.68 

3 56.52 60.87 - - - 62.50 68.00 62.50 62.50 68.00 68.00 

4 77.36 - - - - 79.59 79.59 79.59 79.59 79.59 79.59 

5 76.92 - - - - 76.92 76.92 76.92 76.92 76.92 76.92 

6 70.37 - 70.37 - 67.86 53.33 70.37 70.37 70.37 70.37 70.37 

7 39.13 53.12 - 48.78 - 48.78 53.13 53.13 53.13 58.62 58.62 

8 68.30 68.30 - - - 68.29 68.30 - 68.29 69.44 69.44 

9 85.24 85.24 85.24 85.25 - 79.03 84.20 - 85.25 85.25 85.25 

10 92.00 92.00 - - 78.18 71.93 92.00 - 92.00 92.00 92.00 

11 64.36 64.36 - - - 69.86 69.62 65.75 69.86 72.85 72.85 

12 65.55 65.55 66.29 67.04 - 67.04 67.04 69.33 69.33 71.62 71.62 

13 32.09 45.54 - - - - 50.00 50.48 - 51.64 51.64 

14 67.83 67.83 - - - 67.83 66.90 67.83 67.83 68.34 68.34 

15 53.76 54.39 53.55   60.89 54.39 54.80 54.60 54.86 60.89 

16 41.84 48.91 - - - 54.46 50.46 52.83 54.46 56.60 56.60 

21 100.00 100.00 - 100.00 - 100.00 100.00 100.00 100.00 100.00 100.00 

22 85.10 85.10 - 85.11 - 85.11 85.11 - 85.11 85.11 85.11 

23 37.85 73.51 - 73.51 - 73.51 73.51 - 73.51 73.51 73.51 

24 20.42 43.27 - - - 51.97 - - 51.97 52.74 52.74 

Percentage 

of best 

solution 1 

30.00 30.00 10.00 30.00 5.00 40.00 45.00 25.00 45.00 95.00 100.00 

Percentage 

of best 

solution 2 

30.00 35.29 40.00 75.00 33.33 42.11 50.00 38.46 50.00 95.00 100.00 

Percentage 

of total 

Gap (%) 

267.50 96.43 19.50 23.18 18.58 96.34 49.87 50.05 42.72 9.90 0.00 

 

As seen from Table 3.5, the percentage of best solution 1, and the percentage of best 

solution 2 of the proposed method is maximum (95.00 % each) as well as percentage of total 

gap is minimum (9.90 %) among all the competing methods. The percentage of best solution 

1 for MD-based (Gupta et al., 2014) and SCM (Wu et al., 2009) is same (45.00 % each) and is 

the second best. Similarly, the percentage of best solution 2 for LA (Wang, 2003) is the 

second best (75.00 %). 
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 3.8 Conclusion 

The objective of this research is to generate optimal machine cells and part families by 

correlations between the machines or the parts in cellular manufacturing systems. The 

correlations between the machines or the parts are generated considering their similarities in 

processes to represent them in Euclidean distance matrix. Then, we used Euclidean distance 

matrix to cluster machines for machine cells and parts for part families. Computational results 

of the proposed method and comparison with the well-known existing methods for 20 

benchmark problems show that the proposed method outperforms the existing algorithms.  

 





 

 

Chapter 4 

 

CELL FORMATION USING GA TO MAXIMIZE GROUPING 

EFFICACY 

 

4.1 Introduction 

The cell formation problems can be classified into three categories: (a) either grouping 

machine cells (Rajamani et al., 1990) or part families (Kusiak, 1987), (b) formation of part 

families and machine cells separately (Choobineh, 1988) and (c) formation of machine cells 

and part families simultaneously (Adilet al., 1993). 

Recently, some noteworthy metaheuristics such as hybrid grouping GA (HGGA) (Jameset 

al., 2007), randomized greedy algorithm from scratch by partially (GRASP) (Diaz et al., 

2012), hybrid GA (HGA) (Tariq et al., 2009), hybrid grouping based PSO (HGBPSO) (Ali et 

al., 2014) have been are being applied in the CFP problems. 

In this chapter, we present a genetic algorithm heuristic. We conduct computational 

experiments with a set of twenty benchmark problem sets. Computational results show that 

the proposed heuristic has shown to produce solutions in terms of the grouping efficacy that 

are either better than or competitive with the existing algorithms. 

4.2 Genetic algorithm  

GA developed by Holland and Goldberg is a stochastic based global search optimization 

algorithm guided by the natural evolution and genetics principles. It initializes with a set of 

solutions, known as initial population and then executes sequentially selection, reproduction, 

crossover and mutation operations for a fixed number of iterations as stopping criterion. 

Members of the population are selected by an evaluation function, called fitness function 

according to its objective function or best neighborhood solution. For the next iteration, a new 

 
Fig. 4.1 Randomly generated chromosome for 5 machines and 7 parts problem 

 

https://www.sciencedirect.com/science/article/abs/pii/037722179390019J#!
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=8533468700&zone=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=8533468700&zone=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=8533468700&zone=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=8533468700&zone=
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set population is generated from selected best neighborhood solutions by crossover and 

mutation. In this manner, the procedure is executed repeatedly for a fixed number of 

iterations. The steps of GA are as follows:  

Step 1      Generate the initial random populations.  

Step 2 Evaluate the fitness of each individual population. 

Step 3 Select or sort populations. 

Step 4 Generate new set of population from the best individual by the crossover 

operator.  

Step 5 Apply the mutation operator. 

Step 6 Repeat Steps 2-5 for the maximum number of iterations as the stopping 

criterion.  

Step 7 Obtain the best solution. 

4.2.1 Initial Population  

GA initializes the population with the generation of a set of initial random solutions. In this 

study, each individual of the initial population consists of two parts, called strings. In the first 

string, we use integers for parts in the same order as is given by the indexing of jobs and in 

the second part, we use integers for machines in the same order as is given by the indexing of 

machines. Integers vary from one to the maximum number of possible groups (i.e., number of 

machines). For n number of parts, the length of the first string is n and for m number of 

machines, the length of the second string is 𝑚 and total length of a chromosome is n + m. 

A problem having 7 parts and 5 machines is shown in Table 4.1. Here, we initially 

randomly generate a population in which each individual in the population has two strings. As 

the part size is seven and machine size is five, the length of first string is 7 and that of the 

second string is 5. We consider a candidate solution or a randomly generated chromosome for 

two groups as shown in Fig. 4.1. 

4.2.2 Evaluation of fitness of each individual population 

Computation of fitness probability of each chromosome in the population is a criterion of the 

selection process to assess the high probability of selecting the candidate solution to the next 

iteration. The larger fitness is having the higher probability of survival in the next generation. 

The objective function of each individual population is measured by the grouping efficacy 

which is to be maximized. 
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4.2.3  Selection or sorting population  

Selection is the procedure through which a new population is selected so that an individual in 

the population is accepted due to its higher fitness value (called parent chromosome) and an 

individual in the population is ignored for its smaller fitness value. The commonly used 

techniques are roulette-wheel-selection and tournament 50% truncation. In this work, we use 

here roulette-wheel-selection procedure. 

4.2.4 Generation of new set of population from best individual by crossover 

Crossover is analogous to biological reproduction. It is a process of taking more than one 

parent chromosome and producing offspring from them. The most useful crossover operators 

used in the literature are uniform, one-point, two-point, and single point. In this GA approach, 

we use the single point crossover. 

For the above-mentioned problem, crossover point of two selected chromosomes, say, 

parent 1 and parent 2 are taken at a randomly selected location and they generate another two 

new chromosomes say, offspring 1 and offspring 2. Fig. 4.2 shows two parent chromosomes 

and their crossover points and Fig. 4.3 shows two offspring (offspring 1 and offspring 2) 

generated after the crossover of parent 1 and parent 2. 

 

Fig. 4.2 Two parent chromosomes and their crossover points 

 

 

Fig. 4.3 Two offspring, generated after the crossover of parent 1 and parent 2  

4.2.5  Mutation 

Mutation operator in the GA is required to introduce diversity in the population from one 

generation to another in order to get rid of being stuck at local optimum. It is also analogous 

to biological mutation. It swaps randomly the gene values (or bit value) in the individuals 

with a probability equal to the mutation probability. It does not guarantee that mutation 

provides a positive direction towards the optimal solution.  
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For mutation, consider a chromosome as shown in Fig. 4.4 Fig. 4.5 shows the new 

chromosome after mutation. Here, mutation point is 7-th gene. 

 

Fig. 4.4 A chromosome with mutation point (before mutation) 

 

 

Fig. 4.5 Changed form of the previous chromosome (after mutation) 

4.2.6 Adopted parameters 

The proposed algorithm starts with generation of initial population in which each population 

has two strings (first string for parts and second string for machines). After the generation of 

initial population, the GA procedure executes in the loop. In the loop, the algorithm first 

selects the feasible solutions from initial population based on selection probability. The 

crossover and mutation operators are then executed sequentially within the loop. Offspring 

are generated considering the single point crossover operator from the selected population. 

For mutation, we use single point mutation operator. 

The proposed GA seeks better solutions having maximum grouping efficacy ignoring 

inferior solutions within the neighborhood of the search space and updates better solution in 

each iteration. In order to obtain the best-so-far feasible solution, the above procedure is 

repeated for a predetermined maximum number of iterations. The number of iterations 

depends upon the size of problems. The selected parameters of the proposed GA are as 

follows. 

 Crossover operator: single-point crossover 

 Chromosome length: sum of part size and machine size 

 Maximum cell numbers: machine size 

 Selection: Rank-based roulette wheel selection 

 Population size: 20 

 Probability of mutation: 0.01 to 0.015 

 Number of generations: 2 ×  𝑛 ×  𝑚 

 Number of selected chromosomes: 2 

 Number of iterations: 10 

 

 

2 2 2 1 2 2 1 2 1 1 1 2 
 

Mutation point 
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4.3 Computational results  

A set of 20 standard benchmark problems are solved to evaluate the proposed GA with the 

existing algorithms. The source of benchmark problems and their sizes are given in Table 2.5. 

The proposed GA was coded in MATLAB R2010a programming and executed on a processor 

with Intel Core i5 CPU with 8 GB RAM at 3.30 GHz.  

To compare the comparative performance of the proposed GA with respect to GC, the 

following algorithms are considered. 

 HGGA- hybrid grouping genetic algorithm (Jameset al., 2007) 

 SACF- simulated annealing to cell formation (Wu et al., 2008) 

 GLCA- grouping league championship algorithm (Noktehdan et al., 2016) 

 HGBPSO- hybrid grouping based PSO (Ali et al., 2014) 

 CARI- correlation analysis and relevance index (Gupta et al., 2014) 

 GRASP- randomized greedy algorithm from scratch by partially (Diaz et al., 2012) 

 

Table 4.1 Comparisons of proposed algorithm with different methods for grouping efficacy 

Prob. 

No. 
Size HGGA GRASP SACF GLCA HGBPSO CARI 

Proposed  

GA 

Avg. 

CPU 

time 

(sec) 
Min. Max. 

2 5×7 - 73.68 - - - 73.68 52.63 75.00 0.0469 

4 5×18 79.59 79.59 79.59 80.85 79.59 79.59 76.92 79.59 0.1174 

5 6×8 76.92 76.92 76.92 76.92 76.92 76.92 76.92 76.92 0.0662 

11 14×23 72.06 69.86 71.21 73.53 72.06 69.86 68.75 73.13 0.8048 

12 14×24 71.83 69.33 - 71.83 71.83 69.33 52.90 71.83 0.8442 

14 16×30 68.99 67.83 - - 68.99 67.83 68.70 68.99 1.3790 

15 16×43 57.53 56.52 52.44 57.53 57.53 54.86 48.10 57.53 2.1594 

16 18×24 57.73 54.46 - 57.73 57.73 54.46 56.00 57.89 1.2034 

17 20×20 43.18 42.96 41.04 43.45 43.26 41.48 38.10 43.36 1.2664 

18 20×23 50.81 49.65 50.81 50.81 50.81 49.65 49.15 52.07 0.9286 

19 20×35 77.91 76.54 78.40 77.91 77.91 76.14 77.50 77.91 2.4342 

20 20×35 57.98 58.15 56.04 57.98 57.98 56.98 56.47 58.60 2.4523 

21 24×40 48.95 47.37 47.13 - 48.95 46.34 45.71 48.97 4.0181 

22 24×40 47.26 44.87 44.64 - 47.26 44.10 41.73 48.91 4.0128 

25 28 × 46 46.91 46.06 - - - 44.35 44.98 47.35 6.0339 

26 30 × 41 63.31 59.52 62.42 63.31 63.31 58.11 58.87 63.27 6.0862 

27 30 × 50 59.77 60.00 - 59.77 59.77 58.47 57.67 60.12 7.7374 

28 36 × 90 46.35 45.93 - - - 44.18 44.76 46.87 22.0573 

29 37 × 53 60.57 59.85 - 60.64 60.64 56.42 56.09 60.64 11.5920 

30 40×100 84.03 84.03 - - - 84.03 82.03 84.03 55.7633 

 

https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=8533468700&zone=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=8533468700&zone=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=8533468700&zone=
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Table 4.1shows the grouping efficacies of above-mentioned methods and the proposed 

GA for the all problems. It is seen from the Table 4.2 that comparing with the existing 

algorithms, the proposed GA produces improved or same GC for 16 problems, whereas, it is 

inferior in solution quality for only 4 problem sets.  

Since the objective of the study is to minimize exceptional elements as well as void 

elements, it is often seen that either machine cells are formed without clustering all the 

machines or part families are formed without clustering all the parts, resulting in infeasible 

solutions, which is not acceptable. In this study, we generate feasible solutions of all the 20 

problem sets using the proposed GA and the corresponding solutions in terms of GC are 

shown in Table 4.1. 

Table 4.2 Improved grouping efficacies produced by the proposed method 
 

Problem 

No. 
Size HGGA 

GRASP 

[26] 

SAC

F 
GLCA  HGBPSO  CARI  

Proposed 

method 

(Max.) 

Best 

solution 

2 5×7 - 73.68 - - - 73.68 75.00 75.00 

16 18×24 57.73 54.46 - 57.73 57.73 54.46 57.89 57.89 

18 20×23 50.81 49.65 50.81 50.81 50.81 49.65 52.07 52.07 

20 20×35 57.98 58.15 56.04 57.98 57.98 56.98 58.60 58.60 

21 24×40 48.95 47.37 47.13 - 48.95 46.34 48.97 48.97 

22 24×40 47.26 44.87 44.64 - 47.26 44.10 48.91 48.91 

25 
28 × 

46 
46.91 46.06 - - - 44.35 47.35 47.35 

27 
30 × 

50 
59.77 60.00 - 59.77 59.77 58.47 60.12 60.12 

28 
36 × 

90 
46.35 45.93 - - - 44.18 46.87 46.87 

The improved solutions of the problems generated by the proposed genetic algorithm are 

given in Table 4.2 and the details of some of the corresponding block diagonal matrices of the 

improved solutions are given in Appendix.  

4.4 Conclusions 

The objective of the study is to minimize exceptional elements as well as void elements 

simultaneously to maximize the grouping efficacy. In this study, a genetic algorithm based 

heuristic is presented for the cell formation problems. Computational results and comparisons 

with well-known methods for 20 benchmark problems show that the proposed heuristic has 

shown to produce solutions in terms of grouping efficacy that are either better than or 

competitive with the existing algorithms. 

 



Chapter 5  

 

 
A HEURISTIC FOR THE CELL FORMATION WITH 

ALTERNATIVE ROUTINGS 

 

 

5.1  Introduction 

The application of GT in today’s automated manufacturing systems plays an important role, 

especially, in batch production systems, where the classification of part families and machine 

cells have simplified the layout design and products flow processes. Application of GT in 

production systems caters many advantages, e.g., reduction of material handling cost, time, 

labor requirement, paper works, in-process inventories, manufacturing lead time, frequency of 

setups. It, also, enhances quality of product, productivity, customers’ satisfaction and efficient 

management (Spiliopoulos and Sofianopoulou, 2007). 

GT classifies part families and allocates them to machine groups or machine cells for 

minimum number of intercellular movements of parts. Part families are selected based on 

their design, manufacturing processes, sequences, parts volume, and process routings. For 

machine cells, dissimilar machines in functions are usually grouped into a machine cell so 

that it can process operations with minimum intercellular movement of parts or family. 

However, similar types of machines may be required for different cells to cater similar 

processing operations of different part families. This leads to increase in number of similar 

machines, thereby reducing the process flexibility and utilization of machines (Suer et al., 

2010). 

In the cell formation literature, most of the cell formations techniques have been applied 

to solve the CF problem with the single process route, equal production volume and without 

any sequence of processes. However, in batch production systems, a part can be processed in 

multiple process routings with unequal production volume of parts and parts process on a 

particular sequence. Consideration of minimum intercellular movement of parts or routings 

may reduce capital investment in machines and increase machines utilizations (Hwang and 

Ree, 1996).  
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In this chapter, a heuristic approach based on Euclidean distance matrix is proposed for the 

CF problem in multiple routes, process sequential and parts volume (including the batch size 

and number of batches). Computational experiments were performed with five benchmark 

problem sets taken from the literature and the results demonstrate that the performances of the 

proposed heuristic in terms of intercellular movements of parts are either better than or 

competitive with the well-known existing algorithms. 

5.2 Proposed clustering procedure 

In the proposed algorithm, every part routes is considered as an individual part. 

Step 1. Convert the CF problem into the part-machine incidence binary matrix. 

For n parts and m machines problem, the machine-part binary incidence matrix is 

 

𝐴 =

 
 
 
 
 
𝑎11 𝑎12 𝑎13 ⋯ 𝑎1𝑚

𝑎21 𝑎22 𝑎23 ⋯ 𝑎2𝑚
⋯
⋯
𝑎𝑛1

⋯
⋯
𝑎𝑛2

⋯
⋯
𝑎𝑛3

⋱
⋱
⋯

⋯
⋯

𝑎𝑛𝑚  
 
 
 
 

    (5.1) 

 

Where, every row represents a particular part with its route and every column represents a 

particular machine.  

Step 2. Convert the binary matrix into the part-machine volume incidence matrix. 

To convert the binary incidence matrix into the part-machine volume incidence matrix, 

multiply each element of binary incidence matrix by their respective part volume (matrix 

product). For n parts with n routes, the part volume matrix (it is an n × 1 matrix) V is 

𝑉 =  

𝑣1

𝑣2

⋮
𝑣𝑛

       (5.2) 

The part-machine volume incidence matrix B is 

𝐵 = 𝐴𝑉 =

 
 
 
 
 
𝑎11 𝑎12 𝑎13 ⋯ 𝑎1𝑚

𝑎21 𝑎22 𝑎23 ⋯ 𝑎2𝑚
⋯
⋯
𝑎𝑛1

⋯
⋯
𝑎𝑛2

⋯
⋯
𝑎𝑛3

⋱
⋱
⋯

⋯
⋯

𝑎𝑛𝑚  
 
 
 
 

 

𝑣1

𝑣2

⋮
𝑣𝑛

 =

 
 
 
 
 
𝑏11 𝑏12 𝑏13 ⋯ 𝑏1𝑚

𝑏21 𝑏22 𝑏23 ⋯ 𝑏2𝑚
⋯
⋯
𝑏𝑛1

⋯
⋯
𝑏𝑛2

⋯
⋯
𝑏𝑛3

⋱
⋱
⋯

⋯
⋯

𝑏𝑛𝑚  
 
 
 
 

 (5.3) 
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Step 1 :  Standardize the part-machine volume incidence matrix. 

Step 2 :  Compute the Euclidean distance matrix. 

Step 3 :  Cluster the machines considering the required number of cells. 

Step 4 :  Cluster the exceptional machines. 

Step 5 :  Cluster the parts for part families up to the number of cells. 

5.3 Implementation of the proposed approach  

The proposed method is applied in five part-machine cell formation problems considering 

multiple process routes, process sequence and production volume. We compared the proposed 

method in terms of intercellular movements with the best-known existing methods. 

5.3.1 Problem 1 

A problem of five parts and five machines given in Won and Lee (2001) is shown in Table 

5.1. This is the case of single route, part volume and sequential cell formation problem. 

Table 5.1 Five parts and five machines -Problem 1 

Parts Part volume Machines 

M1 M2 M3 M4 M5 

P1 20  1,3  2,4 5 

P2 10 1  2   

P3 50 1,3  2  4 

P4 40  2  1,3  

P5 30 2,4,6,8 1,5   3,7 

Step 1. Convert the part-machine incidence into binary matrix. 

The ‘5 × 5’ binary incidence matrix is  

𝐴 =

 
 
 
 
 
0 1 0 1 1
1 0 1 0 0
1
0
1

0
1
1

1
0
0

0
1
0

1
0
1 
 
 
 
 

 

Step 2. Convert the binary matrix into part-machine volume incidence matrix. 

Here, the part-machine volume matrix is given as: 

𝑉 =

 
 
 
 
 
20
10
50
40
30 
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The corresponding part-machine volume incidence matrix is given below. 

𝐵 = 𝐴𝑉 =

 
 
 
 
 
0 1 0 1 1
1 0 1 0 0
1
0
1

0
1
1

1
0
0

0
1
0

1
0
1 
 
 
 
 

 
 
 
 
 
20
10
50
40
30 

 
 
 
 

=

 
 
 
 
 

0 20
10
50
0

30

0
0

40
30

0
10
50
0
0

20 20
0
0

40
0

0
50
0

30 
 
 
 
 

 

Step 3. Standardize the part-machine volume incidence matrix. 

The standardized machine-part volume incidence matrix C is 

𝐶 =

 
 
 
 
 
𝑐11 𝑐12 𝑐13 ⋯ 𝑐1𝑚

𝑐21 𝑐22 𝑐23 ⋯ 𝑐2𝑚
⋯
⋯
𝑐𝑝1

⋯
⋯
𝑐𝑝2

⋯
⋯
𝑐𝑝3

⋱
⋱
⋯

⋯
⋯
𝑐𝑝𝑚  

 
 
 
 

=

 
 
 
 
 
−1.0290
−0.4573

−
1.8293
1.0290
0.6860

       0.1143
    −1.0290
    −1.0290
       1.2577
       0.6860

  −

1.0445
0.1741
3.3075
1.0445
1.0445

   −0.6963
      1.0445
      1.0445
  −2.4371
     1.0445

0
     1.0260
  −1.5390
     1.0260
   −0.5130 

 
 
 
 

 

Step 4. Compute the Euclidean distance matrix. 

The Euclidean distance between two machines 1 and 2 is 𝑑12 = 3.8772. For machine 1 

and machine 3, 𝑑13 =  2.2935 and similarly, for other pairs of machines. 

The Euclidean matrix D is 

𝐷 =

 
 
 
 
 
𝑑11 𝑑12 𝑑13 ⋯ 𝑑1𝑚

𝑑21 𝑑22 𝑑23 ⋯ 𝑑2𝑚
⋯
⋯

𝑑𝑚1

⋯
⋯

𝑑𝑚2

⋯
⋯

𝑑𝑚3

⋱
⋱
⋯

⋯
⋯

𝑑𝑚𝑚  
 
 
 
 

=

 
 
 
 
 

0
3.8772
2.2935
5.1564
1.2233

     3.8772
0

     5.4012
     2.1736
     3.4427

    2.2935
    5.4012

0
   5.9033
   2.7148

    5.1564
    2.1736
    5.9033

0
   4.6452

      1.2233
     3.4427
     2.7148
     4.6452

0  
 
 
 
 

 

Table 5.2 Tabular form of Euclidian distance matrix D for Problem 1 

 M1 M2 M3 M4 M5 

M1 0     

M2 3.8772 0    

M3 2.2935 5.4012 0   

M4 5.1564 2.1736 5.9033 0  

M5 1.2233 3.4427 2.7148 4.6452 0 

 

Step 5. Cluster the machines considering the required number of cells, keeping in mind the 

maximum permissible number of machines in a cell. 

Here, the Euclidean distance of M1 and M5 is minimum (1.2233). Therefore, merge M1 

and M5 and consider them as a single entity. Consider the minimum value of Euclidean 

distances for other machines from M1-M5. Table 5.2.1 shows the Euclidean distance matrix 

after merging M1 and M5. 
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Table 5.2.1 The Euclidean distance matrix after merge M1 and M5 

Cell M1-M5 M2 M3 M4 

M1-M5 0    

M2 3.4427 0   

M3 2.2935 5.4012 0  

M4 4.6452 2.1736 5.9033 0 

In this stage, the Euclidean distance of M2 and M4 is minimum (2.1736). So, merge M2 

and M4 and consider them as another single entity. Table 5.2.2 shows the Euclidean distance 

matrix after clustering M1, M2, M4 and M5. 

Table 5.2.2 The Euclidean distance matrix after clustering M1, M2, M4 and M5 

Cell M1-M5 M2-M4 M3 

M1-M5 0   

M2-M4 3.4427 0  

M3 2.2935 5.4012 0 

The Euclidean distance of M1-M5 and M3 is minimum (2.2935). So, merge M1-M5 and 

M3 and consider them as another single entity. Table 5.2.3 shows the Euclidean distance 

matrix after clustering all machines. 

Table 5.2.3 The Euclidean distance matrix after clustering all machines 

Cell M1-M3-M5 M2-M4 

M1-M3-M5 0  

M2-M4 3.4427 0 

At the end of Step 5, the generated two machine cells are as  

 (1) M1-M3-M5= machine cell C1 and  

 (2) M2-M4= machine cell C2 

Step 6. Cluster the parts for part families up to the number of cells.   

Following in the same manner, find the part families. Here, the part families are as: 

 (1) P2-P3-P5 = part family F1 and  

 (2) P1-P4 = part family F2. 

The final cell formation and individual intercellular movement of parts is presented in 

Table 5.3. 

Table 5.3 Final solution of Problem 1 

Parts Part volume 
Machine cell 1 Machine cell 2 Intercellular 

movements of parts M1 M3 M5 M2 M4 

P2 10 1 2    - 

P3 50 1,3 2 4   - 

P5 30 2,4,6,8  3,7 1,5  3 

P1 20   5 1,3 2,4 1 

P4 40    2 1,3 - 
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From the results of Table 5.3, it is seen that intercellular movements for parts P1 is one 

and for the part, P5 is 3. Therefore, total intercellular movements with the volume =3 × 30 +

1 × 20 = 110. This is an optimum solution and it is same with those reported by Won and 

Lee (2001), and Kumar and Sharma (2014). 

5.3.2 Problem 2 

A problem of 8 parts and 6 machines taken from Yin and Yasuda (2002) is shown in Table 

5.4. This is the case of multiple routes, part volume and sequential cell formation problem. 

Table 5.4 Eight parts and six machines -Problem 2 

Parts Part 

volume 

Part 

route 

Machines 

M1 M2 M3 M4 M5 M6 

P1 50 1 1 3  2   

2  1 2  3 4 

3  2 1  3 4 

P2 30 1   1  3 2 

P3 20 1   1  2 3 

P4 30 1 1   2   

2 2 1  3   

P5 20 1  3 2  4 1 

2   1   2 

P6 10 1 1 2 3    

2 1 2    3 

P7 15 1  3   1 2 

2   3  1 2 

3  1    2 

P8 40 1  2  1   

The tabular form of Euclidian distance matrix D for Problem 2 is shown in Table 5.4.1. 

Table 5.4.1 Euclidian distance matrix D for Problem 2  

 M1 M2 M3 M4 M5 M6 

M1 0      

M2 7.2087 0     

M3 10.2368 5.2689 0    

M4 4.6978 6.3821 10.2178 0   

M5 10.5450 5.2967 2.0506 10.4418 0  

M6 9.8795 4.7622 1.8253 9.8485 2.1115 0 

At the end of Step 5, formed two machine cells are as (considering cell utilization), 

 (1) M1-M2-M4= machine cell C1 and  

 (2) M3- M5-M6= machine cell C2  

Following in the same manner, find the part families. Here the part families are as: 

 (1) P1(1)-P4(1)-P4(2)-P6(1)-P6(2)-P7(3)-P8(1) and  

 (2) P1(2)-P1(3)-P2(1)-P3(1)-P5(1)-P5(2)-P7(1)-P7(2) 
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Now, select the best routes of parts that which have minimum intercellular movements 

between cells or maximum intracellular movements within a cell. For example, for part P1 

routes 1, 2 and 3 have zero, one and two intercellular movements respectively, so we select 

the route 1. Following the same procedure for both part families, we obtain the part families: 

 

(1) P1(1)-P4(1)-P6(1)-P8(1)= part family F1 and  

(2) P2(1)-P3(1)-P5(2)-P7(2)= part family F2. 

The final solution of the cell formation along with the individual intercellular movement 

of parts is presented in Table 5.5. 

Table 5.5 Final solution of Problem 2 

Parts Part 

volume 

Machine cell 1 Machine cell 2 Intercellular 

movements of parts M1 M2 M4 M3 M5 M6 

P1(1) 50 1 3 2    - 

P4(1) 30 1  2    - 

P6(1) 10 1 2  3   1 

P8(1) 40  2 1    - 

P2(1) 30    1 3 2 - 

P3(1) 20    1 2 3 - 

P5(2) 20    1  2 - 

P7(2) 15    3 1 2 - 

As seen from Table 5.5, the intercellular movement for part P6 is one. Therefore, total 

intercellular movements considering the part volume = 1 × 10 = 10. This is an optimum 

solution and it is same with those given by Yin and Yasuda (2002), and Alhourani (2013), 

whereas, Gupta (1993) obtained a total number of 50 intercellular movements of parts in the 

final solution. 

5.3.3 Problem 3 

A problem of 7 parts and 5 machines given in Gupta (1993) is shown in Table 5.6. This is the 

case of multiple routes, part volume and sequential cell formation problem. 
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Table 5.6 Seven parts and five machines-Problem 3 

Parts Part 

volume 

Part 

route 

Machines 

M1 M2 M3 M4 M5 

P1 50 1 2   1  

2 1  2 3  

P2 5 1 1   2  

P3 20 1  2   1 

2  1 3  2 

P4 30 1 2 1   3 

2  1 3  2 

P5 40 1 1   2  

2 1  2 3  

P6 10 1  1   2 

P7 35 1  2   1 

The tabular form of Euclidian distance matrix D for Problem 3 is shown in Table 5.6.1. 

Table 5.6.1 Euclidian distance matrix D for Problem 3  

 M1 M2 M3 M4 M5 

M1 0     

M2 6.4926 0    

M3 5.1085 6.6203 0   

M4 1.7657 7.4404 5.0936 0  

M5 6.4926 0 6.6203 7.4404 0 

At the end of Step 5, the generated two machine cells (considering cell utilization) are as 

 (1) M1-M4= machine cell C1 and  

 (2) M2-M3-M5= machine cell C2  

Following in the same manner, find the part families. Here, the part families are as: 

 (1) P1(1)-P1(2)-P2(1)-P5(1)-P5(2) and  

 (2) P3(1)-P3(2)-P4(1)-P4(2)-P6(1)-P7(1). 

Selecting the best routes of the parts, which have minimum intercellular movements 

between cells or maximum intracellular movements within a cell for both part families, the 

part families will be obtained as given below. 

 

(1) P1(1)-P2(1)-P5(1)= part family F1 and  

(2) P3(1)-P4(2)-P6(1)-P7(1)= part family F2. 

The final solution of the cell formation with individual intercellular movement of parts is 

presented in Table 5.7. 
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Table 5.7 Final solution of Problem 3 

Parts Part 

volume 

Machine cell 1 Machine cell 2 Intercellular 

movements of parts M1 M4 M2 M3 M5 

P1(1) 50 2 1    - 

P2(1) 5 1 2    - 

P5(1) 40 1 2    - 

P3(1) 20   2  1 - 

P4(2) 30   1 3 2 - 

P6(1) 10   1  2 - 

P7(1) 35   2  1 - 

From Table 5.7, it is seen that there are no intercellular movements of parts. Therefore, 

total number of intercellular movements is zero. This is an optimum solution and it is same 

with Yin and Yasuda (2002). However, total 30 intercellular movements have been shown by 

Gupta (1993) and total 5 intercellular movements reported by Kumar and Sharma (2014). 

5.3.4 Problem 4 

A problem of 20 parts and 8 machines taken from Nair and Narendran (1998) is shown in 

Table 5.8. This is the case of single route, unit volume part, single batch and sequential cell 

formation problem. Here, maximum permissible number of machines in a cell is five. 

Table 5.8 Twenty parts and eight machines-Problem 4 

Part Machines 

M1 M2 M3 M4 M5 M6 M7 M8 

P1     2 1   

P2 1  2      

P3 2 1  5   3 4 

P4  1  2   3 4 

P5     2 1   

P6  1  2 5  3 4 

P7  4  2   3 1 

P8 1  2      

P9 1  3   2   

P10    2 3 1   

P11 3  2    1  

P12     1 3 2  

P13 1  2      

P14 1 2 3      

P15    1 2    

P16 1  2      

P17 3  1  2    

P18  2  1   4 3 

P19 1  2      

P20  2  1  3 4 5 

The tabular form of Euclidian distance matrix D for Problem 2 is shown in Table 5.8.1. 
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Table 5.8.1 Euclidian distance matrix D for Problem 3 

 M1 M2 M3 M4 M5 M6 M7 M8 

M1 0        

M2 7.2512 0       

M3 1.9541 7.6237 0      

M4 8.0309 3.5511 8.3392 0     

M5 7.8081 7.2627 7.6237 6.1877 0    

M6 7.5801 7.0757 7.4104 6.6003 4.7555 0   

M7 7.5053 3.5511 7.8317 4.0825 6.8445 6.6003 0  

M8 7.5801 2.0771 7.9804 2.8158 7.0757 6.9007 2.8158 0 

The clustering procedure is continued until the maximum permissible number of 

machines in a cell is not more than five and the generated two machine cells are  

 (1) M1-M3-M5-M6= machine cell C1 and  

(2) M2-M4-M7-M8= machine cell C2 

The part families are as: 

 (1) P1-P2-P5-P8-P9-P10-P11-P12-P13-P14-P15-P16-P17-P19= part family F1 and  

(2) P3-P4-P6-P7-P18-P20= part family F2. 

The final solution of the cell formation along with individual intercellular movement of 

parts is shown in Table 5.9. 

Table 5.9 Final solution of Problem 4 

Parts Machine cell 1 Machine cell 2 Intercellular 

movements of parts M1 M3 M5 M6 M2 M4 M7 M8 

P1   2 1     - 

P2 1 2       - 

P5   2 1     - 

P8 1 2       - 

P9 1 3  2     - 

P10   3 1  2   2 

P11 3 2     1  1 

P12   1 3   2  2 

P13 1 2       - 

P14 1 3   2    2 

P15   2   1   1 

P16 1 2       - 

P17 3 1 2      - 

P19 1 2       - 

P3 2    1 5 3 4 2 

P4     1 2 3 4 - 

P6   5  1 2 3 4 1 

P7     4 2 3 1 - 

P18     2 1 4 3 - 

P20    3 2 1 4 5 2 
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From Table 5.9, it is seen that there are 13 intercellular movements of parts. This is an 

optimum solution and it is same with the solution obtained by Alhourani and Seifoddini 

(2007). While, Nair and Narendran (1998) and Kumar and Sharma (2014) reported a total of 

17 and 16 intercellular movements respectively. 

5.3.5 Problem 5 

A problem of 12 parts and 12 machines taken from Sofianopoulou (1999) is shown in Table 

5.10. This is the case of multiple routes, unit part volume and sequential cell formation 

problem. Here, maximum permissible number of machines in a cell is five. 

Table 5.10 Twelve parts and twelve machine-Problem 5 

Part Routes Machines 

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 

P1 1   3  2 1  5   6 4 

2     4 3 5   1 2  

P2 1 4 2  3 5     1   

2 2  4 1  5    3   

3  2    3      1 

P3 1  3   2   1    4 

2        2    1 

P4 1  2  3     1    

2  1 3    2  4    

P5 1 1 4  3  2  5     

P6 1  3 2  6   5   4 1 

2     3   4  2 1  

P7 1     4  2   1 3  

2   1 2   4   3   

P8 1  2  3 1        

P9 1  5 4   1 2    3  

2  1 2   4     3  

P10 1    1 3   2     

P11 1  2 1      4 3  5 

P12 1  3    1 2      

The proposed method produced three machine cells and the generated machine cells are  

 (1) M1-M9= machine cell C1  

(2) M2-M3-M4-M6-M11= machine cell C2 and 

(3) M5-M7-M8-M10-M12= machine cell C3. 

Selecting the best route, the part families are as: 

 (1) P11(1)= part family F1,  

(2) P1(2)-P2(3)-P4(1)-P5(1)-P6(2)-P8(1)-P9(2)-P10(1)-P12(1)= part family F2 and 

(3) P3(2)-P7(2)= part family F3. 

The final solution of the cell formation along with the individual intercellular movement 

of parts is shown in Table 5.11. 
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Table 5.11 Final solution of Problem 5 

Part

s 

Route

s 

Cell 1 Cell 2 Cell 3 Intercellula

r 

movement 
M

1 

M

9 

M

2 

M

3 

M

4 

M

6 

M1

1 

M

5 

M

7 

M

8 

M1

0 

M1

2 

P11 1  4 2 1       3 5 3 

P1 2      3 2 4 5  1  2 

P2 3   2   3      1 1 

P4 1  1 2  3        1 

P5 1 1  4  3 2    5   2 

P6 2       1 3  4 2  1 

P8 1   2  3   1     1 

P9 2   1 2  4 3      - 

P10 1     1   3  2   1 

P12 1   3   1   2    2 

P3 2          2  1 - 

P7 2    1 2    4  3  1 

 

From Table 5.11, it depicts that there are 15 intercellular movements of parts generated 

by the proposed algorithm. This is an optimum solution and it is same with those obtained by 

Alhourani (2013), and Yin and Yasuda (2002). 

5.4 Conclusion 

In this research work, Euclidean distances of machines for processing the parts considering 

parts volume, batch size, and number of batches are calculated. Then the clustering of 

machines and parts is done by using the SLINK method based on minimum Euclidean 

distance. The aim of this chapter is to generate optimum machine cells having minimum 

intercellular movement of parts. Computational results of the proposed algorithm and 

comparison with the well-known existing methods for five benchmark problem instances 

show that proposed algorithm is either better than or competitive with the well-known 

existing algorithms.  

 



 

 

Chapter 6 

 

A GA FOR THE CELL FORMATION WITH ALTERNATIVE 

ROUTINGS 

 

 

6.1  Introduction 

GT in the cell formation helps to minimize number of intercellular movements of parts 

Sofianopoulou (1997). For grouping the machines into machine cells, dissimilar machines are 

clustered into a machine cell such that processing operations can be accomplished with 

minimum number of intercellular movements, resulting in reduced overall cost. 

In the literature survey, it is seen that most of the cell formation techniques have been 

applied for single process route, equal production volume and without any sequence of 

process (James et al.,  2007; Ali et al., 2014, and Laha and Hazarika, 2017). In advanced 

cellular manufacturing systems, or in batch production systems, a part can be processed 

following multiple process routings and unequal production volume of parts (Kusiak, 1987). 

In this chapter, a genetic algorithm approach is proposed to solve the CF problem with 

alternative routings, operation sequence of the parts and uneven part volume. 

6.2 Proposed Genetic Algorithm  

GA proposed by Holland (1975) is a stochastic search and optimization technique, based on 

mechanism of natural selection and natural genetics. The basic steps of the GA are as follows: 

 

Step 1: Generate the initial random populations.  

Step 2: Evaluate the fitness of each individual population. 

Step 3: Select or sort populations. 

Step 4: Generate new set of population from the best individual by the crossover operator.  

Step 5: Apply the mutation operator. 

Step 6: Repeat Steps 2-5 for the maximum number of iterations as the stopping criterion.  

Step 7: Obtain the best solution. 

 

https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=8533468700&zone=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=6701760915&zone=
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6.3 GA parameters 

The proposed algorithm searches better solutions (minimizing intercellular movement) and 

ignore inferior solutions (or chromosome) while running each iteration. Therefore, in each 

iteration, a new solution is generated and better solution is selected. To run the algorithm, 

following parameters are considered and these have a crucial role on optimal solutions. The 

parameters are as follows: 

 Population size: 20 

 Number of generations: 2 × n × m 

 Crossover operator: single-point crossover 

 Selection: rank-based roulette wheel selection 

 Probability of mutation: 0.01 to 0.015 

 Number of selected chromosomes: 2 

 Number of trials: 10 

6.4 Computational results 

Five problems taken from the literature are solved to evaluate the performance of the 

proposed algorithm. The source of the benchmark problems and their sizes are shown in 

Table 6.1. The proposed algorithm was coded in MATLAB R2010a and run on a PC of Core 

i5, 3.30 GHz speed with 8.00 GB of RAM.  

Table 6.1 Source of test problems and their sizes 

Problem No. Problem source Size 

1. Raja and Anbumalar (2016) 5×7 

2. Yin and Yasuda (2002). 5×7 

3. Yin and Yasuda (2002). 6×8 

4. Nair and Narendran (1998) 8×20 

5. Yin and Yasuda (2002) 12×12 

6.4.1 Problem 1 

This is the case of single route, unit volume part (and single batch) and sequential CF 

problem. The problem is given in Table 6.2. 
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Table 6.2 Seven parts and five machines for problem 1 

Parts 
Machines 

M1 M2 M3 M4 M5 

P1 1  2 3  

P2 2  1 3  

P3 1 2   3 

P4 1 2 3   

P5  1   2 

P6 3  1 2  

P7  1   2 

 

Table 6.3 Machine cells using different approaches of Problem 1 

Approach Reference 
Machine cells Number of 

intercellular moves I II 

CLASSPAVI Raja and Anbumalar (2016) M1,M3,M4 M2,M5 3 

Proposed GA  M1,M3,M4 M2,M5 3 

 

The solution of the proposed approach is shown in Table 6.3 and it shows that 2 machine 

cells and 3 intercellular moves. This solution is same as reported by Raja and Anbumalar 

(2016). The block diagonal matrix of the proposed GA is shown in Table 6.4. 

Table 6.4 Solution of problem 1 produced by the proposed GA 

Parts 
Machine cell I Machine cell II Intercellular 

movements of each part M1 M3 M4 M2 M5 

P1 1 2 3   -- 

P2 2 1 3   -- 

P4 1 3  2  2 

P6 3 1 2   -- 

P3 1   2 3 1 

P5    1 2 -- 

P7    1 2 -- 

 

6.4.2 Problem 2 

The problem is given in Table 6.5. This is the case of multiple routes, part volume and 

sequential CF problem. 
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Table 6.5 Seven parts and five machines for problem 2 

Parts 
Part 

volume 

Part 

route 

Machines 

M1 M2 M3 M4 M5 

P1 50 1 2   1  

2 1  2 3  

P2 5 1 1   2  

P3 20 1  2   1 

2  1 3  2 

P4 30 1 2 1   3 

2  1 3  2 

P5 40 1 1   2  

2 1  2 3  

P6 10 1  1   2 

P7 35 1  2   1 
 

Table 6.6 Solutions using different approaches for problem 2  

Approach Reference 
Machine cells Number of 

intercellular moves I II 

Similarity coefficient method Yin and Yasuda (2002) M2,M3,M5 M1,M4 0 

Similarity coefficient method 

(CLINK) 

Gupta (1993) 

M1,M4,M3 M2,M5 30 

Proposed GA  M2,M3,M5 M1,M4 0 

 

The proposed procedure produced two machine cells and zero intercellular moves. This is 

the same as reported by Yin and Yasuda (2002). A total number of 30 intercellular moves is 

obtained by Gupta (1993). The best route of the proposed approach is P1(1)-P2(1)-P3(2)- 

P4(2)-P5(1)-P6(1)-P7(1). Table 6.6 shows the solutions of Problem 2. The solution of 

problem 2 given by the proposed GA is shown in Table 6.7. 

Table 6.7 Block diagonal solution of Problem 2 by the proposed GA 

Parts 
Part 

volume 

Selected 

part route 

Machine cell I Machine cell II Intercellular 

movements of each part M2 M3 M5 M1 M4 

P3 20 2 1 3 2   -- 

P4 30 2 1 3 2   -- 

P6 10 1 1  2   -- 

P7 35 1 2  1   -- 

P1 50 1    2 1 -- 

P2 5 1    1 2 -- 

P5 40 1    1 2 -- 
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6.4.3 Problem 3 

The problem is shown in Table 6.8. This is the case of multiple routes, part volume (and 

single batch) and sequential CF problem. 

Table 6.8 Eight parts and six machines for Problem 3 

Parts Part volume Part route 
Machines 

M1 M2 M3 M4 M5 M6 

P1 50 1 1 3  2   

2  1 2  3 4 

3  2 1  3 4 

P2 30 1   1  3 2 

P3 20 1   1  2 3 

P4 30 1 1   2   

2 2 1  3   

P5 20 1  3 2  4 1 

2   1   2 

P6 10 1 1 2 3    

2 1 2    3 

P7 15 1  3   1 2 

2   3  1 2 

3  1    2 

P8 40 1  2  1   

 

A total number of 10 intercellular moves are produced by the proposed procedure. This is 

the same number of intercellular moves as reported by Yin and Yasuda (2002) and Alhourani 

(2013). A total number of 50 intercellular moves is generated using the algorithm of Gupta 

(1993). The Best route produced by proposed approach is P1(1)-P2(1)-P3(1)-P4(2)-P5(2)-

P6(1)-P7(2)-P8(1). Tables 6.9 and 6.10 shows the solutions of Problem 3 using different 

approaches and the proposed GA. 

Table 6.9 Solutions using different approaches for Problem 3 

Approach Reference 
Machine cells Number of 

intercellular moves I II 

Similarity coefficient 

method (CLINK) 
Gupta (1993) M2,M3,M5,M6 M1,M4 50 

Similarity coefficient 

method 

Yin and Yasuda 

(2002) 
M1,M2,M4 M3,M5,M6 10 

Similarity coefficient 

method 
Alhourani (2013) M1,M2,M4 M3,M5,M6 10 

Proposed GA  M1,M2,M4 M3,M5,M6 10 
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Table 6.10 Block diagonal solution of Problem 3 by the proposed GA 

Parts 
Part 

volume 

Selected 

part route 

Machine cell I Machine cell II Intercellular 

movements of each part M1 M2 M4 M3 M5 M6 

P1 50 1 1 3 2    -- 

P4 30 2 2 1 3    -- 

P6 10 1 1 2  3   10 

P8 40 1  2 1    -- 

P2 30 1    1 3 2 -- 

P3 20 1    1 2 3 -- 

P5 20 2    1  2 -- 

P7 15 2    3 1 2 -- 
 

6.4.4 Problem 4 

Table 6.11 Twenty parts and eight machines Problem 4 

Part 
Machines 

M1 M2 M3 M4 M5 M6 M7 M8 

P1     2 1   

P2 1  2      

P3 2 1  5   3 4 

P4  1  2   3 4 

P5     2 1   

P6  1  2 5  3 4 

P7  4  2   3 1 

P8 1  2      

P9 1  3   2   

P10    2 3 1   

P11 3  2    1  

P12     1 3 2  

P13 1  2      

P14 1 2 3      

P15    1 2    

P16 1  2      

P17 3  1  2    

P18  2  1   4 3 

P19 1  2      

P20  2  1  3 4 5 

The problem is presented in Table 6.11. This is the case of single route, unit volume part 

(and single batch) and sequential CF problem. Here, maximum permissible number of 

machines in a cell is given as five. 

The proposed procedure produced the solution containing 2 machine cells and 13 

intercellular moves and it is the same as the solution of Alhourani and Seifoddini (2007). 

Tables 6.12 and 6.13 show the solution of problem 4 produced by different approaches and 

the proposed GA. 
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Table 6.12 Solutions of Problem 4 using different approaches 

Approach Reference 

Machine cells Number of 

intercellular 

moves 
I II III 

Similarity 

coefficient 

method 

(CLINK) 

Nair and 

Narendran 

(1998) 

M1,M3 M5,M6 M2,M4,M7,M8 17 

Considering 

machines as 

‘points’ in 

multi-

dimensional 

space 

George et al. 

(2003) 
M1,M3 M5,M6 M2,M4,M7,M8 16 

CLASSPAVI 

Raja and 

Anbumalar 

(2016) 

M1,M3 M5,M6 M2,M4,M7,M8 16 

Similarity 

coefficient 

method 

Alhourani 

and 

Seifoddini 

(2007) 

M1,M3,M5 M2,M4,M6,M7,M8  13 

Proposed GA  M1,M3,M6 M2,M4,M5,M7,M8  13 

 

Table 6.13 Solution of Problem 4 produced by the proposed GA 

Part 
Machine cell I Machine cell II Intercellular 

movements of each 

part 
M1 M3 M6 M2 M4 M5 M7 M8 

P1   1   2   1 

P2 1 2       -- 

P5   1   2   1 

P8 1 2       -- 

P9 1 3 2      -- 

P11 3 2     1  1 

P13 1 2       -- 

P14 1 3  2     2 

P16 1 2       -- 

P17 3 1    2   2 

P19 1 2       -- 

P3 2   1 5  3 4 2 

P4    1 2  3 4 -- 

P6    1 2 5 3 4 -- 

P7    4 2  3 1 -- 

P10   1  2 3   1 

P12   3   1 2  1 

P15     1 2   -- 

P18    2 1  4 3 -- 

P20   3 2 1  4 5 2 
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6.4.5 Problem 5 

The problem is reported in Table 6.14. This is the case of multiple routes, unit volume part 

(and single batch) and sequential CF problem. Here, maximum permissible number of 

machines in a cell is five. 

Table 6.14 Twelve parts and twelve machines CF Problem 5 

Part Routes 
Machines 

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 

P1 1   3  2 1  5   6 4 

2     4 3 5   1 2  

P2 1 4 2  3 5     1   

2 2  4 1  5    3   

3  2    3      1 

P3 1  3   2   1    4 

2        2    1 

P4 1  2  3     1    

2  1 3    2  4    

P5 1 1 4  3  2  5     

P6 1  3 2  6   5   4 1 

2     3   4  2 1  

P7 1     4  2   1 3  

2   1 2   4   3   

P8 1  2  3 1        

P9 1  5 4   1 2    3  

2  1 2   4     3  

P10 1    1 3   2     

P11 1  2 1      4 3  5 

P12 1  3    1 2      

 

A total number of 12 numbers of intercellular moves is produced by the proposed 

procedure. This is the best result compared with the existing algorithms. There is a substantial 

improvement in the CF problem. The best route produced by proposed approach is P1(2)-

P2(3)-P3(2)-P4(1)-P5(1)-P6(2)-P7(1)-P8(1)-P9(1)-P10(1)-P11(1)-P12(1). Table 6.16 shows 

solution of problem 5 given by different approach. Tables 6.15 and 6.16 show the solutions 

given by different approaches and the produced by proposed GA for Problem 5. 
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Table 6.15 Solutions using different approaches for Problem 5 

Approach Reference 

Machine cells Number of 

intercellular 

moves 
I II III 

Simul. 

Annealing 

Sofianopoulou 

(1997) 
M2,M4,M7,M9,M10 M3,M5,M8,M11,M12 M1,M6 15 

Branch and 

Bound 

Spiliopoulos 

and 

Sofianopoulou 

(1998) 

M1,M2,M4,M7,M10 M3,M5,M6,M8,M11 M9,M12 15 

Simul. 

Annealing 

Chen et al., 

(1995) 
M4,M5,M7,M8,M10 M2,M3,M6,M11,M12 M1,M 9 17 

Tabu 

Search 

Sun et al., 

(1995) 
M4,M5,M7,M10,M11 M2,M3,M6,M8,M12 M1,M9 19 

Fussy 

Approach 

Chu and Hayya 

(1991) 
M1,M2,M4,M7,M9 M3,M6, M10,M11,M12 M5,M8 16 

Simul. 

Annealing 

Sofianopoulou 

(1999) 
M1,M6,M7,M10,M11 M2,M3,M4,M9,M12 M5,M8 13 

Similarity 

coefficient 

method 

Alhourani 

(2013) 
M2,M3,M4,M9,M12 M5,M6,M7,M8,M11 M1,M10 15 

Similarity 

coefficient 

method 

Yin and Yasuda 

(2002) 
M2,M3,M4,M12 M5,M6,M7,M8,M11 M1,M9,M10 15 

Proposed 

GA 
 M5,M6,M7,M10,M11 M2,M4,M8,M9,M12 M1,M3 12 

 

Table 6.16 Solution of Problem 5 produced by the proposed GA 

Part 
Selected 

route 

Machine cell I Machine cell II Machine cell III Intercellular 

movements 

of each part 
M5 M6 M7 M10 M11 M2 M4 M8 M9 M12 M1 M3 

P1 2 4 3 5 1 2        - 

P6 2 3   2 1   4     1 

P7 1 4  2 1 3        - 

P9 1  1 2  3 5      4 2 

P12 1  1 2   3       1 

P2 3  3    2    1   1 

P3 2        2  1   - 

P4 1      2 3  1    - 

P5 1  2    4 3 5   1  2 

P8 1 1     2 3      1 

P10 1 3      1 2     1 

P11 1    3  2   4 5  1 3 
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6.5 Conclusions 

The objective of this study is to find the best route of parts as well as to minimize total 

number of intercellular movements in the entire system. In this study, a genetic algorithm is 

proposed to solve different standard benchmark cell formation problems. Computational 

results comparing the proposed algorithm with some well-known existing methods for 5 

benchmark problems reveal that proposed algorithm  gives solutions either better than or 

competitive with the existing algorithms. 



 
 

Chapter 7 

 

APPLICATION OF GA TO A REAL-LIFE CELL FORMATION 

PROBLEM 

 

7.1  Introduction 

In CMS, the CF usually seeks to obtain a solution of completely independent machine cells 

where, each machine cell assigns o an independent part family so that a cell can carry out all 

operations of that particular part family. However, in actual practice, it is sometimes difficult 

to execute all the operations of a part family following a particular machine cell. Therefore, 

the principal objective of the CF in CMS is to minimize intercellular movements of parts and 

to maximize utilization of machines (Logendran, 1990). Since the CF problem belongs to the 

class of NP- hard (Ballakur and Steudel, 1987), heuristic and metaheuristic approaches are 

mostly preferred to obtain optimal or near-optimal solution for this problem in reasonable 

computational times. 

In the literature survey, we have seen that most of the cell formation methods have been 

applied for the problem of one process route, equal part volume and without sequence of 

processes (James et al., 2007; Ali et al., 2014; Laha and Hazarika, 2017 and Hazarika and 

Laha, 2015). However, in today’s CMSs, parts with unequal part volume and process 

sequence pass through multiple routings (Kusiak, 1987). 

In this chapter, a genetic algorithm approach is proposed for solving the CFP with 

alternative routings, operation sequences of the parts and unequal part volumes.  

7.2 Problem description 

A real-life CFP with alternative part routes and machines/or processes sequence taken from 

Kim et al. (2004) is shown in Table 7.1. The problem has uneven part volume (annual 

demand), single batch and machine process capacities. 

For example, in Table 7.1, no operation is performed in machine M3 for the part P1 on 

route 2 and as a result, the processing time for the part P1 is zero. Similarly, the third 

operation is processed in machine M5 for the part P2 on route 3 and the corresponding 

processing time for the part P2 is four and so on. The part-machine incidence matrix and the 

https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=8533468700&zone=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=6701760915&zone=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=6701760915&zone=
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processing time matrix are shown in Table 7.2 and Table 7.3 respectively. Empty elements 

means there is no operation. 

Table 7.1 A CFP with alternative part routes 

Part (annual 

demand) 

Part 

route 

Machine (processing time) 

1 2 3 4 5 6 7 8 9 10 

1(6) 1 0(0) 5(3) 3(4) 1(3) 0(0) 2(3) 0(0) 4(4) 0(0) 0(0) 

 2 0(0) 0(0) 0(0) 1(4) 0(0) 2(3) 3(3) 4(4) 0(0) 0(0) 

2(18) 1 0(0) 2(4) 0(0) 0(0) 3(3) 0(0) 0(0) 0(0) 1(4) 4(3) 

 2 0(0) 0(0) 3(4) 0(0) 1(4) 0(0) 0(0) 0(0) 4(3) 2(3) 

 3 0(0) 2(4) 1(4) 0(0) 3(4) 0(0) 5(4) 0(0) 0(0) 4(3) 

3(20) 1 1(4) 0(0) 4(4) 2(3) 0(0) 3(3) 0(0) 5(4) 0(0) 0(0) 

 2 0(0) 2(3) 3(3) 4(4) 0(0) 5(3) 1(4) 0(0) 0(0) 0(0) 

4(14) 1 2(4) 0(0) 0(0) 3(4) 0(0) 4(4) 0(0) 1(4) 0(0) 0(0) 

 2 1(4) 0(0) 0(0) 2(3) 0(0) 3(4) 4(4) 5(4) 0(0) 0(0) 

 3 2(3) 0(0) 3(3) 0(0) 0(0) 4(4) 0(0) 0(0) 1(3) 0(0) 

5(20) 1 0(0) 4(4) 2(4) 0(0) 5(3) 0(0) 0(0) 0(0) 3(3) 1(4) 

 2 0(0) 1(4) 4(3) 0(0) 2(3) 0(0) 0(0) 0(0) 5(4) 3(3) 

6(6) 1 0(0) 4(4) 2(4) 0(0) 0(0) 0(0) 0(0) 0(0) 3(3) 1(4) 

 2 0(0) 4(4) 2(3) 0(0) 5(4) 0(0) 0(0) 0(0) 3(4) 1(3) 

 3 0(0) 3(3) 1(3) 4(3) 0(0) 0(0) 0(0) 0(0) 2(4) 5(4) 

7(18) 1 3(3) 0(0) 0(0) 0(0) 0(0) 5(4) 1(4) 2(4) 0(0) 4(3) 

 2 1(1) 0(0) 4(4) 2(4) 0(0) 3(4) 0(0) 0(0) 0(0) 0(0) 

8(14) 1 0(0) 0(0) 0(0) 0(0) 2(4) 5(4) 0(0) 4(3) 3(3) 1(3) 

 2 0(0) 2(3) 5(3) 0(0) 3(4) 0(0) 0(0) 0(0) 1(3) 4(4) 

 3 0(0) 1(3) 4(4) 0(0) 2(3) 3(3) 0(0) 0(0) 0(0) 0(0) 

9(12) 1 3(4) 0(0) 0(0) 4(3) 0(0) 5(3) 1(3) 2(4) 0(0) 0(0) 

 2 4(4) 0(0) 1(4) 0(0) 0(0) 0(0) 2(3) 2(3) 0(0) 0(0) 

 3 0(0) 0(0) 1(4) 0(0) 0(0) 2(4) 3(4) 4(3) 0(0) 0(0) 

10(6) 1 0(0) 5(4) 3(3) 0(0) 1(3) 4(3) 0(0) 0(0) 0(0) 2(3) 

 2 0(0) 0(0) 3(3) 0(0) 0(0) 0(0) 0(0) 4(4) 1(4) 2(3) 

Capacity limit  300 300 300 300 300 300 300 300 300 300 
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Table 7.2 Part-machine incidence matrix 

Part (annual 

demand) 

Part 

route 

Machine 

1 2 3 4 5 6 7 8 9 10 

1(6) 1  5 3 1  2  4   

 2    1  2 3 4   

2(18) 1  2   3    1 4 

 2   3  1    4 2 

 3  2 1  3  5   4 

3(20) 1 1  4 2  3  5   

 2  2 3 4  5 1    

4(14) 1 2   3  4  1   

 2 1   2  3 4 5   

 3 2  3   4   1  

5(20) 1  4 2  5    3 1 

 2  1 4  2    5 3 

6(6) 1  4 2      3 1 

 2  4 2  5    3 1 

 3  3 1 4     2 5 

7(18) 1 3     5 1 2  4 

 2 1  4 2  3     

8(14) 1     2 5  4 3 1 

 2  2 5  3    1 4 

 3  1 4  2 3     

9(12) 1 3   4  5 1 2   

 2 4  1    2 3   

 3   1   2 3 4   

10(6) 1  5 3  1 4    2 

 2   3     4 1 2 

Table 7.3 Processing time matrix 

Part (annual 

demand) 
Part route 

Machine processing time 

1 2 3 4 5 6 7 8 9 10 

1(6) 1  18 24 18  18  24   

 2    24  18 18 24   

2(18) 1  72   54    72 54 

 2   54  72    54 54 

 3  72 72  72  72   54 

3(20) 1 80  80 60  60  80   

 2  60 60 80  60 80    

4(14) 1 56   56  56  56   

 2 56   42  56 56 56   

 3 42  42   56   42  

5(20) 1  80 80  60    60 8 

 2  80 60  60    80 60 

6(6) 1  24 24      18 24 

 2  24 18  24    24 18 

 3  18 18 18     24 24 

7(18) 1 54     72 72 72  54 

 2 18  72 72  72     

8(14) 1     56 56  42 42 42 

 2  42 42  56    42 56 

 3  42 56  42 42     

9(12) 1 48   36  36 36 48   

 2 48  48    36 36   

 3   48   48 48 36   

10(6) 1  24 18  18 18    18 

 2   18     24 24 18 
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Indices and parameters 

i Index for machines 

j Index for parts 

r Index for routes 

Rj Total number of routes of part j 

k Index for cells 

N Total number of cells 

M Total number of machines 

P Total number of parts 

Dj Demand rate of part j 

Lk Minimum number of machines in cell k 

𝑈𝑘  Maximum number of machines in cell k 

𝑡𝑖𝑗𝑟  Processing time of part i on machine j in route r 

𝑇𝑖  Allowable processing time of machine i 

Decision variables 

𝑥𝑖𝑘  = 1 if machine i is assigned to cell k; otherwise 0 

𝑦𝑟𝑗  = 1 if route r of part j is assigned; otherwise 0 

𝜎𝑗 (𝑘𝑘 ′ )= 1 if successive operations of part j  is done on cells k and k΄; otherwise 0 

Objective Function 

The objective of the proposed approach is to minimize the intercellular movement of each 

part  j (Ij) because of minimum intercellular movements (Z) and minimum cell load variation 

(T) of the system.  

𝐼𝑗 =    𝐷𝑗𝜎𝑗  𝑘𝑘 ΄  1 − 𝑥𝑖𝑘  
𝑁
𝑘=1

𝑀
𝑖=1

𝑅𝑗

𝑟=1 𝑦𝑟𝑗     (7.1) 

𝑍 =  𝐼𝑗
𝑃
𝑗=1         (7.2) 

𝑇 = 𝑚𝑎𝑥     𝑦𝑟𝑗 𝑡𝑖𝑗𝑟 − 𝑚𝑖𝑛     𝑦𝑟𝑗 𝑡𝑖𝑗𝑟
𝑅𝑗

𝑟=1
𝑃
𝑗=1

𝑀
𝑖=1

𝑁
𝑘=1

𝑅𝑗

𝑟=1
𝑃
𝑗=1

𝑀
𝑖=1

𝑁
𝑘=1       (7.3) 

Constraints 

1. Assignment of one machine to only one cell 

 𝑥𝑖𝑘 = 1          ∀𝑖𝑁
𝑘=1       (7.4) 

2. Lower bound and upper bound of a cell size 

𝐿𝑘 ≤  𝑥𝑖𝑘
𝑀
𝑖=1 ≤ 𝑈𝑘    ∀𝑘                    (7.5) 

3. Total processing time of machines for selected routes 

 𝑡𝑖𝑗𝑟 ≤ 𝑇𝑖     ∀𝑖, 𝑗𝑃
𝑗=1       (7.6) 
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7.3  Genetic Algorithm 

GA is a stochastic search based global optimization algorithm technique guided by natural 

evolution principle. It starts with a set of random solutions, called initial population. Then, it 

executes selection, reproduction, crossover and mutation sequentially for a fixed number of 

iterations. The basic steps of the GA are as follows: 

Step 1: Generate the initial random populations.  

Step 2: Evaluate the fitness of each individual population. 

Step 3: Select or sort populations. 

Step 4: Generate new set of population from the best individual by the crossover operator.  

Step 5: Apply the mutation operator. 

Step 6: Repeat Steps 2-5 for the maximum number of iterations as the stopping criterion.  

Step 7: Obtain the best solution. 

In the proposed GA, each individual of the initial population is encoded with integers and 

it varies from one to the maximum number of possible cells. The length of the chromosome is 

equal to the sum of the number of machines and jobs. For example, Fig. 7.1 shows a 

randomly generated solution or chromosome for three machine cells. Here, machines M2, 

M3, M5 and M10 are assigned to cell 1, machines M1, M7 and M8 to cell 2 and machines 

M4, M6 and M9 to cell 3.Similarly, parts P1, P3, P4, P7, and P10 are assigned to part family 

1, parts P2, P5 and P6 to part family 2, and parts P8 and P9 to part family 3. Fig. 7.1 shows a 

randomly generated solution for 10 machines cell formation problem. 

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 

2 1 2 1 1 3 2 2 3 1 1 2 1 1 2 2 1 3 3 1 

Figure7.1 Randomly generated solution for 10 machines CFP 

 

 

The fitness value for each chromosome in the population is computed based on the 

selection process to assess the high probability of selecting the candidate solution to the next 

iteration. The larger fitness value of an individual is having its higher probability of survival 

for the next generation. Each individual in the population is evaluated by the criteria of 

intercellular movements and cell load variation. In the selection process, we used the roulette-

wheel procedure. In order to generate offspring from the population, we used single point 

crossover operator. 
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For the 10 parts, 10 machines CFP, crossover point of two selected chromosomes, say, 

parent 1 and parent 2 are taken at a randomly selected location and as a result, another two 

new chromosomes say, offspring1 and offspring 2 are generated. Fig. 7.2 shows two parent 

chromosomes and their crossover points, and Fig. 7.3 presents two offspring (offspring 1 and 

offspring 2) generated after the crossover of parent 1 and parent 2. 

 

 

 

Fig. 7.2 Two parent chromosomes and their crossover points 

 

 

 

Fig. 7.3 Two offspring generated after the crossover of parent 1 and parent 2 

 In order to illustrate the mutation operator, we consider a chromosome as shown in Fig. 

7.4 and the mutation point is sixth gene. The new chromosome after the mutation operation is 

shown Fig. 7.5. To obtain the feasible optimum solution, we repeat steps 2-5 of the proposed 

GA for the maximum number of iterations.  

 

 

 

 

Fig.  7.4 A chromosome before mutation 

 

 

 

Fig.  7.5 The chromosome after mutation 

 

Similar to other metaheuristics, the parameters play an important role in the performance 

of the proposed GA. Therefore, we conducted several preliminary computational experiments 

to ascertain the best parameter values of the proposed method. The selected parameters of the 

proposed GA are as follows: 

 

Parent 1 2 1 2 1 1 3 2 2 3 1 1 2 1 1 2 2 1 3 3 1 

 

 

 

Parent 2 3 1 3 2 2 3 1 1 3 2 1 2 3 1 3 1 2 2 3 1 

 

Crossover point 

Offspring 1 2 1 2 1 1 3 2 2 3 2 1 2 3 1 3 1 2 2 3 1 

 

Offspring 2 3 1 3 2 2 3 1 1 3 1 1 2 1 1 2 2 1 3 3 1 

 

2 1 2 1 1 3 2 2 3 2 1 2 3 1 3 1 2 2 3 1 

 

 
Mutation point 

2 1 2 1 1 3 2 2 3 1 1 2 3 1 3 1 2 2 3 1 

 

 
Mutation point 
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 Crossover operator: Single point crossover 

 Chromosome length: sum of number of machines and jobs 

 Selection: Rank-based roulette wheel selection 

 Population size: 25 

 Probability of mutation: 0.015 

 Number of generations: 2500 

 Number of selected chromosomes:  

 Number of trails: 10 

 

7.4 Computational Results 

The benchmark problem taken from Kim et al. (2004) is shown in Table 7.1 and the 

corresponding part-machine incidence matrix and the processing time are given in Tables 7.2-

7.3. The proposed method was coded in MATLAB R2010a and executed on a processor with 

Intel Core i5 CPU with 8 GB RAM at 3.30 GHz speed. 

The solution for the cell formation with the best routes and cell load variations for 

processing times of the proposed GA is given in Table 7.4. Here, we consider the same 

weight factor to minimize both intercellular movement of parts and cell load variation. 

Total intercellular movements of parts = 40+18+14+6 = 78 

Maximum cell load variation = 298-122 = 176min. 

The computational time is 0.755526 seconds. 

Table 7.4 Best routes with processing times 

Parts Routes Machine cell 1 Machine cell 1 Intercellular 

movement for 

annual demand 

of each parts 
1 4 6 7 8 2 3 5 9 10 

1(6) 2 0(0) 1(4) 2(3) 3(3) 4(4) 0(0) 0(0) 0(0) 0(0) 0(0)  

3(20) 2 0(0) 4(4) 5(3) 1(4) 0(0) 2(3) 3(3) 0(0) 0(0) 0(0) 40 

4(14) 2 1(4) 2(3) 3(4) 4(4) 5(4) 0(0) 0(0) 0(0) 0(0) 0(0)  

7(18) 2 1(1) 2(4) 3(4) 0(0) 0(0) 0(0) 4(4) 0(0) 0(0) 0(0) 18 

9(12) 1 3(4) 4(3) 5(3) 1(3) 2(4) 0(0) 0(0) 0(0) 0(0) 0(0)  

2(18) 2 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 3(4) 1(4) 4(3) 2(3)  

5(20) 2 0(0) 0(0) 0(0) 0(0) 0(0) 1(4) 4(3) 2(3) 5(4) 3(3)  

6(6) 2 0(0) 0(0) 0(0) 0(0) 0(0) 4(4) 2(3) 5(4) 3(4) 1(3)  

8(14) 1 0(0) 0(0) 5(4) 0(0) 4(3) 0(0) 0(0) 2(4) 3(3) 1(3) 14 

10(6) 2 0(0) 0(0) 0(0) 0(0) 4(4) 0(0) 3(3) 0(0) 1(4) 2(3) 6 

Machine load  122 254 298 190 194 164 282 212 224 192  
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To compare the performance of the proposed method with the existing methods in terms of 

the intercellular movements and cell load variation along with the computational time, we 

considered two algorithms of Zhao and Wu (2000) and Kim et al., (2004). The comparative 

computational results are shown in Table 7.5.  

Table 7.5 Comparative computational results 

Algorithms generated by 
Total intercellular 

movements 

Maximum cell 

load variation 

Computational time 

in seconds 

Kim et al., (2004) 88 118 0.03 

Zhao and Wu, (2000) 82 112 519.4 

The proposed method 78 176 0.755 

 

From the results of Table 7.5, it reveals that the proposed approach gives better solutions 

than the existing algorithms in terms of total intercellular movements in reasonable 

computational times. However, in terms of cell load variation, the proposed approach 

performs inferior to the existing algorithms. Therefore, we recommend that the proposed 

method is more efficient compared to the existing algorithms in respect of minimum 

intercellular movements and computational efforts. 

 

7.5   Conclusions 

Recently, metaheuristic algorithms are being successfully used to solve cellular 

manufacturing system problems because it is difficult to generate optimal solutions, especially 

for large-sized cell formation problems in reasonable computational times using exact 

optimization and heuristic methods. This chapter considers the part-machine cell formation 

problem with the objective of minimizing intercellular movements of parts and cell load 

variation in alternative routes of parts and sequence of processes. In this study, a genetic 

algorithm is presented to solve this problem. Computational results comparing with the well-

known algorithms reveal that the proposed heuristic produces best solution among the 

existing algorithms. 



Chapter  8 

 

CONCLUSIONS, LIMITATIONS AND FUTURE RESEARCH 

DIRECTIONS 

 

 

8.1 Conclusions 

In this research work, we have proposed a heuristic approach based on Euclidean distance 

matrix for the cell formation problem with the objective of maximizing the grouping efficacy.  

The problem deals with the cell formation with single routing with no process sequences to 

maximize grouping efficacy and the cell utilization. In this work, we used Euclidean distance 

matrix to cluster machines for machine cells and parts for part families. The computational 

results reveal that the proposed heuristic significantly outperforms the existing well-known 

heuristics for a set of benchmark problems. In the same problem, we have presented a genetic 

algorithm based heuristic for the cell formation problem with the objective of minimizing 

exceptional elements as well as void elements simultaneously to maximize the grouping 

efficacy. Empirical results on multiple benchmark problem instances of various sizes have 

shown that the proposed method in terms of grouping efficacy are either better than or 

competitive with the existing metaheuristic algorithms. 

In this research work, we have also considered the cell formation problem with multiple 

routings with process sequences and part volumes. In this case, the objective function is to 

minimize total inter-cellular movement of parts. We have presented a heuristic approach 

based on Euclidean distance matrix for the cell formation in multiple routes, process 

sequential and parts volume (including batch size and number of batches) with the objective 

of minimum intercellular movement of parts. We computed the Euclidean distances of 

machines for processing parts along with the part volume, batch size, and number of batches 

and the corresponding clustering is done by single linkage clustering method for minimum 

Euclidean distance. The computational results demonstrate that the proposed heuristic 

performs well in comparison with the existing heuristics. In the research work considering the 

same problem, we proposed a genetic algorithm to determine the optimum route of parts as 

well as to minimize total number of intercellular movements in the entire system. The 

computational results based on a set of benchmark problems have shown that the proposed 

genetic algorithm performs best among the existing metaheuristic algorithms in respect of 

both the solution quality and computational times. 
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8.2 Limitations of this research 

There are some limitations of this research worth to mention. 

1. The impact of the variation in the number of parts and machines on the performance 

of the proposed methods has not been analyzed in details. 

 

2. The compared algorithms have not been coded. A detailed coding of these methods 

would have helped in achieving a better comparison of execution time.  

 

3. We have considered a single criterion such as grouping efficacy and number of 

intercellular movements in the cell formation problems. Multi-objective cell 

formation problems can be used. 

 

4. In this research, we have addressed only deterministic cell formation problems, 

whereas, stochastic based cell formation problems can be applied. 

8.3 Future research directions 

Several issues are worthy of future research suggestions. 

1. Modification of the proposed methods may be applied to the cell formation problem 

with multi-objectives. 

2. The proposed algorithms can be suitably modified for applying to other cellular 

manufacturing environment, like solving cell formation problem to minimize the 

number of voids and exceptional elements in a three dimensional (cubic) machine–

part–worker incidence matrix. 

3. It would be useful to develop effective optimization methods for other important 

issues in cellular manufacturing systems like cell scheduling and lot sizing. 

4. As an alternative to the proposed metaheuristic algorithm, some newer soft 

computing methods have also great potential for developing efficient and effective 

arrangement of cells and part families in the cellular manufacturing system.  
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