- 3. a) Derive the Killing equation starting from the definition of a Kill vector.
 - b) When a space is said to be maximally symmetric? How many distinct Killing vector fields are there for a maximally symmetric space?
 - c) How you characterized a space geometrically if it is both homogeneous and isotropic? 4+2+2+2
- 4. a) Derive the condition for a vector to be hyper surface orthogonal. How the condition be modified when it is a Killing vector field?
 - b) Distinguish the stationary and static space-time both in co-ordinate dependent and co-ordinate independent way. Does a stationary space-time implies to be a static one or vice-versa? Justify.

(3+2)+(3+2)

- 5. Give a geometrical picture of Hamiltonian dynamics. What is a Hamiltonian vector field? Determine the Hamiltonian vector field corresponding to a function f(q, p) in phase space. 3+3+4
- Give a geometrical interpretation of the cosmological principle and Weyl postulate. Hence deduce the line element for FLRW model. Write down the Friedmann equations and the matter conservation equation for FLRW model.

Ex/SC/MATH/PG/DSE/TH/06/B10/2023

M. Sc. MATHEMATICS EXAMINATION, 2023

(2nd Year, 2nd Semester)

MATHEMATICS

PAPER – DSE-06 (B10)

[Application of Differential Geometry to Relativity and Mechanics]

Time : 2 hours

Full Marks : 40

The figures in the margin indicate full marks. Notations / Symbols have their usual meanings. Answer **any four** questions.

All questions carry equal marks.

- 1. Write down the general Lorentz transformation when the relative velocity between two inertial frames is along a unit vector \vec{e} . Obtain the velocity transformation law in vector form. Hence deduce the velocity addition formula. 2+4+4
- a) What do you mean by "locally inertial" co-ordinate system? Does curvature tensor vanish identically in this co-ordinate system? Justify.
 - b) Derive a first integral of the differential equation for geodesic. Hence introduce the notion of time-like/ null geodesics. Show that acceleration vector is zero along the geodesic. (2+1)+(3+1+3)