Master Of Science Examination - 2023

(Second Year, First Semester)

Mathematics

DSE - 03

(A2: Advanced Rings and Modules - I)

Full Marks: 40

Time: 2 Hours

Answer any four questions.

(Notations / Symbols have their usual meanings)

Let R be a commutative ring with identity 1.

1 (a). Define exact sequence of R-modules and R-homomorphisms. Show that the sequence of R-modules and R-homomorphisms $0 \longrightarrow M \xrightarrow{f} N \longrightarrow 0$ is eaxet if and only if f is an isomorphism.

Let $0 \longrightarrow M \longrightarrow 0$ be an exact sequence. Is M = 0? Justify.

2+2+1

- (b). Consider the short exact sequence of R-modules and R-homomorphisms
- $0 \longrightarrow N \longrightarrow M \longrightarrow F \longrightarrow 0$, where F is a free R-module.

Show that the above short exact sequence is a split exact sequence. Hence conclude that $0 \longrightarrow N \longrightarrow M \longrightarrow R \longrightarrow 0$ is a split exact sequence.

Now consider the short exact sequence of R-modules and R-homomorphisms

 $0 \longrightarrow F \longrightarrow M \longrightarrow N \longrightarrow 0$, where F is a free R-module.

Is this a split exact sequence? Justify.

2+1+2

- 2 (a). Define divisible group. Show that an additive abelian group M is divisible if and only if the \mathbb{Z} -module M is injective.
 - (b). With proper justification, give an example of a (an)
 - (i) projective module which is not injective
 - (ii) injective module which is not projective

2 + 3

[Turn over

[2]
	Γ	2	1

3 (a). Define tensor product of two R-modules. Show that $\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Q} \cong \mathbb{Q}$. 2+3 (b). Let M be an R-module. Show that $R \otimes_R M \cong M$. Hence conclude that $R \otimes_R R \cong R$.

4+1

- 4 (a). Define local ri Let L be a local ring with identity 1.
- (i) Show that L has no idempotent element except 0 and 1.
- (ii) If for all $a, b \in L$, a + b = 1 then show that either a is a unit or b is a unit. a + 2 + 2 + 2 + 3 = 1
- (b). Define module of fractions. If M is an R-module and S is a multiplicatively closed subset of R then show that $M \otimes_R S^{-1}R \cong S^{-1}M$.
- 5 (a). Define radical ideal of a ring. Let I be a proper ideal of R. Show that I is a radical ideal of R if and only if R/I has no nonzero nilpotents elements.
- (b). Define nil radical of a ring. Let N(R) be the nil radical of R. Show that R has only one prime ideal if and only if R/N(R) is a field.
- 6 (a). Define irreducible and primary ideal of a ring. Let R be a Noetherian ring. Show that every irreducible ideal of R is a primary ideal of R.
- (b). What do you mean by derivation and inner derivation of a ring? Show that a finite field admits no non-zero derivation.

 3+2