4. Let S be a semigroup. Prove that the following are equivalent
i) S is an inverse semigroup;
ii) S is regular, and its idempotents commute.
iii) every α-class and every R-class contains exactly one idempotent;
iv) every element of S has a unique inverse. 10
5. Let S be an inverse semigroup with semilattice E of idempotents. Suppose ρ is a congruence on S. Prove that ($\operatorname{ker} \rho, \operatorname{tr} \rho$) is a congruence pair. Conversely, suppose (N, τ) is congruence pair. Prove that the relation $\rho(N, \tau)=\left\{(a, b) \in S \times S:\left(a^{-1} a, b^{-1} b\right) \in \tau, a b^{-1} \in N\right\}$ is a congruence on S. Moreover, prove that $\operatorname{ker} \rho(N, \tau)=N$, $\operatorname{tr} \rho(N, \tau)=\tau$ and $\rho($ ker $\rho, \operatorname{tr} \rho)=\rho$.
6. a) Suppose $\phi: S \rightarrow T$ is a semigroup morphism from S onto T, where S onto T, where S be an inverse semigroup and T be a semigroup. Then prove that T is an inverse semigroup. Moreover, prove that ϕ is an inverse semigroup morphism.
b) Let S be a O-simple semigroup containing at least one O-minimal left ideal and at least one O-minimal right ideal. Prove that for every O-minimal left ideal L, there exists a O-minimal right ideal R of S, s.t. (1) $L R=S$ and (2) the identity element e of $R L$ is a primitive idempotent.

M. Sc. Mathematics Examination, 2023

(2nd Year, 2nd Semester)

Mathematics
 PAPER - DSE-07 (B15)

[Theory of Semigroups - II]

Time : 2 hours
Full Marks : 40
The figures in the margin indicate full marks.
Notations / Symbols have their usual meaning.

Answer any four questions.

1. a) Define O-simple semigroup. Prove that every finite O-simple semigroup is completely O-simple.
b) Supposte S is a semigroup. Then show that S is O simple if and only if for every a, b in $\mathrm{S}\{0\}$, there exist x, y in S such that $x a y=b$.
2. a) Suppose S is O -simple and contains a O-minimal left ideal, then show that S is the union of its O -minimal left ideals.
b) Let ρ be a congruence on an inverse semigroup S : Then prove that S / ρ is a group if and only if $\operatorname{tr} \rho=E \times E$; when E is set of all idempotent of S.
$5+5$
3. Construct a Rees Matrix semigroup over a O-group. Prove that the semigroup is a completely O-simple ie is O-simple and has a primitive idempotent.
