Ex/SC/MATH/PG/DSE/TH/07/B26/2023

M. Sc. Mathematics Examination, 2023

(2nd Year, 2nd Semester)
Mathematics
PAPER - DSE-07 (B26)
[Stochastic Processes]
Time : 2 hours
The figures in the margin indicate full marks.
Notations / Symbols have their usual meanings.
Attempt any Five questions.
Each question carries 8 marks.

1. Consider a Markov Chain having state space $S=\{0,1, \ldots, 6\}$ and transition matrix P given below:
$\left.P=\begin{array}{c}0 \\ 0 \\ 0 \\ 2 \\ 4 \\ 4 \\ 6\end{array} \begin{array}{ccccccc}0 & 1 & 2 & 3 & 4 & 5 & 6 \\ \frac{1}{8} & 0 & \frac{1}{4} & \frac{1}{8} & \frac{1}{8} & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{7} & 0 & \frac{6}{7} \\ 0 & 0 & 0 & 0 & \frac{5}{6} & \frac{1}{6} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{1}{3} & \frac{2}{3}\end{array}\right]$
a) Find all the recurrent classes and the set of transient states.
b) Find $\rho_{0 y}, y=0,1, \ldots, 6$.
2. A gambler playing roulette makes a series of 10 Rupees bets. He has respective probabilities $\frac{9}{19}$ and $\frac{10}{19}$ of winning and losing each bet. He decides to quit playing as soon as his net winning reaches 250 Rupees or -100 Rupees.
a) Find the probability that the gambler comes out winning 250 Rs.
b) Find the expected winning amount of the gambler.
3. Suppose that every man in a village has exactly 3 children, which independently has probability 0.5 of being a boy or a girl. Suppose also that the number of males in the n-th generation forms a branching chain. Find the probability of extinction of the male line of a given man.
4. Let $\left\{X_{n}: n=0,1,2, \ldots\right\}$ be a Markov chain with state space $\{0,1,2, \ldots\}$ such that
$P\left[X_{n+1}=x+1 \mid X_{n}=x\right]=p \in(0,1)$ and
$P\left[X_{n+1}=0 \mid X_{n}=x\right]=1-p$, for $n=0,1,2, \ldots$
a) Prove that $\left\{X_{n}\right\}$ is irreducible.
b) Find $P_{0}\left(T_{0}=n\right), n \geq 1$.
c) Prove that $\left\{X_{n}\right\}$ is a recurrent chain and determine if it is positive recurrent or not.
5. Give an example (with proof) of
a) A positive recurrent Markov Chain.
b) A transient Markov Chain.
c) A Null Recurrent Markov Chain.
6. Consider a pure death process on $\mathrm{S}=\{0,1,2, \ldots\}$
a) Find the Forward Equation.
b) Find $P_{x x}(t)$.
c) Find $P_{x y}(t)$ in terms of $P_{x, y+1}(t)$.
d) Find $P_{x(x-1)}(t)$.
e) Prove that if $\mu_{x}=\mu \cdot x, x \geq 0$ (μ constant), then

$$
P_{x y}(t)=\left\{\begin{array}{l}
x c_{y} e^{-\mu t y}\left(1-e^{-\mu t}\right)^{x-y} \\
0 \text { otherwise } \forall y=0,1, \ldots, x .
\end{array}\right.
$$

