Ex/SC/MATH/PG/UNIT4.1.2/2023

M. Sc. MATHEMATICS EXAMINATION, 2023

(2nd Year, 2nd Semester)

MATHEMATICS

PAPER - 4.1

[ADVANCED FUNCTIONAL ANALYSIS]

Time : 2 hours

Full Marks : 50

Answer any five questions.

- 1. a) Is the real number space IR with cofinite topology a topological vector space? Answer with reasons.
 - b) Define a bounded subset of a topological vector space X. Prove that B is bounded iff for every sequence $\{x_n\}_n$ in B and any sequence of scalers $\{\alpha_n\}_n$ with $\alpha_n \to 0$ as $n \to \infty$, $\alpha_n x_n \to \theta$ as $n \to \infty$. 3+1+6
- 2. a) i) For A, $B \subset X$ show that $\overline{A} + \overline{B} \subset \overline{A + B}$.
 - ii) If Y is a subspace of X then so is \overline{Y} .
 - b) Let K and C be compact and closed subsets of a topological vector space X with $K \cap C = \phi$. Show that there is a nbd Y of θ such that $(K+V)\cap(C+V) = \phi$. 3+2+5
- 3. a) Prove that every convex nbd of θ in a topological vector space X contains a balanced convex nbd of θ .

[Turn over

- b) If V is a nbd of θ in a topological vector space X and $0 < r_1 < r_2 < .. < r_n \to \infty$ as $n \to \infty$ then show that $X = \bigcup_{n=1}^{\infty} r_n V$. 6+4
- 4. Let T be a linear functional on a topological vector space X and assume that $Tx \neq 0$ for some $x \in X$. Then prove that following are equivalent.
 - i) T is continuous.
 - ii) The null space N(T) is closed.
 - iii) N(T) is not dense in X.
 - iv) T is bdd in some nbd V of θ . 10
- 5. a) Prove that every locally compact topological vector space X has finite dimension.
 - b) When a topological vector space is called locally compact? Give an example of a topological vector space which is not locally compact. 7+3
- 6. a) Define sets of first category and second category with two suitable examples.
 - b) Let X, Y be two topological vector spaces, Γ be a collection of continuous linear mappings from X to Y and B is the set of all x ∈ X whose orbits Γ(x) are bounded in Y. If B is of second category in X then prove that B=X and Γ is equicontinuous. 4+6

- 7. Suppose M is a subspace of a topological vector space X, p is a seminorm on X, f is a linear functional on M such that $|f(x)| \le p(x)$ for all $x \in M$. Then show that f extends to a linear functional Δ on X satisfying $|\Delta x| \le p(x)$ for all $x \in X$. 10
- 8. a) State Baire's theorem in a locally compact topological vector space.
 - b) Suppose that X is a topological vector space and X₁ is a separating vector space of linear functionals on X. Then prove that the X₁-topology τ₁ makes X into a locally convex space whose dual space is X₁. 2+8