Ex/SC/MATH/PG/DSE/TH/07/B17/2023

M. Sc. Mathematics Examination, 2023

(2nd Year, 2nd Semester)

MATHEMATICS

PAPER – DSE-07 (B17)

[OPERATOR THEORY II]

Time : 2 hours

Full Marks : 40

The figures in the margin indicate full marks. Notations / Symbols have their usual meaning.

Answer any **four** questions.

All questions carry equal marks.

- 1. i) Let *H* be a complex Hilbert space and $T: H \to H$ be a bounded self-adjoint linear operator. Show that the spectrum $\sigma(T)$ is real.
 - ii) Let $T: H \to H$ be a bounded self adjoint linear operator on a complex Hilbert space *H*. If $M = \sup_{\|x\|=1} \langle Tx, x \rangle$, then show that *M* is a spectral value of *T*. 5+5
- 2. Let $\{P_n\}$ be a monotone increasing sequence of projections defined on a complex Hilbert space *H*. Then show that
 - i) $\{P_n\}$ is strongly operator convergent and the limit operator *P* is a projection on *H*.
 - ii) P projects H onto $P(H) = \overline{\bigcup_{n=1}^{\infty} P_n(H)}$.

[Turn over

- iii) P has the null space $N(P) = \bigcap_{n=1}^{\infty} N(P_n)$. 10
- 3. Let *S* and *T* be two bounded self adjoint linear operators on a complex Hilbert space *H*. If both the operators are positive and ST = TS then prove that *ST* is also positive. 10
- Let T: H → H be a bounded self adjoint linear operator on a complex Hilbert space H and E be the projection from H on to N(T⁺). Then prove that
 - i) E commutes with every bounded self adjoint operator that *T* commutes with.
 - ii) $T^+E = ET^+ = 0, \ T^-E = ET^- = T^-.$
 - iii) $TE = -T^-, T(I-E) = T^+.$
 - iv) $T^+ \ge 0$.
 - $\mathbf{v}) \quad T^- \ge 0 \, .$
- 5. i) Show that the spectrum $\sigma(T)$ of an unbounded self adjoint linear operator $T: \mathcal{D}(T) \to H$ is real and closed, where *H* is a complex Hilbert space and $\mathcal{D}(T)$ is dense in *H*.
 - ii) What happens to the spectrum if T is bounded.
 - 8+2=10
- 6. i) Let $T: H \to H$ be a bounded linear operator on a complex Hilbert space H and $\mathcal{E}=(E_{\lambda})$ be the

corresponding spectral family. Then show that if there is a $\gamma > 0$ such that $\mathcal{E}=(E_{\lambda})$ is constant on the interval $[\lambda_0 - \gamma, \lambda_0 + \gamma]$ then $\lambda_0 \in \rho(T)$.

ii) Show that the differentiation operator $T: \mathcal{D}(T) \to L^2(-\infty, +\infty)$ defined by T(x) = ix', where x' = dx/dt and $\mathcal{D}(T) \subset L^2(-\infty, +\infty)$ is unbounded