Ex/SC/MATH/PG/DSE/TH/06/B16/2023

M. Sc. Mathematics Examination, 2023

(2nd Year, 2nd Semester)

MATHEMATICS

PAPER – DSE-06 (B16)

[OPERATOR ALGEBRA II]

Time: Two hours Full Marks: 40

Symbols / Notations have their usual meanings.

Here, SOT denotes Strong Operator Topology.

Answer *any four* questions. $10\times4=40$

- 1. a) Let H be a Hilbert space and \mathscr{A} be a *-closed unital subalgebra of B(H). Prove that \mathscr{A} is SOT dense in \mathscr{A}'' , where \mathscr{A}'' denotes the double commutant of \mathscr{A} .
 - b) Prove or disprove: Let H be a Hilbert space and $\{T_n\}$ be a sequence in B(H). If $\{T_n\}$ converges to T is SOT, then for any fixed operators A, B in B(H), the sequence $\{AT_nB\}$ converges to ATB in SOT.
- 2. Let (Ω, F, μ) be a σ -finite measure space. Prove that $\left\{M_f: f \in L^\infty\right\}$ is a von Neumann algebra.
- 3. a) Let Σ be a non-empty compact subset of $\mathbb C$ and B_{Σ} be the Borel σ field of Σ . Suppose μ is a finite positive measure on (Σ, B_{Σ}) . Let

[Turn over

 $\pi: C(\Sigma) \to B(L^2(\mu))$ defined by $\pi(f) = M_f$. Prove that π extends uniquely to

$$\tilde{\pi}: L^{\infty}(\Sigma, B_{\Sigma}, \mu) \to B(L^{2}(\Sigma, B_{\Sigma}, \mu))$$

satisfying

- i) $\tilde{\pi}(f) = \pi(f)$ for $f \in C(\Sigma)$ and
- ii) any uniformly norm bounded sequence $\{f_n\}$ in $C(\Sigma)$ converges in measure μ to a function $f \in L^{\infty}(\mu)$ if and only if $\{\tilde{\pi}(f_n)\}$ converges in SOT to $\tilde{\pi}(f)$.
- b) Let H be a Hilbert space and N be the set of bounded normal operators on H. Prove that the map $A \rightarrow A^*$ is continuous in SOT on N.
- 4. a) Let H be a Hilbert space and E be a spectral measure taking values in B(H) on a measurable space (Ω, F) . Prove that for any unit vector $v \in H$, $E_{v,v}$ defined by $E_{v,v}(D) = \langle v, E(D)v \rangle$, $D \in F$ is a probability measure on (Ω, F) .
 - b) Let P, Q be two projections on a Hilbert space H and $x \in H$. Check whether the following sequence

is convergent or not. If it is convergent, then find its limit.

- 5. a) Prove that the function $f(t) = \frac{t}{1+t^2}$ is strongly continuous.
 - b) Let H be a complex seperable Hilbert space. Let C be a unital C* subalgebra of B(H) and let A be the double commutant of C. Prove that the SOT closure of the set of self-adjoint operators in the unit ball of C is the set of self-adjoint elements in the unit ball of A.
 6
- 6. a) Let H, K be Hilbert spaces and $U: H \to K$ be a bounded linear map. If U is a partial isometry then prove that U*U is a projection.
 - b) Let H be a Hilbert space and T be an element of a von Neumann algebra $\mathscr{A} \subseteq B(H)$. Let T = U|T| be the polar decomposition of T. Show the U and |T| are in \mathscr{A} .