M. Sc. Mathematics Examination, 2023
(2nd Year, 2nd Semester)

Mathematics

Paper - DSE-06 (B16)
[Operator Algebra II]
Time : Two hours
Full Marks : 40
Symbols / Notations have their usual meanings.
Here, SOT denotes Strong Operator Topology.

Answer any four questions.

$10 \times 4=40$

1. a) Let H be a Hilbert space and \mathscr{A} be a *-closed unital subalgebra of $B(H)$. Prove that \mathscr{A} is SOT dense in $\mathscr{A}^{\prime \prime}$, where $\mathscr{A}^{\prime \prime}$ denotes the double commutant of \mathscr{A}.

7
b) Prove or disprove: Let H be a Hilbert space and $\left\{T_{n}\right\}$ be a sequence in $B(H)$. If $\left\{T_{n}\right\}$ converges to T is SOT, then for any fixed operators A, B in $B(H)$, the sequence $\left\{A T_{n} B\right\}$ converges to $A T B$ in SOT. 3
2. Let (Ω, F, μ) be a σ-finite measure space. Prove that $\left\{M_{f}: f \in L^{\infty}\right\}$ is a von Neumann algebra.
3. a) Let Σ be a non-empty compact subset of \mathbb{C} and B_{Σ} be the Borel σ field of Σ. Suppose μ is a finite positive measure on $\left(\Sigma, B_{\Sigma}\right)$. Let
$\pi: C(\Sigma) \rightarrow B\left(L^{2}(\mu)\right)$ defined by $\pi(f)=M_{f}$. Prove
that π extends uniquely to

$$
\tilde{\pi}: L^{\infty}\left(\Sigma, B_{\Sigma}, \mu\right) \rightarrow B\left(L^{2}\left(\Sigma, B_{\Sigma}, \mu\right)\right)
$$

satisfying
i) $\quad \tilde{\pi}(f)=\pi(f)$ for $f \in C(\Sigma)$ and
ii) any uniformly norm bounded sequence $\left\{f_{n}\right\}$ in $C(\Sigma)$ converges in measure μ to a function $f \in L^{\infty}(\mu)$ if and only if $\left\{\tilde{\pi}\left(f_{n}\right)\right\}$ converges in SOT to $\tilde{\pi}(f)$. 7
b) Let H be a Hilbert space and N be the set of bounded normal operators on H. Prove that the map $A \rightarrow A^{*}$ is continuous in SOT on N. 3
4. a) Let H be a Hilbert space and E be a spectral measure taking values in $\mathrm{B}(\mathrm{H})$ on a measurable space (Ω, F). Prove that for any unit vector $v \in H, E_{v, v}$ defined by $E_{v, v}(D)=\langle v, E(D) v\rangle, \quad D \in F \quad$ is a probability measure on (Ω, F).
b) Let P, Q be two projections on a Hilbert space H and $x \in H$. Check whether the following sequence

$$
x, P x, Q P x, P Q P x, Q P Q P x, \ldots
$$

is convergent or not. If it is convergent, then find its limit.
5. a) Prove that the function $f(t)=\frac{t}{1+t^{2}}$ is strongly continuous.

4
b) Let H be a complex seperable Hilbert space. Let C be a unital C^{*} subalgebra of $B(H)$ and let \mathscr{A} be the double commutant of C. Prove that the SOT closure of the set of self-adjoint operators in the unit ball of C is the set of self-adjoint elements in the unit ball of A.
6. a) Let H, K be Hilbert spaces and $U: H \rightarrow K$ be a bounded linear map. If U is a partial isometry then prove that $U^{*} U$ is a projection.

3
b) Let H be a Hilbert space and T be an element of a von Neumann algebra $\mathscr{A} \subseteq B(H)$. Let $T=U|T|$ be the polar decomposition of T. Show the U and $|T|$ are in \mathscr{A}. 7

