M.Sc. Mathematics 2nd year 1st Semester examination, 2023 Subject: Operator Algebra I Paper: DSE-03 (A16)

Time: Two hours Full Marks: 40

Notations: Here, the ground field for all algebras is the complex field \mathbb{C} and $\sigma_{\mathscr{A}}(a)$ denotes the spectrum of the element a with respect to the Banach algebra / C^* -algebra \mathscr{A} .

Answer any four questions $(10 \times 4 = 40)$

- 1. (a) Let \mathscr{A} be a unital Banach algebra and $a \in \mathscr{A}$. Prove that $\sigma_{\mathscr{A}}(a) \neq \emptyset$.
 - (b) Prove that every Banach division algebra is isometrically isomorphic to C.
 - (c) Let \mathscr{A} be a unital Banach algebra and $a, b \in \mathscr{A}$. Prove that $\sigma_{\mathscr{A}}(ab) \setminus \{0\} = \sigma_{\mathscr{A}}(ba) \setminus \{0\}$ [5+2+3]
- 2. (a) If I is a maximal ideal of a unital Banach algebra \mathcal{A} , then prove that I is closed.
 - (b) Let \mathscr{A} be a unital Banach algebra and $\mu_{\mathscr{A}}$ be the set of characters on \mathscr{A} . If $\phi \in \mu_{\mathscr{A}}$, then prove that $||\phi|| = 1$.
 - (c) Let \mathscr{A} and \mathscr{B} be unital Banach algebras with identities $1_{\mathscr{A}}$, $1_{\mathscr{B}}$ respectively. Let $\Phi: \mathscr{A} \to \mathscr{B}$ be a homomorphism such that $\Phi(1_{\mathscr{A}}) = 1_{\mathscr{B}}$. Prove that $\sigma_{\mathscr{B}}(\Phi(a)) \subseteq \sigma_{\mathscr{A}}(a)$.
- 3. (a) Let \mathscr{A} be a unital commutative C^* -algebra and $\mu_{\mathscr{A}}$ be the set of characters on \mathscr{A} . Prove that the function sending a in \mathscr{A} to \hat{a} in $C(\mu_{\mathscr{A}})$ defined by $\hat{a}(\phi) = \phi(a)$, $\phi \in \mu_{\mathscr{A}}$ is an isometric *-isomorphism from \mathscr{A} to $C(\mu_{\mathscr{A}})$, where $C(\mu_{\mathscr{A}})$ denotes the set of continuous functions on $\mu_{\mathscr{A}}$.
 - (b) Let \mathscr{A} and \mathscr{B} be two unital C^* -algebras and $\pi: \mathscr{A} \to \mathscr{B}$ be a unital *-homomorphism. Prove that π is contractive. [7+3]
- 4. (a) Let a be a normal element in a unital C^* -algebra \mathscr{A} and $f: \sigma_{\mathscr{A}}(a) \to \mathbb{C}$ be any continuous function. Prove that $\sigma_{\mathscr{A}}(f(a)) = \{f(\lambda) : \lambda \in \sigma_{\mathscr{A}}(a)\}.$
 - (b) Let a be a normal element in a unital C^* -algebra \mathscr{A} . Prove that a is unitary if and only if $\sigma_{\mathscr{A}}(a) \subseteq \{z \in \mathbb{C} : |z| = 1\}$.
 - (c) Let \mathscr{A} be a unital C^* -algebra with identity $1_{\mathscr{A}}$ and ϕ be a linear functional on \mathscr{A} such that $||\dot{\phi}|| = \phi(1_{\mathscr{A}}) = 1$. Prove that ϕ is a state. [3+3+4]

[Turn over

- 5. (a) Let a be an element in a unital C^* -algebra \mathscr{A} with identity $1_{\mathscr{A}}$. Prove that $||a||^2 \cdot 1_{\mathscr{A}} a^*a$ is a positive element of \mathscr{A} .
 - (b) Prove that for a unital C^* -algebra \mathscr{A} there exists a pair (H, π) , where H is a complex Hilbert space and $\pi : \mathscr{A} \to B(H)$ is an injective *-homomorphism.

[4+6]

- 6. (a) Let \mathscr{A} be a unital C^* -algebra and $a \in \mathscr{A}$ be in the unit ball of \mathscr{A} such that $||a|| < 1 \frac{2}{n}$, for some $n \in \mathbb{N}$ with $n \geq 3$. Prove that there exist n unitaries u_1, u_2, \ldots, u_n in \mathscr{A} such that $a = \frac{u_1 + u_2 + \cdots + u_n}{n}$.
 - (b) Prove that every element in a unital C^* -algebra is a positive multiple of sum of three unitaries.
 - (c) Prove or disprove: If a and b are two positive elements in a unital C^* -algebra \mathscr{A} , then a+b is positive. [6+2+2]