Ex/SC/MATH/PG/DSE/TH/02A/2023
Master of Science Examination, 2023

(2nd Year, 1st Semester)

MATHEMATICS
UNIT - DSE 02
[Numerical Analysis - I (Theory)]
Time : 1.30 Hours
Full Marks : 24

Symbols/Notations have their usual meaning.
Use separate answer script for each part.

GROUP - A

(16 marks)
Answer any two questions.

1. (a) Determine the operational count of Cholesky method for solving a linear system $\mathrm{AX}=\mathrm{b}$, where A is an nx coefficient matrix.
(b) Consider a system of equations

$$
\begin{gathered}
x_{1}-k x_{2}=2, \\
-k x_{1}+x_{2}=5,
\end{gathered}
$$

Where k is real constant. Then
(i) for what values of k , the Jacobi and GaussSeidel iteration methods converge?
(ii) for $\mathrm{k}=0.25$, determine the optimal relaxation parameter ω in SOR method.
$4+2+2$
2. (a) For any arbitrary $X^{(0)} \in \mathbb{R}^{n}$, prove that the sequence $\left\{\mathrm{X}^{(\mathrm{k})}\right\}_{\mathrm{k}=0}^{\infty}$ of approximations defined by

$$
\mathrm{X}^{(\mathrm{k})}=\mathrm{HX}^{(\mathrm{k}-1)}+\mathrm{C}, \forall \mathrm{k} \geq 1
$$

converges to the unique solution of $\mathrm{AX}=\mathrm{b}$ iff $\rho(\mathrm{H})<1$.
(b) Suppose $\mathrm{AX}=\mathrm{b}$ and $\tilde{\mathrm{A}} \tilde{\mathrm{X}}=\tilde{\mathrm{b}}$ are two linear systems, where $X(t)$ be the solution of the system $\mathrm{A}(\mathrm{t}) \mathrm{X}(\mathrm{t})=\mathrm{b}(\mathrm{t})$. Then prove that $\frac{\|\mathrm{X}-\tilde{\mathrm{X}}\|}{\|\mathrm{X}\|}\left(1-\kappa(\mathrm{A}) \frac{\|\mathrm{A}-\tilde{\mathrm{A}}\|}{\|\mathrm{A}\|}\right) \leq \kappa(\mathrm{A})\left(\frac{\|\mathrm{b}-\tilde{\mathrm{b}}\|}{\|\mathrm{b}\|}+\frac{\|\mathrm{A}-\tilde{\mathrm{A}}\|}{\|\mathrm{A}\|}\right)$
where $\kappa(A)=\|A\| .\left\|A^{-1}\right\|$.
3. Define cubic spline interpolation and hence construct a natural cubic spline that passes through the points $(1,3)$, $(2,4)$ and $(3,2)$.
$3+5$

GROUP - B

(8 marks)
4. (a) Let $\mathrm{A}=\left(\mathrm{a}_{\mathrm{ij}}\right)$ be a square matrix of order n whose eigenvalues are $\lambda_{i}(i=1,2, \ldots, n)$. If P_{k} be the sum of the moduli of the elements along the k th row excluding the diagonal element a_{kk}, then prove that
every eigenvalue of A lies inside or on the boundary of at least one of the circles $\left|\lambda_{i}-a_{k k}\right|=P_{k}$, $\mathrm{k}=1,2, \ldots, \mathrm{n}$.
(b) Estimate the eigenvalues of the following matrix using Gerschgorin bounds :

$$
\left(\begin{array}{cccc}
10 & -1 & 0 & 1 \\
0.2 & 8 & 0.2 & 0.2 \\
1 & 1 & 2 & 1 \\
-1 & -1 & -1 & -11
\end{array}\right)
$$

5. For the matrix

$$
\left(\begin{array}{ccc}
1 & 2 & -2 \\
1 & 1 & 1 \\
1 & 3 & -1
\end{array}\right)
$$

(i) find all the eigenvalues and the corresponding eigenvectors.
(ii) verify that $S^{-1} A S$ is a diagonal matrix, where S is the matrix of eigenvectors.

