Ex/SC/MATH/PG/DSE/TH/05/B/2023

M. Sc. MATHEMATICS EXAMINATION, 2023

(2nd Year, 2nd Semester)

MATHEMATICS

PAPER – DSE-05 (UNIT 4-1)

[ADVANCED FUNCTIONAL ANALYSIS]

Time : Two hours

Full Marks : 40

Answer any four questions.

- a) Is the real number space IR with cofinite topology a topological vector space? Answer with reasons.
 - b) Let K and C be compact and closed subsets of a topological vector space X with $K \cap C = \phi$. Show that there is a nbd V of θ such that $(K+V)\cap(C+V) = \phi$.
 - c) In a topological vector space X, for any $A \subset X$ show that $\overline{A} = \bigcap (A+V)$ where V runs over all nbds of θ . 2+6+2
- 2. a) Prove that every convex nbd of θ in a topological vector space X contains a convex balanced nbd of θ .
 - b) Define a bounded set in a topological vector space. Prove that A subset E of a topological vector space X is bounded iff for any sequence $\{x_n\}_n$ in E and a sequence of scalers $\{\alpha_n\}_n$ with $\alpha_n \to 0$ as $n \to \infty$, $\alpha_n x_n \to \theta$ as $n \to \infty$. 5+5

[Turn over

- 3. Let Δ be a linear functional on a topological vector space X and assume that $\Delta x \neq 0$ for some $x \in X$. Then prove that following are equivalent.
 - i) Δ is continuous.
 - ii) The null space $N(\Delta)$ is closed.
 - iii) $N(\Delta)$ is not dense in X.
 - iv) Δ is bounded on some nbd V of θ . 10
- 4. a) Let X and Y be two topological vector spaces, Γ be a collection of continuous linear mappings from X to Y and B is the set of all x ∈ X whose orbits Γ(x) are bounded in Y. If B is of second category in X then prove that B=X and Γ is equicontinuous.
 - b) Let X, Y be topological vector spaces and $\{\Delta_n\}_n$ a sequence of continuous linear mappings from X to Y. Let C be the set of all $x \in X$ for which $\{\Delta_n x\}_n$ is a Cauchy sequence in Y. If C is of 2nd category then show that $\overline{C} = X$.
- 5. a) Let M be a subspace of a real topological vector space X,
 - i) $p: X \to R$ satisfies $p(x+y) \le p(x) + p(y)$ and p(tx) = tp(x) for all $x, y \in X$ and $t \ge 0$.
 - ii) $f: M \to R$ is linear and $f(x) \le p(x)$ on M. Then show that there exists a linear functional

- $\Delta: X \to R$ such that $\Delta(x) = f(x)$ for $x \in M$ and $-p(x) \le \Delta(x) \le p(x)$ for all $x \in X$.
- b) Give an example to show that sum of two closed sets in a topological vector space may not be closed.

8+2

- 6. a) Suppose Y is a subspace of a topological vector space X and Y is an F-space in the topology inherited from X. Show that Y is a closed subspace of X.
 - b) If f is a continuous linear functional on a subspace M of a locally convex topological vector space X, then prove that there exists $\Delta \in X^*$ such that $\Delta = f$ on M. 4+6