Ex/SC/MATH/PG/DSE/TH/03/A30/2023
Master of Science Examination, 2023

(2nd Year, 1st Semester)
 MATHEMATICS
 UNIT - DSE 04 A30
 [Number Theory]

Symbols have usual meanings, if not mentioned otherwise

Answer Q. no. 1 and any three from the rest.

1. (a) Show that in any integral domain a prime element is irreducible.
(b) Show that 3 is divisible by $(1-\omega)^{2}$ in $\mathbb{Z}[\omega]$.
(c) Show that $v(n)$ is odd if and only if n is a square.
(d) If n is not a prime, show that $(\mathrm{n}-1)$! $\equiv 0(\mathrm{n})$, except when $\mathrm{n}=4$.
$2+2+3+3=10$
2. (a) Show that the equation $7 x^{2}+2=y^{3}$ has no solution in integers.
(b) Solve the system of congruences $x \equiv 1(7), x \equiv 4(9)$, $x \equiv 3(5)$ with the help of Chinese Remainder Theorem.
(c) Let p be an odd prime. Show that a is a primitive root modulo p if and only if $a^{(p-1) / q} \neq 1(p)$ for all prime divisors q of $\mathrm{p}-1$. $2+3+5=10$
3. (a) Suppose that a is a primitive root modulo p^{n}, where p is an odd prime. Show that a is a primitive root modulo p .
(b) Find the solutions to the contruences $x^{3} \equiv 1(19)$ and $x^{4} \equiv 1(17)$.
$5+5=10$
4. (a) Show that the minimal polynomial of $\sqrt[3]{2}$ is x^{3-2} over \mathbb{Q}.
(b) Use the Jacobi symbol to determine
$\left(\frac{215}{761}\right),\left(\frac{514}{1093}\right)$, and $\left(\frac{401}{757}\right) . \quad 5+5=10$
$\left(\frac{215}{761}\right),\left(\frac{514}{1093}\right)$, and $\left(\frac{401}{757}\right) . \quad 5+5=10$
5. (a) Suppose that p is a prime with $\mathrm{p} \equiv 1(3)$. Prove that
there are integers A and B such that $4 p=A^{2}+27 B^{2}$. If $\mathrm{A} \equiv 1(3)$, then prove that A is uniquely determined, and $\mathrm{N}\left(\mathrm{x}^{3}+\mathrm{y}^{3}=1\right)=\mathrm{p}-2+\mathrm{A}$.
(b) Find the number of solutions to the equation
$\mathrm{x}^{3}+\mathrm{y}^{3}=1$ in Fp for $\mathrm{p}=19,37$, and $97 . \quad 5+5=10$
6. (a) If π is a prime in D, prove that $x^{3} \equiv 2(\pi)$ is solvable if and only if $\pi \equiv 1(2)$.
(b) Suppose p is a rational prime such that $\mathrm{p} \equiv 1(3)$. Prove that $\mathrm{x}^{3} \equiv 2(\mathrm{p})$ is solvable if and only if there are integers C and D such that $p=C^{2}+27 D^{2}$.
(c) Show that
(i) $\mathrm{x}^{3} \equiv 2(7)$ is not solvable, and
(ii) $\mathrm{x}^{3} \equiv 2(31)$ is solvable.
$3+4+3=10$
