EX/SC/MATH/PG/DSE/TH/03/A7/2023

Master of Science Examination, 2023 (2rd Year, 1st Semester)

MATHEMATICS

DSE-03 (A7) (Nonlinear and Dynamic Programming)

Full Marks:40

Time: Two hours

The figures in the margin indicate full marks. Symbols / Notations have their usual meanings

Use separate answer script for each Group

Group A (20 Marks) Answer any two questions

- 1(a) Let $f: S \to R$ be a differential function on an open convex subset S of \mathbb{R}^n . Then show that f is a convex function iff $f(x_1) f(x_2) \ge (x_1 x_2)^T \nabla f(x_2), \quad \forall x_1, x_2 \in S$.
- (b) Use Lagrange multiplier method to solve Minimize $f(x, y) = \frac{x^3}{3} - \frac{3y^2}{2} + 2x$ subject to x - y = 0.

S

5 + 5

2(a) Examine whether the following problem is a convex programming problem (CPP) or not: Minimize $x_1 + x_2$

subject to $x_1^2 + x_2^2 \le 1$ and $x_1^2 \le x_2$.

(b) Let S be a non-empty open convex subset of \mathbb{R}^n and $f: S \to \mathbb{R}$ be twice differentiable on S. Then show that f is a convex function on S iff the Hesssian matrix $\nabla^2 f(x)$ is positive semi-definite $\forall x \in S$.

4 + 6

[Turn over

- 3(a) Solve the following optimization problem using Kuhn-Tucker (KT) conditions: Maximize $z = 5 + 8x_1 + 12x_2 - 4x_1^2 - 4x_2^2 - 4x_3^2$ subject to $x_1 + x_2 \le 1$ $2x_1 + 3x_2 \le 6$.
- (b) Minimize $f(x_1, x_2) = \frac{1}{3}(x_1 + 1)^3 + x_2$ subject to $x_1 \ge 1$, $x_2 \ge 0$, using interior penalty function method with the calculus method of unconstrained minimization.

6 + 4

- 4(a) Explain quasiconvex and pseudoconvex functions with examples.
- (b) Using Wolfe's method, solve the following quadratic programming problem (QPP): Maximize $z = 2x_1 + x_2 - x_1^2$ subject to $2x_1 + 3x_2 \le 6$ $2x_1 + x_2 \le 4$ $x_1, x_2 \ge 0$.

[3]

Group B (20 Marks)

Attempt any *two* questions. Each question carries 10 marks.

A thief enters a house to rob it. He can carry a maximum weight of 5 kgs into his bag. There are 4 items in the house with the following weights and values. What items should he take if he cannot divide any item into pieces? [Hint: Use DP approach to solve this 0/1 kmp sack problem] 10

Item	Weight (kg)	Value (rupees)
Mirror	2	300
Silver Nugget	3	400
Painting	4	500
Vase	5	600

Write a short note on Longest Common Subsquence problem with its uses and solve the following LCS problem using DP approach.
 10

S = ABAZDC

- T = BACBAD
- Find a shortest path from (a) to (f) in the following network with respective distances (in kms). Is this shortest path unique?
 10

