Master of Science Examination, 2023
 (2rd Year, 1st Semester)

MATHEMATICS

DSE-03 (A7)
(Nonlinear and Dynamic Programming)

Full Marks:40

Time: Two hours

The figures in the margin indicate full marks.
Symbols / Notations have their usual meanings
Use separate answer script for each Group
Group A (20 Marks)
Answer any two questions

1(a) Let $f: S \rightarrow R$ be a differential function on an open convex subset S of R^{n}. Then show that f is a convex function iff $f\left(x_{1}\right)-f\left(x_{2}\right) \geq\left(x_{1}-x_{2}\right)^{T} \nabla f\left(x_{2}\right), \forall x_{1}, x_{2} \in S$.
(b) Use Lagrange multiplier method to solve

Minimize $f(x, y)=\frac{x^{3}}{3}-\frac{3 y^{2}}{2}+2 x$
subject to $x-y=0$.

$$
5+5
$$

2(a) Examine whether the following problem is a convex programming problem (CPP) or not:
Minimize $x_{1}+x_{2}$
subject to $x_{1}^{2}+x_{2}^{2} \leq 1$ and $x_{1}^{2} \leq x_{2}$.
(b) Let S be a non-empty open convex subset of R^{n} and $f: S \rightarrow R$ be twice differentiable on S. Then show that f is a convex function on S iff the Hesssian matrix $\nabla^{2} f(x)$ is positive semi-definite $\forall x \in S$.

$$
4+6
$$

3(a) Solve the following optimization problem using Kuhn-Tucker (KT) conditions: Maximize $z=5+8 x_{1}+12 x_{2}-4 x_{1}^{2}-4 x_{2}^{2}-4 x_{3}^{2}$
subject to $x_{1}+x_{2} \leq 1$
$2 x_{1}+3 x_{2} \leq 6$.
(b) Minimize $f\left(x_{1}, x_{2}\right)=\frac{1}{3}\left(x_{1}+1\right)^{3}+x_{2}$ subject to $x_{1} \geq 1, x_{2} \geq 0$,
using interior penalty function method with the calculus method of unconstrained minimization.

$$
6+4
$$

4(a) Explain quasiconvex and pseudoconvex functions with examples.
(b) Using Wolfe's method, solve the following quadratic programming problem (QPP):

Maximize $z=2 x_{1}+x_{2}-x_{1}^{2}$
subject to
$2 x_{1}+3 x_{2} \leq 6$
$2 x_{1}+x_{2} \leq 4$
$x_{1}, x_{2} \geq 0$.

Group B (20 Marks)

Attempt any two questions. Each question carries 10 marks.

1. A thief enters a house to rob it. He can carry a maximum weight of 5 kgs into his bag. There are 4 items in the house with the following weights and values. What items should he take if he cannot divide any item into pieces? [Hint: Use DP approach to solve this $0 / 1 \mathrm{kmp}$ sack problem] 10

Item	Weight (kg)	Value (rupees)
Mirror	2	300
Silver Nugget	3	400
Painting	4	500
Vase	5	600

2. Write a short note on Longest Common Subsquence problem with its uses and solve the following LCS problem using DP approach.

$$
\begin{aligned}
& S=A B A Z D C \\
& T=B A C B A D
\end{aligned}
$$

3. Find a shortest path from (a) to (f) in the following network with respective distances (in rms). Is this shortest path unique?

