INPUT: A positive odd integer N.
QUESTION: Is N a composite number?
is in $R P$.
$5+5=10$
4. Consider a special case of the Polly Cracker with a graph $G=(V, E)$ as the public key, and a valid 3-Coloring of G as its private key. If $B=B(G)=B_{1} \cup B_{2} \cup B_{3}$ denotes the basis of polynomials in the variables $\left\{t_{v, i}: v \in V, 1 \leq i \leq 3\right\}$ where

```
\(B_{1}=\left\{t_{v, 1}+t_{v, 2}+t_{v, 3}-1: v \in V\right\} ;\)
\(B_{2}=\left\{t_{v, i} t_{v, j} \quad: v \in V, 1 \leq i<j \leq 3\right\} ;\)
\(B_{3}=\left\{t_{u, i} t_{v, i} \quad: u v \in E, 1 \leq i \leq 3\right\}\)
```

a) Then construct a one-one correspondence between the private keys and points at which B vanishes.
b) Show that $t^{2}-t$ belongs to the Poly Cracker's ideal J for each variable t.
$5+5=10$

M. Sc. Mathematics Examination, 2023

(2nd Year, 2nd Semester)

Mathematics

Paper - DSE-07
[Introduction to Cryptography]
Time : $1 \frac{1}{2}$ hours
Full Marks : 30
(Symbols have usual meanings, if not mentioned otherwise) Attempt $\mathbf{Q} .1$ and any two from the rest.

1. a) What do you mean by one-way function and has function in the cryptography?
b) Explain with an example: Secret sharing.
c) Distinguish between cracking problem and promise problem in a cryptosystem? $3+3+4=10$
2. a) Suppose that p and q are distinct primes, and d and e are two positive integers such that $e d \equiv 1 \bmod l$ where $l=\operatorname{lcm}(p-1, q-1)$. Let $n=p q$. Prove that for any integer m one has $m^{e d}=m \bmod n$.
b) Describe the encryption and decryption methods in the $R S A$ cryptosystem.
$6+4=10$
3. a) Describe Rabin's probabilistic primality test.
b) What do you mean by the complexity class $R P$? Using Rabin's probabilistic primality test, show that the following compositeness problem:
