Master Of Science Examination - 2023

(Second Year, First Semester)

Mathematics

Core 11

(Integral Equation, Integral Transform and Calculus of variation)

Full Marks: 40 Time: 2 Hours

Symbols/Notations have their usual meaning
Use separate answerscripts for each part

Group A

(24 Marks)

Answer Question no 1 and any TWO from the rest

- 1. Answer any ONE of the following
- a) Find the extremal of the functional

$$J[y,z] = \int_0^{\pi/2} [1 + y'^2 + z'^2 + 2yz] dx,$$
 subject to $y(0) = 0$, $y(\pi/2) = 1$, $z(0) = 0$, $z(\pi/2) = 1$. (8)

b) Find the extremal of the functional

$$J[y] = \int_0^1 [1 + y''^2] dx,$$
 subject to $y(0) = 0$, $y'(0) = 1$ $y(1) = 1$, $y'(1) = 1$. (8)

2. Find the value(s) of λ for which the unique solution of

$$\phi(x)=x+\lambda\int_0^1(1+x+t)\phi(t)dt, \quad 0\leq x\leq 1$$
 exists. Hence find the solution. (8)

[Turn over

- 3. Prove the following:
- a) For all Hermitian kernels k(x, t), the following hold.

$$(K\phi,\psi)=(\phi,K\psi),$$

where (ϕ, ψ) denotes the inner product of two square-integrable functions ϕ and ψ and $K\phi(x)=\int_a^b k(x,t)\phi(t)dt,\ a\leq x\leq b.$

- b) The eigenfunctions of a symmetric kernel corresponding to different eigenvalues, are orthogonal.
- 4. Find the iterated kernels and $k_n(x,t)$ and the resolvent kernel $R(x,t;\lambda)$ for the following integral equation $\phi(x) = \frac{5x}{6} + \frac{1}{2} \int_0^1 xt \ \phi(t) \ dt$, 0 < x < 1. (8)

Ref. No.: Ex/SC/MATH/PG/CORE/TH/11/2023

Master of Science Examination - 2023

(Second Year, First Semester)

Mathematics

Core 11

(Integral Equations, Integral Transforms and Calculus of Variations)

Time: 2 Hours Full Marks: 40

The figures in the margin indicate full marks.

Symbols / Notations have their usual meanings.

Group - B (Marks: 16)

(Integral Transforms)

Answer any two questions.

1. (a) Find the Fourier transform of f(x) = 1, $-\infty < x < \infty$ by considering the notion of generalized Dirac delta function.

(b) Show that
$$H_n[f(r); \rho] = \frac{a^{n+1}}{\rho} J_{n+1}(\rho a)$$
, where $f(r) = \begin{cases} r^n & r \leq a \\ 0 & r > a \end{cases}$ and hence using the Parseval relation of Hankel transform to evaluate
$$\int_0^\infty \frac{J_{n+1}(ar)J_{n+1}(br)}{r} dr \text{ for } n > -\frac{1}{2}, \ 0 < a < b.$$
 [3+5]

2. (a) State and prove convolution theorem for Laplace transform.

(b) Find
$$L\{erfc(\frac{a}{\sqrt{t}})\}$$
, where $erfc(z) = \frac{2}{\sqrt{\pi}} \int_z^{\infty} e^{-x^2} dx$. [4+4]

- 3. (a) Show that $\lim_{|s|\to\infty} |F(s)| = 0$, where $F(s) = F\{f(x)\}$.
 - (b) Using Fourier transform to solve the partial differential equation

$$\frac{\partial^2 \phi}{\partial x^2} - \frac{1}{a^2} \frac{\partial \phi}{\partial t} = 0, \; -\infty < x < \infty, \; \; t \geq 0$$

with boundary conditions $\phi(x,y)$, $\frac{\partial \phi}{\partial x} \to 0$ as $|x| \to \infty$ and initial condition $\phi(x,0) = f(x)$, $-\infty < x < \infty$, where f(x) is prescribed function of x and its Fourier transform exists.