5. a) If a is a complex number then find Z transform of

$$f(n) = \begin{cases} a^n, & \text{for } n \ge 0; \\ 0, & \text{otherwise.} \end{cases}$$

- b) Prove that $\mathcal{Z}[nf(n)] = -z \frac{dF(z)}{dz}$. 3+2
- 6. If f(t) is piecewise continuous and is of exponential order $O(e^{ct})$, then prove that its Laplace transform F(p) satisfies

i)
$$\lim_{|p|\to\infty} pF(p) = \lim_{t\to 0+} f(t) = f(0)$$

ii)
$$\lim_{|p|\to 0} pF(p) = \lim_{t\to\infty} f(t).$$
 2+3

7. Find
$$\mathcal{L}[er f(t)]$$
 and $\mathcal{L}[er fc(\frac{a}{\sqrt{t}})]$. 2+3

M. Sc. Mathematics Examination, 2023

(2nd Year, 2nd Semester)

MATHEMATICS

PAPER - 4.2

[INTEGRAL EQUATION AND INTEGRAL TRANSFORM]

Time: 2 hours Full Marks: 50

The figures in the margin indicate full marks. (Symbols and notations have their usual meanings)

(Use a separate Answer-Script for each Part)

Part - I (Marks: 25)

Answer **Q.No.1** and *any two* from the rest.

- 1. Define symmetric kernel with example.
- 2. a) If f is a continuous function on [a, b] and k(x,t) is a continuous function on $\mathbb{R} = \{(x,t); a \le x, t \le b\}$ and $\phi_0(x)$ is any function continuous on [a, b] and for $x \in [a,b]$, $\phi_n(x) = f(x) + \lambda \int_a^b k(x.t) \phi_{n-1}(t) dt$ (n = 1,2,3,...), then show that the sequence $\{\phi_n(x)\}$ converges uniformly to the unique continuous solution of the integral equation $u(x) = f(x) + \lambda \int_a^b k(x,t) u(t) dt$ for finite value of λ provided $|\lambda| M(b-a) < 1$,

where
$$M = \sup \{ |k(x,t)|; (x,t) \in R \}$$
.

b) Convert the differential equation

$$\frac{d^2y}{dx^2} - 2x\frac{dy}{dx} - 3y = 0 \text{ with } b(0) = 1, b'(0) = 0 \text{ to}$$

an integral equation. 8+4

- 2. a) State and prove Fredholm's first fundamental relation.
 - b) Find non-trivial solutions of

$$\phi(x) = \lambda \int_0^1 \left(3 - \frac{3x}{2} \right) t \, \phi(t) dt, \, 0 < x < 1.$$
 7+5

3. a) Use Hilbert-Schmidt theorem, to solve the following integral equation

$$\phi(x) = f(x) + \lambda \int_0^1 k(x,t) \phi(t) dt, \ 0 \le x \le 1$$

when the kernel
$$k(x,t) = \begin{cases} x(1-t) & x < t \\ t(1-x) & x \ge t \end{cases}$$
.

- b) Show that every eigenvalue of a symmetric kernel is real.
- c) Define index of a root of $D(\lambda) = 0$. 7+3+2

Answer any five questions.

1. Use Fourier transform suitably to solve the following boundary value problem for $\phi(x, y)$.

$$\phi_{xx} + \phi_{yy} = 0$$
, $0 < x < \infty$, $y > 0$,

 $\phi(0,y) = 0$, $\phi(x,0) = f(x)$, where f(x) is some known function of x and $\phi(x,y) \to 0$ as $\sqrt{x^2 + y^2} \to \infty$.

Hence find $\phi(x, y)$ when f(x) = 1. 4+1

2. Let $\mathcal{F}_c[f(x)] \equiv F_c(s) = \sqrt{\frac{2}{\pi}} \int_0^\infty f(x) \cos sx dx$ and $\mathcal{F}_c[g(x)] \equiv G_c(s) = \sqrt{\frac{2}{\pi}} \int_0^\infty g(x) \cos sx dx$, then show that $\int_0^\infty F_c(s) G_c(s) ds = \int_0^\infty f(t) g(t) dt$.

Hence show that $\int_0^\infty |F_c(s)|^2 ds = \int_0^\infty |f(x)|^2 dx$.

- 3. a) Derive Mellin Transform together with its inverse from Fourier Integral Theorem.
 - b) Prove that if $\lim_{x \to \infty} x^8 f(x) = 0$ then $M\left[\int_0^x f(t)dt; s\right] = -\frac{F(s+1)}{s}.$ 3+2
- 4. a) Find Hankel transform of order zero of $\frac{\sin ar}{r}$, a > 0.
 - b) If $F_{\nu}(\rho) \equiv \mathcal{H}_{\nu}[f(r)]$ and $G_{\nu}(\rho) \equiv \mathcal{H}_{\nu}[f(r)]$ then prove that

$$\int_{0}^{\infty} \rho F_{\nu}(\rho) G_{\nu}(\rho) d\rho = \int_{0}^{\infty} r f(r) g(r) dr. \qquad 3+2$$