5. a) If a is a complex number then find Z transform of

$$
f(n)=\left\{\begin{array}{cc}
a^{n}, & \text { for } n \geq 0 \\
0, & \text { otherwise }
\end{array}\right.
$$

b) Prove that $\mathcal{Z}[n f(n)]=-z \frac{d F(z)}{d z}$.
6. If $f(t)$ is piecewise continuous and is of exponential order $O\left(e^{c t}\right)$, then prove that its Laplace transform $F(p)$ satisfies
i) $\lim _{|p| \rightarrow \infty} p F(p)=\lim _{t \rightarrow 0+} f(t)=f(0)$
ii) $\lim _{|p| \rightarrow 0} p F(p)=\lim _{t \rightarrow \infty} f(t)$. $2+3$
7. Find $\mathcal{L}[\operatorname{er} f(t)]$ and $\mathcal{L}\left[\operatorname{erfc}\left(\frac{a}{\sqrt{t}}\right)\right]$.

M. Sc. Mathematics Examination, 2023

(2nd Year, 2nd Semester)

Mathematics
 Paper - 4.2

[Integral Equation and Integral Transform]
Time : 2 hours
Full Marks : 50
The figures in the margin indicate full marks.
(Symbols and notations have their usual meanings)
(Use a separate Answer-Script for each Part)

Part - I (Marks: 25)

Answer Q.No. 1 and any two from the rest.

1. Define symmetric kernel with example.
2. a) If f is a continuous function on $[a, b]$ and $k(x, t)$ is a continuous function on $\mathbb{R}=\{(x, t) ; a \leq x, t \leq b\}$ and $\phi_{0}(x)$ is any function continuous on $[a, b]$ and for $x \in[a, b], \quad \phi_{n}(x)=f(x)+\lambda \int_{a}^{b} k(x . t) \phi_{n-1}(t) d t$ $(n=1,2,3, \ldots)$, then show that the sequence $\left\{\phi_{n}(x)\right\}$ converges uniformly to the unique continuous solution of the integral equation $u(x)=f(x)+\lambda \int_{a}^{b} k(x, t) u(t) d t$ for finite value of λ provided $|\lambda| M(b-a)<1$,
where $M=\sup \{|k(x, t)| ;(x, t) \in R\}$.
b) Convert the differential equation
$\frac{d^{2} y}{d x^{2}}-2 x \frac{d y}{d x}-3 y=0$ with $b(0)=1, b^{\prime}(0)=0$ to
an integral equation.
3. a) State and prove Fredholm's first fundamental relation.
b) Find non-trivial solutions of

$$
\phi(x)=\lambda \int_{0}^{1}\left(3-\frac{3 x}{2}\right) t \phi(t) d t, 0<x<1 .
$$

3. a) Use Hilbert-Schmiidt theorem, to solve the following integral equation

$$
\phi(x)=f(x)+\lambda \int_{0}^{1} k(x, t) \phi(t) d t, 0 \leq x \leq 1
$$

when the kernel $k(x, t)=\left\{\begin{array}{ll}x(1-t) & x<t \\ t(1-x) & x \geq t\end{array}\right.$.
b) Show that every eigenvalue of a symmetric kernel is real.
c) Define index of a root of $D(\lambda)=0$. 7+3+2

Part - II (Marks: 25)

Answer any five questions.

1. Use Fourier transform suitably to solve the following boundary value problem for $\phi(x, y)$.

$$
\phi_{x x}+\phi_{y y}=0,0<x<\infty, y>0,
$$

$\phi(0, y)=0, \phi(x, 0)=f(x)$, where $f(x)$ is some known function of x and $\phi(x, y) \rightarrow 0$ as $\sqrt{x^{2}+y^{2}} \rightarrow \infty$.

Hence find $\phi(x, y)$ when $f(x)=1$.
2. Let $\mathcal{F}_{c}[f(x)] \equiv F_{c}(s)=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(x) \cos s x d x$ and $\mathcal{F}_{c}[g(x)] \equiv G_{c}(s)=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} g(x) \cos s x d x$, then show that $\int_{0}^{\infty} F_{c}(s) G_{c}(s) d s=\int_{0}^{\infty} f(t) g(t) d t$.

Hence show that $\int_{0}^{\infty}\left|F_{c}(s)\right|^{2} d s=\int_{0}^{\infty}|f(x)|^{2} d x$.
3. a) Derive Mellin Transform together with its inverse from Fourier Integral Theorem.
b) Prove that if $\lim _{x \rightarrow \infty} x^{8} f(x)=0$ then

$$
M\left[\int_{0}^{x} f(t) d t ; s\right]=-\frac{F(s+1)}{s} .
$$

4. a) Find Hankel transform of order zero of $\frac{\sin a r}{r}$, $a>0$.
b) If $F_{v}(\rho) \equiv \mathcal{H}_{v}[f(r)]$ and $G_{v}(\rho) \equiv \mathcal{H}_{v}[f(r)]$ then prove that

$$
\int_{0}^{\infty} \rho F_{v}(\rho) G_{v}(\rho) d \rho=\int_{0}^{\infty} r f(r) g(r) d r .
$$

