6. In the weighted graph with the following weight matrix, find the shortest path and its (weighted) length from the vertex *a* to the vertex *z* by Dijkstra's shortest path algorithm:

	а	v_1	v_2	v_3	v_4	v_5	v_6	Z
а	0	3	4	8	15	8	8	8
v_1	3	0	∞	7	6	∞	∞	∞
v_2	4	∞	0	8	∞	4	∞	9
v_3	∞	7	8	0	∞	∞	4	5
v_4	15	6	∞	∞	0	3	7	∞
v_5	∞	∞	4	∞	3	0	∞	7
v_6	∞	∞	∞	4	7	∞	0	3
Z	~	~	9	5	∞	7	3	0

Ex/SC/MATH/PG/DSE/TH/06/B4/2023

M. Sc. MATHEMATICS EXAMINATION, 2023

(2nd Year, 2nd Semester)

MATHEMATICS

PAPER – DSE-06 (B4)

[GRAPH THEORY - II]

Time : 1 hour 15 minutes

Full Marks : 24

All questions carry equal marks.

Answer any **four** questions. 4×6

- 1. Define a *plane graph* G and the *dual graph* G^* of G. Let G be a plane graph. Prove that G is bipartite if and only if G^* is Eulerian.
- 2. Define an outerplanar graph. Prove that every simple outerplanar graph has a vertex of degree at most 2.
- 3. State and prove Five Color Theorem for planar graphs.
- 4. Let N = (V, E) be a single-source single-sink transport network with the source s, the sing t, a flow F and Q be an *F*-unsturated quasipath from s to t in N with the slack i(Q) = λ. Let d be the value of the flow F. Then show that there exists a flow F* in N whose value is d + λ.
- 5. Define a prüfer sequence $\{2, 2, 3, 4, 1, 1\}$. Prove that the number of labeled trees of n > 2 vertices is n^{n-2} .

[Turn over