Ex/SC/MATH/PG/DSE/TH/03/A10/2023

M. Sc. Mathematics Examination, 2023

(2nd Year, 1st Semester)

MATHEMATICS

PAPER - DSE-4

[ADVANCED DIFFERENTIAL GEOMETRY]

Time: Two hours

Full Marks: 40

Notations / Symbols have their usual meanings
Answer *any four* of the followings.

- 1. a) Check whether the circle $C = \left\{ (x, y) \in \mathbb{R}^2 / x^2 + y^2 = 4 \right\} \text{ is a differentiable manifold or not.}$
 - b) Prove that $[fX,Y] = f[X,Y] (Yf)X \quad \forall X,Y \in \infty(M) \text{ and } f \in F(M).$
 - c) Find the integral curve for the vector field $X = x^2 \frac{\partial}{\partial x^1} + x^1 \frac{\partial}{\partial x^2} \text{ on } \mathbb{R}^2.$ 4+3+3
- 2. a) If an 1-form ω on \mathbb{R}^2 is given by $\omega = x^1 x^2 dx^1 + \frac{1}{2} \left\{ \left(x^1 \right)^2 x^2 \right\} dx^2$, check whether ω is closed or not.

- b) Define curvature tensor on a differentiable manifold M and find its local representation with respect to basis $\left\{\frac{\partial}{\partial x^i}, i=1,2,...,n\right\}$.
- 3. a) Prove that a differentiable manifold which is Hausdorff and second countable has a Riemannian metric.
 - b) What is sectional curvature of a Riemannian manifold? When a Riemannian manifold is said to be a manifold of constant curvature? Prove that a Riemannian manifold of constant curvature is an Einstein manifold.

 4+6
- 4. a) When an almost complex manifold is called complex manifold? Give an example of complex manifold.
 - b) If N is a Nijenhuis tensor on an almost complex manifold, then prove that
 - i) $N(X, \overline{Y}) = N(\overline{X}, Y)$
 - ii) $N(\overline{X}, \overline{Y}) = -N(X, Y)$
 - c) State and prove the condition for an almost Hermite manifold to be Kähler. 3+4+3
- 5. a) If in a conformally flat Riemannian manifold M^n , $R(X,Y)A = AR(X,Y) \quad \text{holds, then prove that}$ $\left(A^2 \frac{rA}{n-1}\right)X \wedge X = 0 \quad \text{where A is a symmetric}$ transformation on M and r is a scalar curvature of M.

- b) If a connection is given by $\overline{\nabla}_x Y = \nabla_x Y T(X,Y)$ on a differentiable manifold, then prove that $\overline{\nabla}$ is a linear connection and $\overline{T} = -T$, where T is torsion tensor with respect to ∇ and \overline{T} is torsion tensor with respect to $\overline{\nabla}$.
- 6. a) Prove that every almost contact manifold M admits a Riemannian metric g such that
 - i) $g(\phi X, \phi Y) = g(X, Y) \eta(X)\eta(Y)$
 - ii) $g(X,\xi) = \eta(X)$
 - iii) $g(\phi X, Y) + g(X, \phi Y) = 0$
 - b) Construct an example of an almost contact manifold.

6+4