Ex/SC/MATH/PG/DSE/TH/03/A5/2023

## M. Sc. Mathematics Examination, 2023

( 2nd Year, 1st Semester)

## Mathematics

Paper - DSE-03 A5
[ Fluid Mechanics-I ]
Time : Two hours
Full Marks : 40
The figures in the margin indicate the full marks.
Notations / Symbols have their usual meanings.
Answer question no. 1 and any two from the rest.

1. Show that if, the force field is conservative and there exists a functional relation between the pressure and density, the Euler's equation of motion for an inviscid fluid can be put in the form

$$
\frac{\partial \vec{q}}{\partial t}-(\vec{q} \times \operatorname{curl} \vec{q})=\operatorname{grad} \mathrm{H}
$$

$$
\text { where } H=v+\int \frac{d p}{\rho}+\frac{q^{2}}{2} \text {. }
$$

Hence show that, if in addition the motion is irrotational, then the above form of the Euler's equation of motion is given by $-\frac{\partial \varphi}{\partial t}+v+\int \frac{d p}{\rho}+\frac{q^{2}}{2}=f(t)$.
or
Examine whether the motion specified by $\vec{q}=\frac{k^{2}(x \hat{j}-y \hat{i})}{x^{2}+y^{2}},(\mathrm{k}=$ constant $)$ is a possible motion for
an incompressible fluid. If so, determine the equation of the stream lines. Show that the motion is of potential kind and determine the velocity potential.
2. a) Define (i) Source, (ii) Sink and (iii) Doublet in twodimensions. Show that the complex potential $w$ for a single two-dimensional doublet of strength $\pi$ at the origin and whose axis is directed along the $x$-axis is given by $w=\frac{\mu}{z}$. 7
b) The particle velocity $\vec{q}$ for a fluid motion referred to a rectangular cartesian axes $\mathrm{O}(x, y, z)$ with unit vectors $\hat{i}, \hat{j}, \hat{k}$ is given by

$$
\vec{q}=v_{0}\left(\hat{i} \cos \frac{\pi x}{2 a} \cos \frac{\pi z}{2 a}+\hat{k} \sin \frac{\pi x}{2 a} \sin \frac{\pi z}{2 a}\right)
$$

where $v_{0}$ is constant. Show that the pressure $p$ associated with this velocity field in a liquid motion under no body force is given by
$p=\frac{\rho v_{0}^{2}}{4}\left(\cos \frac{\pi z}{a}-\cos \frac{\pi x}{a}\right)+$ constant
3. a) Show that the complex potential $w$, when an elliptic cylinder is rotating with angular velocity $w$ in an infinite mass of liquid at rest at infinity, is given by $w=\frac{i w}{4}(a+b)^{2} e^{-2 \tau}$.
b) A circular cylinder is fixed across a stream of velocity $U$ with a circulation $K$ round the cylinder. Show that the maximum velocity in the liquid is $2 U+\frac{K}{2 \pi a}$, where $a$ is the radius of the cylinder. 8
4. a) Define vortex rows. Show that the motion due to a set of line vortices of strength $K$ at points $z= \pm n a$ $(n=0,1,2,3 \ldots)$ is given by $w=\frac{i K}{2 \pi} \log \left\{\sin \left(\frac{\pi z}{a}\right)\right\} .8$
b) Show that the velocity of propagation of surface wave of length $\lambda$ in a canal of depth $h$ is given by $c^{2}=\left(\frac{g \lambda}{2 \pi}\right) \tanh \left(\frac{2 \pi h}{\lambda}\right)$

