Master of Science Examination, 2023

(Second Year, First Semester)

MATHEMATICS

CORE 10

(Dynamical System)

Time: Two Hours

Full Marks: 40

The figures in the margin indicate full marks.

Symbols / Notations have their usual meanings.

(Use separate answer script for each group)

PART I (Marks: 20)

Answer any two questions.

1. (a) If
$$A = \begin{pmatrix} a & -b \\ b & a \end{pmatrix}$$
, then show that $e^{At} = e^{at} \begin{pmatrix} cosbt & -sinbt \\ sinbt & cosbt \end{pmatrix}$.

- (b) If (0, 0) is a focus of the Hamiltonian system in \mathbb{R}^2 then show that (0, 0) is not a strict local optimum of the Hamiltonian function.
- (c) Find the evolution operator $\phi^t:R^3 \to R^3$ for the system $\dot{x}=f(x)$ with

$$f(x) = \begin{pmatrix} -x_1 \\ -x_2 + x_1^2 \\ x_3 + x_1^2 \end{pmatrix}$$

and hence show that the set $S=\{(x_1,x_2,x_3)\in R^3; x_3=-x_1^2/3\}$ is invariant under the flow ϕ^t . [2+3+5]

- 2. (a) What do you mean by Heteroclinic bifurcation.
 - (b) State and prove fundamental theorem for linear system in \mathbb{R}^n .
 - (c) Find α -limit set, ω -limit set, limit cycle(s) and attractor of the system

$$\dot{x} = x - y - x(x^2 + y^2)$$

$$\dot{y} = x + y - y(x^2 + y^2).$$

Draw the phase portrait.

[2+4+4]

[Turn over

- 3. (a) Define hyperbolic flow for the system $\dot{x} = Ax$, $x \in \mathbb{R}^n$.
 - (b) Define basin of attraction of the equilibrium point for the system $\dot{x} = f(x), x \in \mathbb{R}^n$.
 - (c) State and prove Bendixson's criteria for the system $\dot{x} = f(x)$, $x \in \mathbb{R}^2$.
 - (d) Determine the nature of the equilibrium point (s) of the system $\dot{x}=Ax$ where

$$A = \begin{pmatrix} -1 & 0 \\ 0 & \alpha \end{pmatrix}, x \in \mathbb{R}^2, \ \alpha \in \mathbb{R}.$$

Draw the phase portrait.

[1+1+4+4]

Part-II (Marks: 20) Answer any four questions.

1. If $x_1(n), x_2(n)$ and $x_3(n)$ be three solutions of $x(n+3) + p_1(n)x(n+2) + p_2(n)x(n+1) + p_3(n)x(n) = 0$, for $n \ge n_0$ and W(n) be their Casoratian, then prove that

$$W(n) = (-1)^{3(n-n_0)} \Big(\prod_{i=n_0}^{n-1} p_3(i) \Big) W(n_0).$$

- 2. Solve the difference equation $x(n+2) + 8x(n+1) + 7x(n) = n2^{n}.$ (5)
- 3. Suppose that x^* is an equilibrium point of the difference equation $x_{n+1} = f(x_n)$ such that $f'(x^*) = -1$. Prove that x^* is unstable, if $S(f(x^*)) > 0$, where S(f(x)) denotes the Schwarzian derivative of f(x).
- 4. Find general solution of the system of equation (5)

$$\mathbf{x}(n+1) = \begin{pmatrix} -2 & 1 \\ -1 & 3 \end{pmatrix} \mathbf{x}(n).$$

Hence find the asymptotic behaviour $(n \to \infty)$ of the solution. Draw the phase portrait near origin.

- 5. Find bifurcation at $\mu = 0$ in the system of maps $x_{n+1} = \mu + x_n x_n^2$. Draw the bifurcation diagram. (5)
- 6. Define the term 'sensitive dependence on initial condition'. Derive a measure (5) for it.