[4]

Find the tensor algebra T(M) of the \mathbb{Z} -module M when (i) $M = \mathbb{Q} / \mathbb{Z}$ and (ii) $M = \mathbb{Z} / n\mathbb{Z}$. Suppose V is a 2-dimensional vector space over a field Fwith basis r, r'. Find the exterior algebra $\Lambda(V)$ of V. 2+2+3+3

Ex/M.Sc./Math/22/Unit-4.3/A2.1/2023

M. Sc. MATHEMATICS EXAMINATION, 2023

(2nd Year, 2nd Semester)

Advanced Algebra - II

UNIT – 4.3 (A 2.1)

Time : Two hours

Full Marks : 50

The figures in the margin indicate full marks.

(Unexplained Symbols/Notations have their usual meaning.)

Special credit will be given for precise answer.

Answer any *Five* questions. $10 \times 5=50$

1. Justify the following with proper arguments.

- i) Ideal of a semisimple ring is semisimple.
- ii) Any matrix ring over a division ring is semisimple.
- iii) Any subdirect product of primitive rings is semisimple.
- iv) If G is a finite p group and F is a field with characteristic p then the group algebra F[G] is not semisimple. 1+3+3+3
- 2. Let *V* be a vector space over a division ring *D*. Prove that the ring $L_D(V)$, of all D-linear transformations from *V* to itself, is a primitive ring.

State the Jacobson Density Theorem on primitive rings. Characterize the primitive rings in the class of commutative rings. Hence determine if R[x] is

[Turn over

primitive, where R is a commutative ring with identity. No dense ring of linear operators of an infinite dimensional vector space over a division ring can be Artinian – True or False? Answer with reason.

2+2+3+3

3. Let $R = M_n(D)$ be the matrix ring over a division ring D. Prove that R is Artinian, Simple, Primitive and is isomorphic to $L_D(V)$, the ring of all D-linear transformations from an *n*-dimensional vector space Vover D to itself.

State the general result related with the above particular case. 10

- 4. When is a property of rings said to be a radical property? Which radical property defines the Jacobson radical of a ring? Verify that it is actually a radical property of rings and Jacobson radical is the corresponding radical. What is the Jacobson radical of the power series ring F[[x]] over a field F?
- 5. Suppose *G* be a cyclic group with *a* as a generator. Check if the representations ρ and σ of *G*, given by

$\rho(a) =$	ω	0)	and $\sigma(a) = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$	0	1)
	0	ω^2		_1	-1)

are equivalent or not (ω is the complex cube root of unity).

State the column orthogonality relations involving the irreducible characters of a finite group. A certain group G has two columns of its character table as follows:

IJi	$g_1 = e$	<i>9</i> 2
$ C_G(g_i) $	21	7
Xı	1	1
X2	L	1
X3	1	1
X4	3	y
X5	æ	\bar{y}

Find x and y.

3+2+5

- 6. Suppose G is a group and V is a vector space over a field F. Suppose f: G → GL(V) is a group homomorphism. What conditions are satisfied by the corresponding action of G on V. If a group G acts on a vector space V over a field F satisfying similar conditions, is it possible to obtain a group homomorphism from G to GL(V)? Determine the regular character of a finite group. Determine the permutation character of S₅. 2+3+3+2
- 7. Let *R* be a commutative ring with identity and *V* be a unitary *R*-module. What is meant by an *n*-multilinear alternating form on *V* (*n* is a positive integer)? What is meant by an $n \times n$ determinant functions on *R*?