M. Sc. Mathematics Examination, 2023

(1st Year, 1st Semester)

Mathematics
 Paper - 1.4

[General Mechanics]
Time : 2 hours
The figure in the margin indicate full marks.
Symbols/Notation have their usual meanings.
Answer any five questions.

1. State the principle of least action. What do you mean by Legendre's dual transformation? Derive Hamilton-Jacobi partial differential equation.
$2+3+5$
2. a) Define generalized momentum corresponding to a generalized co-ordinate. What do you mean by a cyclic co-ordinate? Show that a cyclic co-ordinate is also absent in the Hamiltonian.
b) The K.E. and P.E. of a particle are given by

$$
\begin{aligned}
& T=\frac{1}{2}\left(x^{2}+y^{2}\right) \text { and } \\
& V=\frac{A}{x^{2}}+\frac{A^{\prime}}{y^{2}}+\frac{B}{r}+\frac{B^{\prime}}{r^{\prime}}+C\left(x^{2}+y^{2}\right),
\end{aligned}
$$

where $A, A^{\prime}, B, B^{\prime}$ and C are constants and r, r^{\prime} are the distances of the particle from the points whose co-ordinates are $(C, 0)$ and $(-C, 0)$ respectively, C
being a constant. Show that the system can be derived as a Liouville's type. $\quad(1+2+2)+5$
3. Write down Hamilton's equations of motion in symmetrical form. State the interelation between the Poisson bracket and the Lagrange's bracket. Prove the Jacobi identity for Poisson bracket.
$2+2+6$
4. a) Define canonical transformation. Show that the Jacobian of a canonical transformation is unity.
b) Derive the infinitesimal change of the phase-space variables under infinitesimal canonical transformation.
c) Examine whether the transformation $Q=\sqrt{q} \cos p$, $P=\sqrt{q} \sin p$ represents a canonical transformation or not.
$(2+2)+4+2$
5. a) Starting from D'Alembert's principle, derive Hamilton's principle by using variational method.
b) The K.E. and P.E. of a dynamical system with 2 degrees of freedom are given by
$T=\frac{q_{1}^{2}}{2\left(a+b q_{2}\right)}+\frac{1}{2} q_{2}^{2} \dot{q}_{2}^{2}, V=c+d q_{2}$
where a, b, c and d are constants. Show that the value of q_{2} in terms of time is given by the equation of the form $\left(q_{2}-K\right)\left(q_{2}+2 K\right)^{2}=h\left(t-t_{0}\right)$ with h, k and t_{0} as constants.
6. a) Derive the velocity and acceleration of a moving particle in 3D using spherical polar co-ordinates.
b) Establish Euler's dynamical equation of motion.

$$
(3+3)+4
$$

7. a) Show that the time period of small oscillation of a constraint physical system always lie between the corresponding time periods of the unconstrained system.
b) Two uniform rods of same mass and same length $2 a$ are freely jointed at a common extremity and rests on two smooth pegs which are in the same horizontal plane. Each rod is inclined at some angle α to the vertical. Show that the time of small oscillation when the join moves in a vertical straight line through the centre of the line joining the pegs is

$$
2 \pi \sqrt{\frac{a}{9 g}\left(\frac{1+3 \cos ^{2} \alpha}{\cos \alpha}\right)}
$$

