Ex/SC/MATH/PG/CORE/TH/04/2023
M. Sc. Mathematics Examination, 2023
(1st Year, 1st Semester)

Mathematics

Paper - Core-04
[General Mechanics]
Time: Two hours
Full Marks : 40
Answer any four questions.
All questions carry equal marks.
Notations and Symbols have their usual meanings.

1. a) If a co-ordinate is cyclic then will it be present in the Hamiltonian or not? Justify your answer.
b) A particle moves in a plane under the action of two Newtonian centres of attraction at the points $(c, 0)$ and $(-c, 0)$, the attractions being $\frac{\mu}{r^{2}}$ and $\frac{\mu}{\left(r^{\prime}\right)^{2}}$ respectively; r, r^{\prime} being the distances from $(c, 0)$ and $(-c, 0)$ respectively. Show that the problem is of Liouville's type.
2. a) Given $H=\frac{p^{2}}{2}-\frac{1}{2 q^{2}}$, show that the quantity $G=\frac{p q}{2}-H t$ is a constant of motion.
b) Show that Poisson bracket is invariant under canonical transformation.
3. a) Obtain Hamilton's equations of motion for a system having n degrees of freedom from Hamilton's principle.
b) For a mechanical system described by n generalized coordinates $q_{1}, q_{2} \ldots q_{n}$ show that the kinetic energy can be formulated as $T=T_{2}+T_{1}+T_{0}$, where $T_{2}=\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i j} \dot{q}_{i} \dot{q}_{j}, T_{1}=\sum_{i=1}^{n} \beta_{i} \dot{q}_{i}$ and $T_{0}=\gamma_{0}$. The quantities $\alpha_{i j}, \beta_{i}$ and γ_{0} are to be determined by you.
4. a) Show that $J_{1}=\int_{S_{2}} \sum d q_{i} d p_{i}$, is invariant under canonical transformation, where S_{2} is a 2 D surface in phase space.
b) Two heavy uniform rods AB and AC , each of mass m and length $2 a$ are hinged at A and placed symmetrically over a smooth cylinder of radius c, whose axis is horizontal. If they are slightly and symmetrically displaced from the position of equilibrium, show that time of small oscillation is

$$
2 \pi \sqrt{\frac{a \cos \alpha}{3 g}\left(\frac{1+3 \cos ^{2} \alpha}{1+2 \cos ^{2} \alpha}\right)}
$$

where $a \sin ^{3} \alpha=c \cos \alpha$.
5. a) State and prove conservation law of linear and angular momentum for a physical system.
b) Derive the Hamilton-Jacobi differential equation related to a dynamical system.

4
c) Examine whether the transformation :

$$
Q=\log (1+\sqrt{q} \cos p), P=2(1+\sqrt{q} \cos p) \sqrt{q} \sin p
$$

is canonical or not.
3
6. a) Define Eukrian angles θ, ϕ and ψ.
b) Write down the Lagrangian of a symmetrical top in terms of these angles.
c) Using Lagrange's equation of motion, show that θ can be determined by solving an ordinary differential equation: $\ddot{\theta}+f(\theta)=0$.
d) Discuss the stability of the symmetrical top when it executes steady motion at $\phi=\Omega$, a constant.
$2+1+3+4$

