b) Starting from the invariance of space-time interval, deduce the identity for velocities and hence show that mass varies in the Special Theory of Relativity.

$$
4+(3+3)
$$

4. Define Killing vector field. Find the Killing vectors for 3D Euclidean space. How many Killing vectors are there for FRW space-time? Define spherically symmetric space-time in terms of Killing vector fields. $2+4+2+2$
5. Discuss Canonical transformation using differential forms. Show that, if $\overrightarrow{\mathrm{X}}_{f}$ and $\overrightarrow{\mathrm{X}}_{g}$ are Hamiltonian vector fields then $\overrightarrow{\mathrm{X}}_{\{f, g\}}$ is also a Hamiltonian vector field.
6. Derive the condition for a vector to be hypersurface orthogonal. Give the definitions of stationary and static space-time both in co-ordinate dependent and in coordinate independent way.
$4+3+3$
7. Write down the space-time metric for homogeneous and isotropic model of the universe. Describe the geometrical structure of the space-time for three different choices of the curvature scalar. Write down the Einstein field equations and the conservation equation for this spacetime model.
$2+5+3$

M. Sc. Mathematics Examination, 2023

(1st Year, 1st Semester)

Mathematics

Unit - 4.5 (B-2.13)

[Differential Geometry and its Application - II]

Time : 2 hours
Full Marks : 50
The figure in the margin indicate full marks.
Symbols/Notation have their usual meanings.
Answer any five questions.
5×10

1. a) Write down the differential equation for the geodesic in a Riemannian space with arbitrary parameter.
b) Show that geodesic is a straight line both in E^{2} and E^{3}.
c) Show that acceleration vector is zero along the geodesic.
d) If the metric coefficients are independent of any particular co-ordinate then prove that momentum along that direction is conserved.
$2+3+2+3$
2. Give an explicit derivation of the Newtonian limit of the Einstein equations and hence find the value of the coupling constant.
$8+2$
3. a) Show that the set of all Lorentz transformations along a direction forms a group. State clearly the binary operation involved?
[Turn over
