b) Starting from the invariance of space-time interval, deduce the identity for velocities and hence show that mass varies in the Special Theory of Relativity.

4+(3+3)

- 4. Define Killing vector field. Find the Killing vectors for 3D Euclidean space. How many Killing vectors are there for FRW space-time? Define spherically symmetric space-time in terms of Killing vector fields. 2+4+2+2
- 5. Discuss Canonical transformation using differential forms. Show that, if \vec{X}_f and \vec{X}_g are Hamiltonian vector fields then $\vec{X}_{\{f,g\}}$ is also a Hamiltonian vector field.

5+5

- 6. Derive the condition for a vector to be hypersurface orthogonal. Give the definitions of stationary and static space-time both in co-ordinate dependent and in co-ordinate independent way.

 4+3+3
- 7. Write down the space-time metric for homogeneous and isotropic model of the universe. Describe the geometrical structure of the space-time for three different choices of the curvature scalar. Write down the Einstein field equations and the conservation equation for this space-time model.

 2+5+3

M. Sc. Mathematics Examination, 2023

(1st Year, 1st Semester)

MATHEMATICS

 $U_{NIT} - 4.5 (B-2.13)$

[DIFFERENTIAL GEOMETRY AND ITS APPLICATION - II]

Time: 2 hours Full Marks: 50

The figure in the margin indicate full marks.

Symbols/Notation have their usual meanings.

Answer *any five* questions. 5×10

- 1. a) Write down the differential equation for the geodesic in a Riemannian space with arbitrary parameter.
 - b) Show that geodesic is a straight line both in E^2 and E^3 .
 - c) Show that acceleration vector is zero along the geodesic.
 - d) If the metric coefficients are independent of any particular co-ordinate then prove that momentum along that direction is conserved. 2+3+2+3
- 2. Give an explicit derivation of the Newtonian limit of the Einstein equations and hence find the value of the coupling constant. 8+2
- 3. a) Show that the set of all Lorentz transformations along a direction forms a group. State clearly the binary operation involved?

[Turn over