4. Prove that the fractional knapsack problem has the greedy-choice property.

6
5. Write Graham's scan algorithm in pseudocode that solves the convex-hull problem by maintaining a stack of candidate points.
6. Write the recursive version of depth-first-search algorithm to traverse a graph. Find its worst-case time complexity.
7. Show the red-black trees that result after successively inserting the keys $41,38,31,12,19,8$ into an initially empty red-black tree.

6

M. Sc. Mathematics Examination, 2023

(1st Year, 2nd Semester)
Paper - DSE-01C
Design and Analysis of Algorithms
Time : $1 \frac{1}{2}$ hours
Full Marks : 30
(Symbols have usual meanings, if not mentioned otherwise)
Answer Q. 1 and any four from the rest.

1. Consider the problem of implementing a k-bit binary counter that counts upward from 0 .
a) Write a pseudocode for incrementing the counter.
b) Use aggregate analysis to determine the amortized cost per operation.
$2+4=6$
2. a) Use induction to prove that radix sort works.
b) Find the minimum and maximum numbers of elements in a heap of height h.
$3+3=6$
3. Consider a modification of the rod-cutting problem in which, in addition to a price p_{i} for each rod, each cut incurs a fixed cost of c. The revenue associated with a solution is now the sum of the prices of the pieces minus the costs of making the cuts. Give a dynamicprogramming algorithm to solve this modified version of rod-cutting problem.
