Ex/SC/MATH/PG/CORE/TH/07/2023

M. Sc. Mathematics Examination, 2023

(1st Year, 2nd Semester)

COMPLEX ANALYSIS AND PDE

Paper - Core-07

Time: Two hours

Full Marks: 40

Use separate Answer script for each Part.

Symbols / Notations have their usual meanings.

Part – I (Marks: 20)

Answer *any four* questions.

 $4 \times 5 = 20$

1. i) Evaluate by Cauchy's Residue theorem:

$$\oint_{\mathcal{C}} \frac{e^{2z}}{(z+1)^4} dz$$
, where \mathcal{C} is the circle $|z| = 3$.

ii) State and prove Fundamental Theorem of Algebra.

2+3

- 2. Suppose that f is analytic and bounded on the whole complex plane \mathbb{C} . Prove that f is constant.
- 3. i) Let $|F(z)| \le M / R^k$ for $z = \operatorname{Re}^{i\theta}$, where k > 1 and M are constants. Prove that $\lim_{R \to \infty} \int_{\Gamma} F(z) dz = 0$, where Γ is the semi-circular arc of radius R.
 - ii) Using (i) and Cauchy's Residue theorem, find $\int_0^\infty \frac{dx}{x^6 + 1}.$ 3+2

- 4. State Cauchy's residue theorem. As an application of this theorem, show that the trigonometric integral $\int_0^{2\pi} \frac{\cos 3\theta}{5 4\cos \theta} d\theta = \frac{\pi}{12}.$
- 5. Suppose that f is analytic inside and on simple closed curve C. Then prove that the maximum value of |f(z)| occurs on C, unless f is a constant.
- 6. i) Let the Rectangular region \mathcal{R} in the z-plane be bounded by x = 0, y = 0, x = 2 and y = 1. Determine the region \mathcal{R}' of w-plane into which \mathcal{R} mapped under the transformation $w = \sqrt{2}e^{i\pi/4}z + (1-2i)$.
 - ii) Find bilinear transformation that maps points z = 0, -i, -1 into w = i, 1, 0, respectively. 2+3

Part - II (Marks: 20)

Partial Differential Equations

Answer *any two* questions.

1. a) Prove that the Cauchy problem for an elliptic PDE described by $u_{xx} + u_{yy} = 0$, $-\infty < x < \infty$, y > 0, subject to u(x,0) = 0, $u_y(x,0) = 0$, $-\infty < x < \infty$, is an all-posed problem. It is given that the solution of the above problem is $\frac{\sinh(ny)\sin(nx)}{n^2}$, if the value of $u_y(x,0)$ is changed from 0 to $\frac{\sin nx}{n}$.

- b) Find the solution of the IBVP $\theta_t = \kappa \theta_{xx}$, 0 < x < L, t > 0 together with $\theta(0,t) = 0$, $\frac{\partial \theta}{\partial x}(L,t) = 0$, t > 0, $\theta(x,0) = \theta_0$, $0 \le x \le L$, where is a constant.
- 2. a) Prove that, if a harmonic function vanishes everywhere on the boundary of a domain, then it is identically zero everywhere.
 - b) Derive the Poisson integral solution of the interior Dirichlet problem for a circle given as: $\nabla^2 \psi = 0, \quad 0 \le r < a, \quad 0 \le \theta < 2\pi, \quad \text{along with}$ $\psi(a,\theta) = f(\theta), \quad 0 \le \theta \le 2\pi, \quad \text{where } f(\theta) \quad \text{is a continuous function of } \theta.$
- 3. a) Find u(1/2, 1/8) and u(1,2), where u(x,t) is the solution of the problem given below.

$$u_{tt} = 4u_{xx}, -\infty < x < \infty, t > 0,$$

$$u(x,0) = \begin{cases} x/2, & 0 \le x \le 1/2 \\ (1-x)/2, & 1/2 \le x \le 1 \\ 0, & \text{elsewhere,} \end{cases}$$

$$u_t(x,0) = 0, -\infty < x < \infty.$$

b) Find the solution of non-homogeneous wave equation described by

$$u_{tt} - c^2 u_{xx} = x, -\infty < x < \infty, t > 0$$

$$u(x,0) = 0, u_t(x,0) = 3, -\infty < x < \infty.$$
 8