Ex/SC/MATH/PG/CORE/TH/07/2023
M. Sc. Mathematics Examination, 2023
(1st Year, 2nd Semester)

Complex Analysis and PDE

Paper - Core-07
Time : Two hours
Full Marks : 40
Use separate Answer script for each Part.
Symbols / Notations have their usual meanings.

Part - I (Marks: 20)

Answer any four questions.

1. i) Evaluate by Cauchy's Residue theorem:

$$
\oint_{\mathcal{C}} \frac{e^{2 z}}{(z+1)^{4}} d z \text {, where } \mathcal{C} \text { is the circle }|z|=3 .
$$

ii) State and prove Fundamental Theorem of Algebra.
2. Suppose that f is analytic and bounded on the whole complex plane \mathbb{C}. Prove that f is constant.

5
3. i) Let $|F(z)| \leq M / R^{k}$ for $z=\operatorname{Re}^{i \theta}$, where $k>1$ and M are constants. Prove that $\lim _{R \rightarrow \infty} \int_{\Gamma} F(z) d z=0$, where Γ is the semi-circular arc of radius R.
ii) Using (i) and Cauchy's Residue theorem, find $\int_{0}^{\infty} \frac{d x}{x^{6}+1}$.
4. State Cauchy's residue theorem. As an application of this theorem, show that the trigonometric integral $\int_{0}^{2 \pi} \frac{\cos 3 \theta}{5-4 \cos \theta} d \theta=\frac{\pi}{12}$. 5
5. Suppose that f is analytic inside and on simple closed curve \mathcal{C}. Then prove that the maximum value of $|f(z)|$ occurs on \mathcal{C}, unless f is a constant.

5
6. i) Let the Rectangular region \mathcal{R} in the z-plane be bounded by $x=0, y=0, x=2 \quad$ and $\quad y=1$. Determine the region \mathcal{R}^{\prime} of w-plane into which \mathcal{R} mapped under the transformation $w=\sqrt{2} e^{i \pi / 4} z+(1-2 i)$.
ii) Find bilinear transformation that maps points $z=0$, $-i,-1$ into $w=i, 1,0$, respectively.
$2+3$

Part - II (Marks: 20)

Partial Differential Equations

Answer any two questions.

1. a) Prove that the Cauchy problem for an elliptic PDE described by $u_{x x}+u_{y y}=0,-\infty<x<\infty, y>0$, subject to $u(x, 0)=0, u_{y}(x, 0)=0,-\infty<x<\infty$, is an all-posed problem. It is given that the solution of the above problem is $\frac{\sinh (n y) \sin (n x)}{n^{2}}$, if the value of $u_{y}(x, 0)$ is changed from 0 to $\frac{\sin n x}{n}$.
b) Find the solution of the IBVP $\theta_{t}=\kappa \theta_{x x}, 0<x<L$, $t>0$ together with $\theta(0, t)=0, \frac{\partial \theta}{\partial x}(L, t)=0, t>0$, $\theta(x, 0)=\theta_{0}, 0 \leq x \leq L$, where is a constant.
2. a) Prove that, if a harmonic function vanishes everywhere on the boundary of a domain, then it is identically zero everywhere.

2
b) Derive the Poisson integral solution of the interior Dirichlet problem for a circle given as:
$\nabla^{2} \psi=0, \quad 0 \leq r<a, \quad 0 \leq \theta<2 \pi, \quad$ along with $\psi(a, \theta)=f(\theta), \quad 0 \leq \theta \leq 2 \pi$, where $f(\theta)$ is a continuous function of θ.

8
3. a) Find $u(1 / 2,1 / 8)$ and $u(1,2)$, where $u(x, t)$ is the solution of the problem given below.

$$
u_{t t}=4 u_{x x},-\infty<x<\infty, t>0,
$$

$u(x, 0)=\left\{\begin{array}{cc}x / 2, & 0 \leq x \leq 1 / 2 \\ (1-x) / 2, & 1 / 2 \leq x \leq 1 \\ 0, & \text { elsewhere },\end{array}\right.$
$u_{t}(x, 0)=0,-\infty<x<\infty$.
b) Find the solution of non-homogeneous wave equation described by

$$
\begin{aligned}
& u_{t t}-c^{2} u_{x x}=x,-\infty<x<\infty, t>0 \\
& u(x, 0)=0, u_{t}(x, 0)=3,-\infty<x<\infty
\end{aligned}
$$

