Ex/SC/MATH/PG/DSE/TH/01/A/2023

M. Sc. MATHEMATICS EXAMINATION, 2023

(1st Year, 2nd Semester)

PAPER – DSE-01A

ADVANCED TOPOLOGY

Time : Two hours

Full Marks : 40

Answer Q. No. 1 and *any three* from the rest.

- 1. a) Answer with reasons whether IR with lower limit topology is metrizable.
 - b) Among all Havsdorff compactifications of a locally compact non-compact Tychonoff space can we find any smallest or largest element?
- a) Prove that a topological space (X, τ) is Havsdorff iff every convergent net in X has a unique limit.
 - b) Define an ultra filter. If \mathcal{F} is a family of sets with finite intersection property then show that there exists an ultrafilter \mathcal{F}^* containing \mathcal{F} .
 - c) Show that the filter associated with a maximal net is an ultra filter. 5+6+1
- 3. a) Prove that a locally compact Havsdorff space is completely regular.
 - b) Show that the one-point compactification of a noncompact space X is Havsdorff iff X is locally compact Havsdorff. 8+4

[Turn over

- 4. a) Give an example to show that in general for a family
 - of sets $\{B_i : i \in \Delta\}$, $\bigcup_{i \in \Delta} \overline{B_i} \subsetneq \overline{B_i} \subseteq \overline{\bigcup_{i \in \Delta} B_i}$. If the family $\{B_i : i \in \Delta\}$ is locally finite then prove that $\bigcup_{i \in \Delta} \overline{B_i} = \overline{\bigcup_{i \in \Delta} B_i}$.
 - b) Define a paracompact space. Give an example of a paracompact space which is not compact.
 - c) If every open cover of a topological space X has a closed locally finite refinement then show that X is paracompact.
 3+2+7
- 5. a) Show that \mathbb{R}^{\oplus} with product topology is metrizable.
 - b) Let $\{(X_n, d_n)\}_n$ be a countable family of metrizable spaces. Let $diam(X_n) \le M$ for all large *n* and $diam(X_n) \to 0$ as $n \to \infty$.

Define $e(x, y) = \sup_{n} \{d_n(x_n, y_n)\}$. Prove that τ_e (the topology corresponding to the inelitic e) is equal to the product topology $TT_n(X_n, \tau_{d_n})$. 8+4

6. a) Let X and Y be topological spaces and let $p: X \to Y$ be a subjective continuous map. Show that following are equivalent.

- i) The pair (Y, p) is a quotient space for some equivalence relation is on X.
- ii) $U \subset Y$ is open in Y iff $p^{-1}(U)$ is open in X.
- iii) $F \subset Y$ is closed in Y iff $p^{-1}(F)$ is closed in Y.
- b) Give an example to show that the quotient space of a Havsdorff space may not be Havsdorff.
- c) Give an explicit construction of a cylinder as a quotient space of the unit square.
 6+3+3