- 4. i) Let *A* and *B* be two non-empty sets. If $f : A \to B$ and $g : B \to A$ be two injective functions then show that *A* and *B* have the same cardinal numbers.
 - ii) Justify whether $\omega + 1 = 1 + \omega$ and $\omega \cdot 2 = 2 \cdot \omega$, where 1, 2, ω have their usual meaning as ordinal numbers. 4+4
- 5. i) Show that if a topological space is sequentially complete then it is countabily compact.
 - ii) Let $S = \{x \in \mathbb{Q} : a < x < b\}$ and

 $T = \{x \in \mathbb{Q} : c \le x \le d\}, \text{ where } a, b \text{ are rational} \\ \text{numbers and } c, d \text{ are irrational numbers. Justify} \\ \text{whether } S \text{ and } T \text{ are compact in } \mathbb{Q}. \qquad 4+4$

- 6. i) Let X, Y, Z be topological spaces. If $f: X \to Y$ and $g: Y \to Z$ are continuous then $g \circ f: X \to Z$ is continuous.
 - ii) Show that every metric space is T_2 . Give an example of a topological space which is not T_2 . 4+4

Ex/SC/MATH/PG/CORE/TH/03/2023

M. Sc. MATHEMATICS EXAMINATION, 2023

(1st Year, 1st Semester) MATHEMATICS PAPER – CORE-03 [TOPOLOGY] Time : Two hours Full Marks : 40 Answer any five questions. Notations and Symbols have their usual meanings. 1. i) If A is a countable subset of \mathbb{R}^2 then show that $\mathbb{R}^2 \setminus A$ is connected.

- ii) Prove that a topological space X is disconnected iff there exists a continuous mapping from X onto the discrete two-point space {0, 1}.
- 2. i) State Ascoli-Arzela theorem. Use it to show that the set $S = \{x^n : n \in \mathbb{N}\}$ is not a compact subset of the space C[0, 1].
 - ii) Let $f: X \to Y$ be a bijective continuous function, where X is compact and Y is T_2 . Then show that X and Y are homeomorphic. 4+4
- 3. i) Let X be a compact T_2 space such that every point of X is a limit point of X. Show that X is uncountable.
 - ii) Consider the set of real numbers \mathbb{R} with usual topology τ and lower limit topology τ_l . Show that τ_l is finer than τ . 4+4

[Turn over