Ex/SC/MATH/PG/CORE/TH/02/2023

M. Sc. MATHEMATICS EXAMINATION, 2023

(1st Year, 1st Semester)

MATHEMATICS

PAPER – CORE-02

[REAL ANALYSIS]

Time : Two hours

Full Marks : 40

2+3+3

Answer Question No. 1 and any four questions from the rest.

All questions carry equal marks.

Notations and Symbols have their usual meanings.

- 1. a) Give an example of an uncountable set of Lebesgue measure zero.
 - b) If f and g are measurable functions defined on a measurable set D then prove that the set $\{x \in D : f(x) \neq g(x)\}$ is measurable.
 - c) Let \mathbf{R} be a ring of subsets of a set X. Prove that

 $\mathbf{C} = \left\{ A \subset X : \text{ either } A \text{ or } A^c \in \mathbf{R} \right\}$ is an algebra of subsets of X.

2. a) Define Lebesgue outer measure. Show that Lebesgue outer measure is countably sub-additive.

b) For a monotonically decreasing sequence of Lebesgue measurable sets $\{E_n\}_n$ where $\mu(E_n) < \infty$ for some *n*, prove that $\mu(\lim_n E_n) = \lim_n \mu(E_n)$. Give an example to show that the condition

"
$$\mu(E_n) < \infty$$
 for some *n*" is essential. 4+4

- 3. a) Prove that $[0,\infty)$ is Lebesgue measurable and hence show that every open set is Lebesgue measurable.
 - b) Prove that a function f on a measurable set which is continuous almost everywhere is measurable. 5+3
- 4. a) If a sequence of measurable functions $\{f_n\}_n$ is convergent almost everywhere to a measurable function f on a measurable set E with $\mu(E) < \infty$ then show that f_n converges to f in measure.
 - b) When a sequence of functions f_n is said to converge almost uniformly. Does convergence in measure implies convergence almost uniformly? Answer with reasons. 5+3
- 5. a) State and prove bounded convergence theorem.
 - b) Give an example to show that if a function f is Riemann integrable in the improper sense then it may not be Lebesgue integrable. 6+2
- 6. a) Prove that f is a function of bounded variation on [a,b] if and only if f can be expressed as the difference of two increasing functions on [a,b].
 - b) If $f:[a,b] \to \mathbb{R}$ is non-decreasing then show that the derivative f' is Lebesgue integrable with $\int_{a}^{b} f' d\mu \le f(b) - f(a).$ 4+4

7. a) Prove that for any sequence of non-negative measurable functions $\{f_n\}_n$,

 $\int \liminf f_n d\mu < \liminf \int f_n d\mu.$

- b) Let μ be a measure on a ring **R** and let μ^* be the extension of μ to an outer measure on **H**(**R**). Let \overline{S} be the collection of μ^* -measurable sets and $\overline{\mu}$ be the extension of μ to \overline{S} . Then prove that every set *E* of **H**(**R**) with σ -finite outer measure has a measurable cover *F* such that $\overline{\mu}(F) = \mu^*(E)$. 3+5
- 8. a) Prove that S is a σ -ring if and only if it is a ring and a monotone class.
 - b) For a ring **R**, show that $S(\mathbf{R}) = \mathbf{M}(\mathbf{R})$. 2+6